Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
J Cell Sci ; 136(23)2023 12 01.
Article in English | MEDLINE | ID: mdl-38126809

ABSTRACT

Regulation of glucose transport, which is central for control of whole-body metabolism, is determined by the amount of GLUT4 glucose transporter (also known as SLC2A4) in the plasma membrane (PM) of fat and muscle cells. Physiologic signals [such as activated insulin receptor or AMP-activated protein kinase (AMPK)] increase PM GLUT4. Here, we show that the distribution of GLUT4 between the PM and interior of human muscle cells is dynamically maintained, and that AMPK promotes PM redistribution of GLUT4 by regulating exocytosis and endocytosis. Stimulation of exocytosis by AMPK is mediated by Rab10 and the Rab GTPase-activating protein TBC1D4. APEX2 proximity mapping reveals that GLUT4 traverses both PM-proximal and PM-distal compartments in unstimulated muscle cells, further supporting retention of GLUT4 by a constitutive retrieval mechanism. AMPK-stimulated translocation involves GLUT4 redistribution among the same compartments traversed in unstimulated cells, with a significant recruitment of GLUT4 from the Golgi and trans-Golgi network compartments. Our comprehensive proximal protein mapping provides an integrated, high-density, whole-cell accounting of the localization of GLUT4 at a resolution of ∼20 nm that serves as a structural framework for understanding the molecular mechanisms regulating GLUT4 trafficking downstream of different signaling inputs in a physiologically relevant cell type.


Subject(s)
Glucose Transporter Type 4 , Muscle Cells , Proteome , Humans , AMP-Activated Protein Kinases , Cell Membrane , Muscles , Glucose Transporter Type 4/metabolism
2.
Bioorg Med Chem Lett ; 26(6): 1529-1535, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26898814

ABSTRACT

MK-4256, a tetrahydro-ß-carboline sstr3 antagonist, was discontinued due to a cardiovascular (CV) adverse effect observed in dogs. Additional investigations revealed that the CV liability (QTc prolongation) was caused by the hERG off-target activity of MK-4256 and was not due to sstr3 antagonism. In this Letter, we describe our extensive SAR effort at the C3 position of the tetrahydro-ß-carboline structure. This effort resulted in identification of 5-fluoro-pyridin-2-yl as the optimal substituent on the imidazole ring to balance sstr3 activity and the hERG off-target liability.


Subject(s)
Carbolines/chemistry , Carbolines/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Animals , Carbolines/chemical synthesis , Dogs , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Rats , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 25(19): 4143-7, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26303893

ABSTRACT

A novel, potent series of glucagon receptor antagonists (GRAs) was discovered. These indazole- and indole-based compounds were designed on an earlier pyrazole-based GRA lead MK-0893. Structure-activity relationship (SAR) studies were focused on the C3 and C6 positions of the indazole core, as well as the benzylic position on the N-1 of indazole. Multiple potent GRAs were identified with excellent in vitro profiles and good pharmacokinetics in rat. Among them, GRA 16d was found to be orally active in blunting glucagon induced glucose excursion in an acute glucagon challenge model in glucagon receptor humanized (hGCGR) mice at 1, 3 and 10mg/kg (mpk), and significantly lowered acute glucose levels in hGCGR ob/ob mice at 3 mpk dose.


Subject(s)
Indazoles/chemistry , Indazoles/pharmacology , Indoles/chemistry , Indoles/pharmacology , Receptors, Glucagon/antagonists & inhibitors , Animals , CHO Cells , Cricetulus , Dose-Response Relationship, Drug , Humans , Mice , Mice, Obese , Molecular Structure , Rats , Structure-Activity Relationship
4.
Proc Natl Acad Sci U S A ; 108(13): 5378-83, 2011 Mar 29.
Article in English | MEDLINE | ID: mdl-21389266

ABSTRACT

Platensimycin (PTM) is a recently discovered broad-spectrum antibiotic produced by Streptomyces platensis. It acts by selectively inhibiting the elongation-condensing enzyme FabF of the fatty acid biosynthesis pathway in bacteria. We report here that PTM is also a potent and highly selective inhibitor of mammalian fatty acid synthase. In contrast to two agents, C75 and cerulenin, that are widely used as inhibitors of mammalian fatty acid synthase, platensimycin specifically inhibits fatty acid synthesis but not sterol synthesis in rat primary hepatocytes. PTM preferentially concentrates in liver when administered orally to mice and potently inhibits hepatic de novo lipogenesis, reduces fatty acid oxidation, and increases glucose oxidation. Chronic administration of platensimycin led to a net reduction in liver triglyceride levels and improved insulin sensitivity in db/+ mice fed a high-fructose diet. PTM also reduced ambient glucose levels in db/db mice. These results provide pharmacological proof of concept of inhibiting fatty acid synthase for the treatment of diabetes and related metabolic disorders in animal models.


Subject(s)
Adamantane/therapeutic use , Aminobenzoates/therapeutic use , Anilides/therapeutic use , Diabetes Mellitus/drug therapy , Fatty Acid Synthases/antagonists & inhibitors , Fatty Liver/drug therapy , Hypoglycemic Agents/therapeutic use , Animals , Anti-Infective Agents/therapeutic use , Disease Models, Animal , Fatty Acids/biosynthesis , Glucose/metabolism , Humans , Liver/metabolism , Mice , Mice, Mutant Strains , Oxidation-Reduction , Sterols/biosynthesis
5.
bioRxiv ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38895483

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We have developed a novel "2-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF. C57BL6/NJ mice fed a high fat diet for >10 weeks were administered an AAV8-driven vector resulting in constitutive overexpression of mouse Renin1d . Control mice, HFD only, Renin only and HFD-Renin (aka "HFpEF") littermates underwent a battery of cardiac and extracardiac phenotyping. HFD-Renin mice demonstrated obesity and insulin resistance, a 2-3-fold increase in circulating renin levels that resulted in 30-40% increase in left ventricular hypertrophy, preserved systolic function, and diastolic dysfunction indicated by altered E/e', IVRT, and strain measurements; increased left atrial mass; elevated natriuretic peptides; and exercise intolerance. Transcriptomic and metabolomic profiling of HFD-Renin myocardium demonstrated upregulation of pro-fibrotic pathways and downregulation of metabolic pathways, in particular branched chain amino acid catabolism, similar to findings in human HFpEF. Treatment of these mice with the sodium-glucose cotransporter 2 inhibitor empagliflozin, an effective but incompletely understood HFpEF therapy, improved exercise tolerance, left heart enlargement, and insulin homeostasis. The HFD-Renin mouse model recapitulates key features of human HFpEF and will enable studies dissecting the contribution of individual pathogenic drivers to this complex syndrome. Addition of HFD-Renin mice to the preclinical HFpEF model platform allows for orthogonal studies to increase validity in assessment of interventions. NEW & NOTEWORTHY: Heart failure with preserved ejection fraction (HFpEF) is a complex disease to study due to limited preclinical models. We rigorously characterize a new two-hit HFpEF mouse model, which allows for dissecting individual contributions and synergy of major pathogenic drivers, hypertension and diet-induced obesity. The results are consistent and reproducible in two independent laboratories. This high-fidelity pre-clinical model increases the available, orthogonal models needed to improve our understanding of the causes and assessment treatments for HFpEF.

6.
J Pharmacol Exp Ther ; 344(2): 407-16, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23161216

ABSTRACT

The voltage-gated potassium channels Kv2.1 and Kv2.2 are highly expressed in pancreatic islets, yet their contribution to islet hormone secretion is not fully understood. Here we investigate the role of Kv2 channels in pancreatic islets using a combination of genetic and pharmacologic approaches. Pancreatic ß-cells from Kv2.1(-/-) mice possess reduced Kv current and display greater glucose-stimulated insulin secretion (GSIS) relative to WT ß-cells. Inhibition of Kv2.x channels with selective peptidyl [guangxitoxin-1E (GxTX-1E)] or small molecule (RY796) inhibitors enhances GSIS in isolated wild-type (WT) mouse and human islets, but not in islets from Kv2.1(-/-) mice. However, in WT mice neither inhibitor improved glucose tolerance in vivo. GxTX-1E and RY796 enhanced somatostatin release in isolated human and mouse islets and in situ perfused pancreata from WT and Kv2.1(-/-) mice. Kv2.2 silencing in mouse islets by adenovirus-small hairpin RNA (shRNA) specifically enhanced islet somatostatin, but not insulin, secretion. In mice lacking somatostatin receptor 5, GxTX-1E stimulated insulin secretion and improved glucose tolerance. Collectively, these data show that Kv2.1 regulates insulin secretion in ß-cells and Kv2.2 modulates somatostatin release in δ-cells. Development of selective Kv2.1 inhibitors without cross inhibition of Kv2.2 may provide new avenues to promote GSIS for the treatment of type 2 diabetes.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin/metabolism , Shab Potassium Channels/metabolism , Somatostatin/metabolism , Adult , Animals , Arthropod Proteins , Benzamides/pharmacology , Cells, Cultured , Electrophysiological Phenomena , Female , Glucose/pharmacology , Humans , Insulin Secretion , Insulin-Secreting Cells/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Patch-Clamp Techniques , Peptides/pharmacology , Potassium Channel Blockers/pharmacology , Protein Binding , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Shab Potassium Channels/antagonists & inhibitors , Shab Potassium Channels/genetics , Spider Venoms/pharmacology , Young Adult
7.
PLoS One ; 18(4): e0283806, 2023.
Article in English | MEDLINE | ID: mdl-37014882

ABSTRACT

Muscle wasting is one of the main characteristics of cachexia associated with cancer and other chronic diseases and is often exacerbated by antineoplastic agents. Increased oxidative stress is associated with muscle wasting, along with depletion of glutathione, the most abundant endogenous antioxidant. Therefore, boosting endogenous glutathione has been proposed as a therapeutic strategy to prevent muscle wasting. Here, we tested this hypothesis by inactivating CHAC1, an intracellular glutathione degradation enzyme. We found CHAC1 expression is increased under multiple muscle wasting conditions in animal models, including fasting, cancer cachexia, and chemotherapy. The elevation of muscle Chac1 expression is associated with reduced glutathione level. CHAC1 inhibition via CRSPR/Cas9 mediated knock-in of an enzyme inactivating mutation demonstrates a novel strategy to preserve muscle glutathione levels under wasting conditions but fails to prevent muscle wasting in mice. These results suggest that preserving intracellular glutathione level alone may not be sufficient to prevent cancer or chemotherapy induced muscle wasting.


Subject(s)
Cachexia , Neoplasms , gamma-Glutamylcyclotransferase , Animals , Mice , Cachexia/prevention & control , Cachexia/metabolism , Glutathione/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/pathology , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/metabolism , gamma-Glutamylcyclotransferase/metabolism
8.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333333

ABSTRACT

Regulation of glucose transport into muscle and adipocytes, central for control of whole-body metabolism, is determined by the amount of GLUT4 glucose transporter in the plasma membrane ( PM ). Physiologic signals (activated insulin receptor or AMP kinase [ AMPK ]), acutely increase PM GLUT4 to enhance glucose uptake. Here we show in kinetic studies that intracellular GLUT4 is in equilibrium with the PM in unstimulated cultured human skeletal muscle cells, and that AMPK promotes GLUT4 redistribution to the PM by regulating both exocytosis and endocytosis. AMPK-stimulation of exocytosis requires Rab10 and Rab GTPase activating protein TBC1D4, requirements shared with insulin control of GLUT4 in adipocytes. Using APEX2 proximity mapping, we identify, at high-density and high-resolution, the GLUT4 proximal proteome, revealing GLUT4 traverses both PM proximal and distal compartments in unstimulated muscle cells. These data support intracellular retention of GLUT4 in unstimulated muscle cells by a dynamic mechanism dependent on the rates of internalization and recycling. AMPK promoted GLUT4 translocation to the PM involves redistribution of GLUT4 among the same compartments traversed in unstimulated cells, with a significant redistribution of GLUT4 from the PM distal Trans Golgi Network Golgi compartments. The comprehensive proximal protein mapping provides an integrated, whole cell accounting of GLUT4's localization at a resolution of ∼20 nm, a structural framework for understanding the molecular mechanisms regulating GLUT4 trafficking downstream of different signaling inputs in physiologically relevant cell type and as such, sheds new light on novel key pathways and molecular components as potential therapeutic approaches to modulate muscle glucose uptake.

9.
Cell Rep ; 42(1): 111947, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640326

ABSTRACT

Cancer cachexia is a disorder characterized by involuntary weight loss and impaired physical performance. Decline in physical performance of patients with cachexia is associated with poor quality of life, and currently there are no effective pharmacological interventions that restore physical performance. Here we examine the effect of GDF15 neutralization in a mouse model of cancer-induced cachexia (TOV21G) that manifests weight loss and muscle function impairments. With comprehensive assessments, our results demonstrate that cachectic mice treated with the anti-GDF15 antibody mAB2 exhibit body weight gain with near-complete restoration of muscle mass and markedly improved muscle function and physical performance. Mechanistically, the improvements induced by GDF15 neutralization are primarily attributed to increased caloric intake, while altered gene expression in cachectic muscles is restored in caloric-intake-dependent and -independent manners. The findings indicate potential of GDF15 neutralization as an effective therapy to enhance physical performance of patients with cachexia.


Subject(s)
Cachexia , Neoplasms , Mice , Animals , Cachexia/metabolism , Quality of Life , Neoplasms/genetics , Weight Loss , Muscles/metabolism , Muscle, Skeletal/metabolism
10.
Nat Metab ; 5(4): 589-606, 2023 04.
Article in English | MEDLINE | ID: mdl-37100997

ABSTRACT

Elevated levels of plasma branched-chain amino acids (BCAAs) have been associated with insulin resistance and type 2 diabetes since the 1960s. Pharmacological activation of branched-chain α-ketoacid dehydrogenase (BCKDH), the rate-limiting enzyme of BCAA oxidation, lowers plasma BCAAs and improves insulin sensitivity. Here we show that modulation of BCKDH in skeletal muscle, but not liver, affects fasting plasma BCAAs in male mice. However, despite lowering BCAAs, increased BCAA oxidation in skeletal muscle does not improve insulin sensitivity. Our data indicate that skeletal muscle controls plasma BCAAs, that lowering fasting plasma BCAAs is insufficient to improve insulin sensitivity and that neither skeletal muscle nor liver account for the improved insulin sensitivity seen with pharmacological activation of BCKDH. These findings suggest potential concerted contributions of multiple tissues in the modulation of BCAA metabolism to alter insulin sensitivity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Male , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Amino Acids, Branched-Chain/metabolism , Muscle, Skeletal/metabolism , Oxidation-Reduction
11.
Nat Commun ; 14(1): 4812, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558654

ABSTRACT

Branched chain amino acid (BCAA) catabolic impairments have been implicated in several diseases. Branched chain ketoacid dehydrogenase (BCKDH) controls the rate limiting step in BCAA degradation, the activity of which is inhibited by BCKDH kinase (BDK)-mediated phosphorylation. Screening efforts to discover BDK inhibitors led to identification of thiophene PF-07208254, which improved cardiometabolic endpoints in mice. Structure-activity relationship studies led to identification of a thiazole series of BDK inhibitors; however, these inhibitors did not improve metabolism in mice upon chronic administration. While the thiophenes demonstrated sustained branched chain ketoacid (BCKA) lowering and reduced BDK protein levels, the thiazoles increased BCKAs and BDK protein levels. Thiazoles increased BDK proximity to BCKDH-E2, whereas thiophenes reduced BDK proximity to BCKDH-E2, which may promote BDK degradation. Thus, we describe two BDK inhibitor series that possess differing attributes regarding BDK degradation or stabilization and provide a mechanistic understanding of the desirable features of an effective BDK inhibitor.


Subject(s)
Amino Acids, Branched-Chain , Thiophenes , Mice , Animals , Amino Acids, Branched-Chain/metabolism , Phosphorylation , Thiophenes/pharmacology , Oxidoreductases/metabolism
12.
Cells ; 11(7)2022 03 23.
Article in English | MEDLINE | ID: mdl-35406637

ABSTRACT

Growth and differentiation factor 15 (GDF15) is a cytokine reported to cause anorexia and weight loss in animal models. Neutralization of GDF15 was efficacious in mitigating cachexia and improving survival in cachectic tumor models. Interestingly, elevated circulating GDF15 was reported in patients with pulmonary arterial hypertension and heart failure, but it is unclear whether GDF15 contributes to cachexia in these disease conditions. In this study, rats treated with monocrotaline (MCT) manifested a progressive decrease in body weight, food intake, and lean and fat mass concomitant with elevated circulating GDF15, as well as development of right-ventricular dysfunction. Cotreatment of GDF15 antibody mAb2 with MCT prevented MCT-induced anorexia and weight loss, as well as preserved lean and fat mass. These results indicate that elevated GDF15 by MCT is causal to anorexia and weight loss. GDF15 mAb2 is efficacious in mitigating MCT-induced cachexia in vivo. Furthermore, the results suggest GDF15 inhibition is a potential therapeutic approach to alleviate cardiac cachexia in patients.


Subject(s)
Anorexia , Antibodies, Monoclonal , Cachexia , Growth Differentiation Factor 15 , Animals , Anorexia/chemically induced , Anorexia/complications , Antibodies, Monoclonal/pharmacology , Cachexia/etiology , Cachexia/prevention & control , Growth Differentiation Factor 15/antagonists & inhibitors , Humans , Monocrotaline/toxicity , Rats , Weight Loss
13.
Mol Metab ; 66: 101611, 2022 12.
Article in English | MEDLINE | ID: mdl-36220546

ABSTRACT

OBJECTIVE: Branched chain amino acid (BCAA) catabolic defects are implicated to be causal determinates of multiple diseases. This work aimed to better understand how enhancing BCAA catabolism affected metabolic homeostasis as well as the mechanisms underlying these improvements. METHODS: The rate limiting step of BCAA catabolism is the irreversible decarboxylation by the branched chain ketoacid dehydrogenase (BCKDH) enzyme complex, which is post-translationally controlled through phosphorylation by BCKDH kinase (BDK). This study utilized BT2, a small molecule allosteric inhibitor of BDK, in multiple mouse models of metabolic dysfunction and NAFLD including the high fat diet (HFD) model with acute and chronic treatment paradigms, the choline deficient and methionine minimal high fat diet (CDAHFD) model, and the low-density lipoprotein receptor null mouse model (Ldlr-/-). shRNA was additionally used to knock down BDK in liver to elucidate liver-specific effects of BDK inhibition in HFD-fed mice. RESULTS: A rapid improvement in insulin sensitivity was observed in HFD-fed and lean mice after BT2 treatment. Resistance to steatosis was assessed in HFD-fed mice, CDAHFD-fed mice, and Ldlr-/- mice. In all cases, BT2 treatment reduced steatosis and/or inflammation. Fasting and refeeding demonstrated a lack of response to feeding-induced changes in plasma metabolites including insulin and beta-hydroxybutyrate and hepatic gene changes in BT2-treated mice. Mechanistically, BT2 treatment acutely altered the expression of genes involved in fatty acid oxidation and lipogenesis in liver, and upstream regulator analysis suggested that BT2 treatment activated PPARα. However, BT2 did not directly activate PPARα in vitro. Conversely, shRNA-AAV-mediated knockdown of BDK specifically in liver in vivo did not demonstrate any effects on glycemia, steatosis, or PPARα-mediated gene expression in mice. CONCLUSIONS: These data suggest that BT2 treatment acutely improves metabolism and liver steatosis in multiple mouse models. While many molecular changes occur in liver in BT2-treated mice, these changes were not observed in mice with AAV-mediated shRNA knockdown of BDK. All together, these data suggest that systemic BDK inhibition is required to improve metabolism and steatosis by prolonging a fasting signature in a paracrine manner. Therefore, BCAA may act as a "fed signal" to promote nutrient storage and reduced systemic BCAA levels as shown in this study via BDK inhibition may act as a "fasting signal" to prolong the catabolic state.


Subject(s)
Fatty Liver , PPAR alpha , Animals , Mice , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Fasting , Mice, Knockout , RNA, Small Interfering
14.
Cell Metab ; 4(1): 89-96, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16814735

ABSTRACT

Type 2 diabetes is associated with defects in insulin signaling and the resulting abnormal glucose and lipid metabolism. The complexity of insulin signaling cascades is highlighted by the existence of multiple isoforms of target proteins implicated in metabolic and gene-regulatory events. We utilized siRNA to decipher the specific role of predominant insulin receptor substrates and Akt isoforms expressed in human skeletal muscle. Gene silencing revealed specialized roles of insulin signaling cascades to metabolic endpoints. IRS-1 and Akt2 were required for myoblast differentiation and glucose metabolism, whereas IRS-2 and Akt1 were dispensable. A key role of IRS-2 and Akt1 in lipid metabolism was revealed, highlighting reciprocal relationships between metabolic pathways. Unraveling the isoform-specific regulation of glucose and lipid metabolism by key elements along insulin signaling cascades through siRNA-mediated gene silencing in human tissues will facilitate the discovery of novel targets for the treatment of diabetes and related metabolic disorders.


Subject(s)
Gene Silencing/physiology , Phosphoproteins/physiology , Proto-Oncogene Proteins c-akt/physiology , RNA, Small Interfering/genetics , Cells, Cultured , Female , Glucose/metabolism , Humans , Insulin/physiology , Insulin Receptor Substrate Proteins , Intracellular Signaling Peptides and Proteins , Lipids/physiology , Male , Middle Aged , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Oxidation-Reduction , Palmitates/metabolism , Phosphoproteins/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/physiology
15.
J Exp Med ; 202(4): 517-27, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16103409

ABSTRACT

The enzyme 11beta-hydroxysteroid dehydrogenase (HSD) type 1 converts inactive cortisone into active cortisol in cells, thereby raising the effective glucocorticoid (GC) tone above serum levels. We report that pharmacologic inhibition of 11beta-HSD1 has a therapeutic effect in mouse models of metabolic syndrome. Administration of a selective, potent 11beta-HSD1 inhibitor lowered body weight, insulin, fasting glucose, triglycerides, and cholesterol in diet-induced obese mice and lowered fasting glucose, insulin, glucagon, triglycerides, and free fatty acids, as well as improved glucose tolerance, in a mouse model of type 2 diabetes. Most importantly, inhibition of 11beta-HSD1 slowed plaque progression in a murine model of atherosclerosis, the key clinical sequela of metabolic syndrome. Mice with a targeted deletion of apolipoprotein E exhibited 84% less accumulation of aortic total cholesterol, as well as lower serum cholesterol and triglycerides, when treated with an 11beta-HSD1 inhibitor. These data provide the first evidence that pharmacologic inhibition of intracellular GC activation can effectively treat atherosclerosis, the key clinical consequence of metabolic syndrome, in addition to its salutary effect on multiple aspects of the metabolic syndrome itself.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Adamantane/analogs & derivatives , Arteriosclerosis/drug therapy , Azepines/administration & dosage , Enzyme Activation/drug effects , Enzyme Inhibitors/administration & dosage , Insulin Resistance , Triazoles/administration & dosage , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Adamantane/administration & dosage , Animals , Aorta/metabolism , Arteriosclerosis/complications , Arteriosclerosis/enzymology , Blood Glucose/drug effects , Cortisone/metabolism , Diet, Atherogenic , Disease Models, Animal , Fatty Acids/blood , Hydrocortisone , Insulin/blood , Male , Mice , Mice, Inbred ICR , Mice, Knockout , Syndrome , Triglycerides/blood
16.
Bioorg Med Chem Lett ; 21(1): 76-81, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21147532

ABSTRACT

A novel class of 1,3,5-pyrazoles has been discovered as potent human glucagon receptor antagonists. Notably, compound 26 is orally bioavailable in several preclinical species and shows selectivity towards cardiac ion channels, other family B receptors such hGIP and hGLP1, and a large panel of enzymes and additional receptors. When dosed orally, compound 26 is efficacious in suppressing glucagon induced plasma glucose excursion in rhesus monkey and transgenic murine pharmacodynamic models at 1 and 10 mpk, respectively.


Subject(s)
Pyrazoles/chemistry , Receptors, Glucagon/antagonists & inhibitors , Administration, Oral , Animals , Blood Glucose/metabolism , Dogs , Drug Evaluation, Preclinical , Humans , Macaca mulatta , Mice , Mice, Transgenic , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Rats , Receptors, Glucagon/metabolism , Structure-Activity Relationship
17.
Nat Med ; 8(12): 1376-82, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12426561

ABSTRACT

Circulating insulin inhibits endogenous glucose production. Here we report that bidirectional changes in hypothalamic insulin signaling affect glucose production. The infusion of either insulin or a small-molecule insulin mimetic in the third cerebral ventricle suppressed glucose production independent of circulating levels of insulin and of other glucoregulatory hormones. Conversely, central antagonism of insulin signaling impaired the ability of circulating insulin to inhibit glucose production. Finally, third-cerebral-ventricle administration of inhibitors of ATP-sensitive potassium channels, but not of antagonists of the central melanocortin receptors, also blunted the effect of hyperinsulinemia on glucose production. These results reveal a new site of action of insulin on glucose production and suggest that hypothalamic insulin resistance can contribute to hyperglycemia in type 2 diabetes mellitus.


Subject(s)
Glucose/biosynthesis , Hypothalamus/drug effects , Insulin/pharmacology , Animals , Diabetes Mellitus, Type 2/etiology , Hypothalamus/physiology , Male , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin/antagonists & inhibitors , Receptors, Melanocortin
18.
Nat Med ; 8(2): 179-83, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11821903

ABSTRACT

Obesity and insulin resistance are major risk factors for a number of metabolic disorders, such as type 2 diabetes mellitus. Insulin has been suggested to function as one of the adiposity signals to the brain for modulation of energy balance. Administration of insulin into the brain reduces food intake and body weight, and mice with a genetic deletion of neuronal insulin receptors are hyperphagic and obese. However, insulin is also an anabolic factor; when administered systemically, pharmacological levels of insulin are associated with body weight gain in patients. In this study, we investigated the efficacy and feasibility of small molecule insulin mimetic compounds to regulate key parameters of energy homeostasis. Central intracerebroventricular (i.c.v.) administration of an insulin mimetic resulted in a dose-dependent reduction of food intake and body weight in rats, and altered the expression of hypothalamic genes known to regulate food intake and body weight. Oral administration of a mimetic in a mouse model of high-fat diet-induced obesity reduced body weight gain, adiposity and insulin resistance. Thus, insulin mimetics have a unique advantage over insulin in the control of body weight and hold potential as a novel anti-obesity treatment.


Subject(s)
Avoidance Learning/drug effects , Benzoquinones/pharmacology , Body Weight/drug effects , Energy Intake/drug effects , Insulin/pharmacology , Obesity/prevention & control , Taste/drug effects , Animals , Appetite/drug effects , Cerebral Ventricles/drug effects , Cerebral Ventricles/physiology , Diet , Gene Expression Regulation/drug effects , Injections, Intraventricular , Insulin Resistance , Male , Polymerase Chain Reaction , Rats , Rats, Inbred Strains , Rats, Long-Evans , Sodium, Dietary
19.
iScience ; 24(6): 102554, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34189431

ABSTRACT

Growth differentiation factor 15 (GDF15) causes anorexia and weight loss in animal models, and higher circulating levels are associated with cachexia and reduced survival in cancer and other chronic diseases such as sepsis. To investigate the role of sepsis-induced GDF15, we examined whether GDF15 neutralization via a validated and highly potent monoclonal antibody, mAB2, modulates lipopolysaccharide (LPS)-induced anorexia, weight loss, and mortality in rodents. LPS injection transiently increased circulating GDF15 in wild-type mice, decreased food intake and body weight, and increased illness behavior and mortality at a high dose. GDF15 neutralization with mAB2 did not prevent or exacerbate any of the effects of LPS. Similarly, in GDF15 knockout mice, the LPS effect on appetite and survival was comparable with that observed in wild-type controls. Therefore, effective inhibition of circulating active GDF15 via an antibody or via gene knockout demonstrated that survival in the LPS acute inflammation model was independent of GDF15.

20.
J Neurosci ; 29(21): 7015-22, 2009 May 27.
Article in English | MEDLINE | ID: mdl-19474328

ABSTRACT

Although several studies implicate small declines in blood glucose levels as stimulus for spontaneous meal initiation, no mechanism is known for how these dips might initiate feeding. To assess the role of ventromedial hypothalamus (VMH) (arcuate plus ventromedial nucleus) glucosensing neurons as potential mediators of spontaneous and glucoprivic feeding, meal patterns were observed, and blood and VMH microdialysis fluid were sampled in 15 rats every 10 min for 3.5 h after dark onset and 2 h after insulin (5 U/kg, i.v.) infusion. Blood glucose levels declined by 11% beginning approximately 5 min before 65% of all spontaneous meals, with no fall in VMH levels. After insulin, blood and VMH glucose reached nadirs by 30-40 min, and the same rats ate 60% faster and spent 84% more time eating during the ensuing hypoglycemia. Although 83% of first hypoglycemic meals were preceded by 5 min dips in VMH (but not blood) glucose levels, neither blood nor VMH levels declined before second meals, suggesting that low glucose, rather than changing levels, was the stimulus for glucoprivic meals. Furthermore, altering VMH glucosensing by raising or lowering glucokinase (GK) activity failed to affect spontaneous feeding, body or adipose weights, or glucose tolerance. However, chronic depletion by 26-70% of VMH GK mRNA reduced glucoprivic feeding. Thus, although VMH glucosensing does not appear to be involved in either spontaneous feeding or long-term body-weight regulation, it does participate in glucoprivic feeding, similar to its role in the counter-regulatory neurohumoral responses to glucoprivation.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Blood Glucose/physiology , Feeding Behavior/physiology , Glucose/deficiency , Ventromedial Hypothalamic Nucleus/metabolism , Analysis of Variance , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Behavior, Animal , Body Weight/drug effects , Body Weight/physiology , Feeding Behavior/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Glucokinase/genetics , Glucokinase/metabolism , Glucose/analogs & derivatives , Glucose/pharmacology , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Male , Microdialysis/methods , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Time Factors , Ventromedial Hypothalamic Nucleus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL