Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Phys Rev Lett ; 129(11): 114801, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36154426

ABSTRACT

Premature relativistic transparency of ultrathin, laser-irradiated targets is recognized as an obstacle to achieving a stable radiation pressure acceleration in the "light sail" (LS) mode. Experimental data, corroborated by 2D PIC simulations, show that a few-nm thick overcoat surface layer of high Z material significantly improves ion bunching at high energies during the acceleration. This is diagnosed by simultaneous ion and neutron spectroscopy following irradiation of deuterated plastic targets. In particular, copious and directional neutron production (significantly larger than for other in-target schemes) arises, under optimal parameters, as a signature of plasma layer integrity during the acceleration.

2.
Opt Lett ; 45(24): 6575-6578, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33325843

ABSTRACT

We demonstrate the three-fold post-chirped-pulse-amplification (post-CPA) pulse compression of a high peak power laser pulse using allyl diglycol carbonate (CR39), which was selected as the optimal material for near-field self-phase modulation out of a set of various nonlinear plastic materials, each characterized with respect to its nonlinear refractive index and optical transmission. The investigated materials could be applied for further pulse compression at high peak powers, as well as for gain narrowing compensation within millijoule-class amplifiers. The post-CPA pulse compression technique was tested directly after the first CPA stage within the POLARIS laser system, with the compact setup containing a single 1 mm thick plastic sample and a chirped mirror pair, which enabled a substantial shortening of the compressed pulse duration and, hence, a significant increase in the laser peak power without any additional modifications to the existing CPA chain.

3.
Phys Rev Lett ; 124(11): 114802, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242678

ABSTRACT

A new regime in the interaction of a two-color (ω,2ω) laser with a nanometer-scale foil is identified, resulting in the emission of extremely intense, isolated attosecond pulses-even in the case of multicycle lasers. For foils irradiated by lasers exceeding the blow-out field strength (i.e., capable of fully separating electrons from the ion background), the addition of a second harmonic field results in the stabilization of the foil up to the blow-out intensity. This is then followed by a sharp transition to transparency that essentially occurs in a single optical cycle. During the transition cycle, a dense, nanometer-scale electron bunch is accelerated to relativistic velocities and emits a single, strong attosecond pulse with a peak intensity approaching that of the laser field.

4.
Phys Rev Lett ; 122(1): 014803, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012707

ABSTRACT

We report the experimental generation of highly energetic carbon ions up to 48 MeV per nucleon by shooting double-layer targets composed of well-controlled slightly underdense plasma and ultrathin foils with ultraintense femtosecond laser pulses. Particle-in-cell simulations reveal that carbon ions are ejected from the ultrathin foils due to radiation pressure and then accelerated in an enhanced sheath field established by the superponderomotive electron flow. Such a cascaded acceleration is especially suited for heavy ion acceleration with femtosecond laser pulses. The breakthrough of heavy ion energy up to many tens of MeV/u at a high repetition rate would be able to trigger significant advances in nuclear physics, high energy density physics, and medical physics.

5.
Phys Rev Lett ; 121(15): 154801, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30362794

ABSTRACT

Controlling the parameters of a laser plasma accelerated electron beam is a topic of intense research with a particular focus placed on controlling the injection phase of electrons into the accelerating structure from the background plasma. An essential prerequisite for high-quality beams is dark-current free acceleration (i.e., no electrons accelerated beyond those deliberately injected). We show that small-scale density ripples in the background plasma are sufficient to cause the uncontrolled (self-)injection of electrons. Such ripples can be as short as ∼50 µm and can therefore not be resolved by standard interferometry. Background free injection with substantially improved beam characteristics (divergence and pointing) is demonstrated in a gas cell designed for a controlled gas flow. The results are supported by an analytical theory as well as 3D particle in cell simulations.

6.
Phys Rev Lett ; 120(7): 074801, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29542949

ABSTRACT

We report on the experimental studies of laser driven ion acceleration from a double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer-thin diamondlike carbon foil. A significant enhancement of proton maximum energies from 12 to ∼30 MeV is observed when a relativistic laser pulse impinges on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.

7.
Phys Rev Lett ; 119(5): 054801, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28949740

ABSTRACT

The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (∼6×10^{20} W cm^{-2}) ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25-30 MeV/nucleon); in particular, carbon ion energies obtained employing CP pulses were significantly higher (∼2.5 times) than for irradiations employing linearly polarized pulses. Particle-in-cell simulations indicate that radiation pressure acceleration becomes the dominant mechanism for the thinnest targets and CP pulses.

8.
Opt Express ; 24(5): 5212-5234, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092347

ABSTRACT

We present a comprehensive model for predicting the full performance of a second harmonic generation-optical parametric amplification system that aims at enhancing the temporal contrast of laser pulses. The model simultaneously takes into account all the main parameters at play in the system such as the group velocity mismatch, the beam divergence, the spectral content, the pump depletion, and the length of the nonlinear crystals. We monitor the influence of the initial parameters of the input pulse and the interdependence of the two related non-linear processes on the performance of the system and show its optimum configuration. The influence of the initial beam divergence on the spectral and the temporal characteristics of the generated pulse is discussed. In addition, we show that using a crystal slightly longer than the optimum length and introducing small delay between the seed and the pump ensures maximum efficiency and compensates for the spectral shift in the optical parametric amplification stage in case of chirped input pulse. As an example, calculations for bandwidth transform limited and chirped pulses of sub-picosecond duration in beta barium borate crystal are presented.

9.
Opt Express ; 24(3): 3127-36, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26906877

ABSTRACT

Temporal overlapping of ultra-short and focussed laser pulses is a particularly challenging task, as this timescale lies orders of magnitude below the typical range of fast electronic devices. Here we present an optical technique that allows for the measurement of the temporal delay between two focussed and ultra-short laser pulses. This method is virtually applicable to any focussing geometry and relative intensity of the two lasers. Experimental implementation of this technique provides excellent quantitative agreement with theoretical expectations. The proposed technique will prove highly beneficial for high-power multiple-beam laser experiments.

10.
Phys Rev Lett ; 116(8): 083901, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26967416

ABSTRACT

The microscopic dynamics of laser-driven coherent synchrotron emission transmitted through thin foils are investigated using particle-in-cell simulations. For normal incidence interactions, we identify the formation of two distinct electron nanobunches from which emission takes place each half-cycle of the driving laser pulse. These emissions are separated temporally by 130 as and are dominant in different frequency ranges, which is a direct consequence of the distinct characteristics of each electron nanobunch. This may be exploited through spectral filtering to isolate these emissions, generating electromagnetic pulses of duration ∼70 as.

11.
Appl Opt ; 55(33): 9341-9346, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27869832

ABSTRACT

The temporal contrast of a regeneratively amplified, sub-picosecond pulse is enhanced by employing a low-gain optical parametric amplification stage self-pumped by the second harmonic of the pulse. Through careful characterization of the two related nonlinear processes and optimization of the non-collinear geometry, a robust high-contrast idler pulse has been generated, with excellent spatial quality in both the near and far field. The overall energy conversion efficiency exceeds 14%, with 33% intensity conversion efficiency. The temporal cleaning is implemented without any bandwidth losses or spectral shift and produces approximately 20% temporal shortening. These experimental findings are in excellent agreement with numerical calculations.

13.
Phys Rev Lett ; 115(19): 193903, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26588384

ABSTRACT

High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.

14.
Phys Rev Lett ; 115(6): 064801, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26296119

ABSTRACT

Ultraintense laser pulses with a few-cycle rising edge are ideally suited to accelerating ions from ultrathin foils, and achieving such pulses in practice represents a formidable challenge. We show that such pulses can be obtained using sufficiently strong and well-controlled relativistic nonlinearities in spatially well-defined near-critical-density plasmas. The resulting ultraintense pulses with an extremely steep rising edge give rise to significantly enhanced carbon ion energies consistent with a transition to radiation pressure acceleration.

15.
Phys Rev Lett ; 113(23): 235002, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25526132

ABSTRACT

Double-foil targets separated by a low density plasma and irradiated by a petawatt-class laser are shown to be a copious source of coherent broadband radiation. Simulations show that a dense sheet of relativistic electrons is formed during the interaction of the laser with the tenuous plasma between the two foils. The coherent motion of the electron sheet as it transits the second foil results in strong broadband emission in the extreme ultraviolet, consistent with our experimental observations.

16.
Phys Rev Lett ; 112(12): 123902, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24724650

ABSTRACT

The polarization dependence of laser-driven coherent synchrotron emission transmitted through thin foils is investigated experimentally. The harmonic generation process is seen to be almost completely suppressed for circular polarization opening up the possibility of producing isolated attosecond pulses via polarization gating. Particle-in-cell simulations suggest that current laser pulses are capable of generating isolated attosecond pulses with high pulse energies.

17.
Phys Rev Lett ; 113(22): 224801, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25494074

ABSTRACT

We report on the generation of a narrow divergence (θ_{γ}<2.5 mrad), multi-MeV (E_{max}≈18 MeV) and ultrahigh peak brilliance (>1.8×10^{20} photons s^{-1} mm^{-2} mrad^{-2} 0.1% BW) γ-ray beam from the scattering of an ultrarelativistic laser-wakefield accelerated electron beam in the field of a relativistically intense laser (dimensionless amplitude a_{0}≈2). The spectrum of the generated γ-ray beam is measured, with MeV resolution, seamlessly from 6 to 18 MeV, giving clear evidence of the onset of nonlinear relativistic Thomson scattering. To the best of our knowledge, this photon source has the highest peak brilliance in the multi-MeV regime ever reported in the literature.

18.
Phys Rev Lett ; 110(17): 175001, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679738

ABSTRACT

High-order harmonics and attosecond pulses of light can be generated when ultraintense, ultrashort laser pulses reflect off a solid-density plasma with a sharp vacuum interface, i.e., a plasma mirror. We demonstrate experimentally the key influence of the steepness of the plasma-vacuum interface on the interaction, by measuring the spectral and spatial properties of harmonics generated on a plasma mirror whose initial density gradient scale length L is continuously varied. Time-resolved interferometry is used to separately measure this scale length.

19.
Phys Rev Lett ; 110(16): 165002, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23679609

ABSTRACT

Beam divergences of high-order extreme ultraviolet harmonics from intense laser interactions with steep plasma density gradients are studied through experiment and Fourier analysis of the harmonic spatial phase. We show that while emission due to the relativistically oscillating mirror mechanism can be explained by ponderomotive surface denting, in agreement with previous results, the divergence of the emission due to the coherent wake emission mechanism requires a combination of the dent phase and an intrinsic emission phase. The temporal dependence of the divergences for both mechanisms is highlighted while it is also shown that the coherent wake emission divergence can be small in circumstances where the phase terms compensate each other.

20.
Phys Rev Lett ; 110(25): 255002, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23829742

ABSTRACT

The generation of ultrarelativistic positron beams with short duration (τ(e+) ≃ 30 fs), small divergence (θ(e+) ≃ 3 mrad), and high density (n(e+) ≃ 10(14)-10(15) cm(-3)) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and γ rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.

SELECTION OF CITATIONS
SEARCH DETAIL