Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37948670

ABSTRACT

OBJECTIVE: To compare the effects of peritoneal dialysis and hemodialysis on spontaneous brain activity in patients with end-stage renal disease. METHODS: A total of 52 dialysis patients with end-stage renal disease, including 25 patients with chronic kidney disease undergoing hemodialysis (HD-CKD) and 27 patients with chronic kidney disease undergoing peritoneal dialysis (PD-CKD), and 49 healthy controls (normal control) were included. All participants underwent neuropsychological testing (Mini-Mental State Examination and Montreal cognitive assessment) and resting-state functional magnetic resonance imaging. Fractional amplitude of low frequency fluctuations and Regional Homogeneity algorithms were employed to evaluate spontaneous brain activity. Statistical analysis was performed to discern differences between the groups. RESULTS: When compared with the normal control group, the PD-CKD group exhibited significant alterations in fractional amplitude of low frequency fluctuations in various cerebellum regions and other brain areas, while the HD-CKD group showed decreased fractional amplitude of low frequency fluctuations in the bilateral pericalcarine cortex. The Regional Homogeneity values in the PD-CKD group were notably different than those in the normal control group, particularly in regions such as the bilateral caudate nucleus and the right putamen. CONCLUSION: Both peritoneal dialysis and hemodialysis modalities impact brain activity, but manifest differently in end-stage renal disease patients. Understanding these differences is crucial for optimizing patient care.


Subject(s)
Kidney Failure, Chronic , Peritoneal Dialysis , Renal Insufficiency, Chronic , Humans , Magnetic Resonance Imaging/methods , Renal Dialysis , Brain , Renal Insufficiency, Chronic/diagnostic imaging , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/pathology , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/pathology
2.
J Proteome Res ; 23(3): 916-928, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38367214

ABSTRACT

Myopia accounts for a significant proportion of visual lesions worldwide and has the potential to progress toward pathological myopia. This study aims to reveal the difference in protein content in aqueous humor between high myopic and nonhigh myopic patients, as well as better understand the dysregulation of proteins in myopic eyes. Aqueous humor was collected for liquid chromatograph mass spectrometer (LC/MS) analysis from 30 individual eyes that underwent phacoemulsification and intraocular lens (IOL) implantation. Results showed that a total of 190 differentially expressed proteins were identified, which revealed their involvement in cell metabolism, immune and inflammatory response, and system and anatomical structure. Further analysis focused on 15 intensively interacted hub proteins, encompassing functions related to complement cascades, lipoprotein metabolism, and fibrin biological function. Subsequent validations demonstrated elevated levels of APOE (apolipoprotein E), C3 (complement 3), and AHSG (α-2-HS-glycoprotein) in the high myopia group (31 eyes of cataracts and 45 eyes of high myopia with cataracts). AHSG had a significant positive correlation with axial length in high myopic patients, with good efficacy in distinguishing between myopic and nonmyopic groups. AHSG may be a potential indicator of the pathological severity and participator in the pathological progress of high myopia. This study depicted differential expression characteristics of aqueous humor in patients with high myopia and provided optional information for further experimental research on exploring the molecular mechanisms and potential therapeutic targets for high myopia. Data are available via ProteomeXchange with the identifier PXD047584.


Subject(s)
Cataract Extraction , Cataract , Myopia , Humans , Aqueous Humor , Proteomics
3.
J Neuroinflammation ; 21(1): 75, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532410

ABSTRACT

BACKGROUND: Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS: In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a ß-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFß1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS: The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of ß-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active ß-catenin labeling. In vitro, Wnt5a/ROR1, active ß-catenin, and some other Wnt signaling molecules were upregulated in the TGFß1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active ß-catenin, as well as the EMT in TGFß1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS: Our study reveals a reciprocal activation between Wnt5a and ß-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.


Subject(s)
Macular Degeneration , Sulfonamides , beta Catenin , Humans , Male , Animals , Mice , beta Catenin/metabolism , Wnt-5a Protein , Mice, Inbred C57BL , Retinal Pigment Epithelium/metabolism , Epithelial-Mesenchymal Transition , Macular Degeneration/metabolism , Fibrosis , RNA, Small Interfering/metabolism
4.
BMC Cancer ; 24(1): 49, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195438

ABSTRACT

BACKGROUND: Supraclavicular nodal (SCL) irradiation is commonly used for patients with high-risk breast cancer after breast surgery. The Radiation Therapy Oncology Group (RTOG) and European Society for Radiotherapy and Oncology (ESTRO) breast contouring atlases delineate the medial part of the SCL region, while excluding the posterolateral part. However, recent studies have found that a substantial proportion of SCL failures are located in the posterolateral SCL region, outside of the RTOG/ESTRO-defined SCL target volumes. Consequently, many radiation oncologists advocate for enlarging the SCL irradiation target volume to include both the medial and posterolateral SCL regions. Nevertheless, it remains uncertain whether adding the posterolateral SCL irradiation improves survival outcomes for high-risk breast cancer patients. METHODS: The SUCLANODE trial is an open-label, multicenter, randomized, phase 3 trial comparing the efficacy and adverse events of medial SCL irradiation (M-SCLI group) and medial plus posterolateral SCL irradiation (entire SCL irradiation, E-SCLI group) in high-risk breast cancer patients who underwent breast conserving-surgery or mastectomy. Patients with pathological N2-3b disease following initial surgery, or clinical stage III or pathological N1-3b if receiving neoadjuvant systemic therapy, are eligible and randomly assigned (1:1) to M-SCLI group and E-SCLI group. Stratification is by chemotherapy sequence (neoadjuvant vs. adjuvant), T stage (T3-4 vs. T1-2), N stage (N1-2 vs. N3), and ER status (positive vs. negative). Other radiation volumes are identical in the two arms, including breast/chest wall, undissected axillary lymph node, and internal mammary node. Advanced intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), or tomotherapy techniques are recommended. Both hypofractionated and conventional fractionation schedules are permitted. The primary end point is invasive disease-free survival, and secondary end points included overall survival, SCL recurrence, local-regional recurrence, distance recurrence, safety outcome, and patient-reported outcomes. The target sample size is 1650 participants. DISCUSSION: The results of the SUCLANODE trial will provide high-level evidence regarding whether adding posterolateral SCL irradiation to medial SCL target volume provides survival benefit in patients with high-risk breast cancer. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05059379. Registered 28 September 2021, https://www. CLINICALTRIALS: gov/ct2/show/NCT05059379 .


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Mastectomy , Adjuvants, Immunologic , Lymph Nodes , Breast , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase III as Topic
5.
Langmuir ; 40(1): 389-402, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38117697

ABSTRACT

A halogen-free quaternary ammonium-based ionic liquid functionalized with benzotriazole, BTA-16-BTA, was synthesized. Its anticorrosion effects on Q235 steel were evaluated in two different acids (6 M HCl or 1 M H3PO4) by weight loss and electrochemical tests. BTA-16-BTA shows the best performance at 30 °C with the highest inhibition efficiencies of 98.84% in 6 M HCl and 96.40% in 1 M H3PO4. The adsorption behavior of BTA-16-BTA molecules on Q235 steel in HCl solution obeys the Langmuir isotherm with an adsorption energy of about -40 kJ·mol-1, which implies chemisorption. Quantum chemistry calculation indicates that the chemical adsorption originated from the injection of π-electrons from inhibitor molecules into empty 3d orbitals of Fe atoms. The tight adsorption of inhibitor molecules and associated dehydration of the steel surface promoted the corrosion inhibition in HCl solutions. In H3PO4 solutions, passivation by phosphate anions and adsorption of inhibitor molecules contributed synergistically to the excellent anticorrosion performance.

6.
Nanotechnology ; 35(36)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38848693

ABSTRACT

Aqueous aluminum-ion batteries have many advantages such as their safety, environmental friendliness, low cost, high reserves and the high theoretical specific capacity of aluminum. So aqueous aluminum-ion batteries are potential substitute for lithium-ion batteries. In this paper, the current research status and development trends of cathode and anode materials and electrolytes for aqueous aluminum-ion batteries are described. Aiming at the problem of passivation, corrosion and hydrogen evolution reaction of aluminum anode and dissolution and irreversible change of cathode after cycling in aqueous aluminum-ion batteries. Solutions of different research routes such as ASEI (artificial solid electrolyte interphase), alloying, amorphization, elemental doping, electrolyte regulation, etc and different transformation mechanisms of anode and cathode materials during cycling have been summarized. Moreover, it looks forward to the possible research directions of aqueous aluminum-ion batteries in the future. We hope that this review can provide some insights and support for the design of more suitable electrode materials and electrolytes for aqueous aluminum-ion batteries.

7.
Phys Chem Chem Phys ; 26(24): 17303-17314, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38860379

ABSTRACT

Aluminum (Al) possesses high combustion enthalpy and is thus extensively used as the fuel additive in explosives to form aluminized explosives with excellent energy performance. In the energy release process of aluminized explosives, the adsorption of Al surfaces plays an important role in catalyzing the explosive decomposition and triggering the oxidation of themselves. However, it still remains elusive owing to the multiplicity of adsorbed substances. Herein, the adsorption mechanism of decomposition species of CHON-containing explosives on Al surfaces is studied synoptically by combining reactive molecular dynamics simulations with density functional theory calculations. The results indicate that the Al surface structure and the activity of adsorbed molecules both have an impact on adsorption. The cluster surface generally outperforms the slab one in adsorptivity due to the lower coordination number of Al atoms. Meanwhile, the more active adsorbed molecules lead to chemisorption or even dissociative adsorption, beneficial to the subsequent Al oxidation. Besides, electrons will transfer from the Al surface to the adsorbed molecules as chemisorption occurs; while the density of states of the Al surface and molecules are altered, especially for carbon oxides with significant electronic delocalization. This work is expected to deepen insights into the energy release of aluminized explosives and help provide a proposal for enhancing energy release efficiency.

8.
Exp Cell Res ; 429(1): 113649, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37225012

ABSTRACT

BACKGROUND: Fibrotic scar is a severe side effect of trabeculectomy, resulting in unsatisfactory outcomes for glaucoma surgery. Accumulating evidence showed human Tenon's fibroblasts (HTFs) play an important role in fibrosis formation. We previously reported that the aqueous level of secreted protein acidic and rich in cysteine (SPARC) was higher in the patients with primary angle closure glaucoma, which was associated with the failure of trabeculectomy. In this study, the potential effect and mechanism of SPARC in promoting fibrosis were explored by using HTFs. METHODS: HTFs were employed in this study and examined under a phase-contrast microscope. Cell viability was determined by CCK-8. The expressions of SPARC-YAP/TAZ signaling and the fibrosis-related markers were examined with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence, subcellular fractionation was conducted to further determined the variation of YAP and phosphorylated YAP. The differential gene expressions were analyzed with RNA sequencing (RNAseq), followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS: Exogenous SPARC induced HTFs-myofibroblast transformation, as evidenced by the increased expression of α-SMA, collagen I and fibronectin in both protein and mRNA levels. SPARC knockdown decreased the expressions of the above genes in TGF-ß2-treated HTFs. KEGG analysis showed that the Hippo signaling pathway was mostly enriched. SPARC treatment increased the expressions of YAP, TAZ, CTGF and CYR61 as well as enhanced YAP translocation from cytoplasm to nucleus, and decreased the phosphorylation of YAP and LAST1/2, which was reversed by SPARC knockdown. Knockdown of YAP1 decreased the fibrosis-related markers, such as α-SMA, collagen I and Fibronectin, in SPARC-treated HTFs. CONCLUSIONS: SPARC induced HTFs-myofibroblast transformation via activating YAP/TAZ signaling. Targeting SPARC-YAP/TAZ axis in HTFs might provide a novel strategy for inhibiting fibrosis formation after trabeculectomy.


Subject(s)
Fibronectins , Myofibroblasts , Humans , Myofibroblasts/metabolism , Fibronectins/metabolism , Osteonectin/genetics , Osteonectin/metabolism , Fibroblasts/metabolism , Collagen Type I/metabolism , Fibrosis , Cells, Cultured
9.
Mol Ther ; 31(6): 1756-1774, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-36461633

ABSTRACT

Super-enhancer (SE) plays a vital role in the determination of cell identity and fate. Up-regulated expression of coding genes is frequently associated with SE. However, the transcription dysregulation driven by SE, from the viewpoint of long non-coding RNA (lncRNA), remains unclear. Here, SE-associated lncRNAs in HCC are comprehensively outlined for the first time. This study integrally screens and identifies several novel SE-associated lncRNAs that are highly abundant and sensitive to JQ1. Especially, HSAL3 is identified as an uncharacterized SE-driven oncogenic lncRNA, which is activated by transcription factors HCFC1 and HSF1 via its super-enhancer. HSAL3 interference negatively regulates NOTCH signaling, implying the potential mechanism of its tumor-promoting role. The expression of HSAL3 is increased in HCC samples, and higher HSAL3 expression indicates an inferior overall survival of HCC patients. Furthermore, siHSAL3 loaded nanoparticles exert anti-tumor effect on HCC in vitro and in vivo. In conclusion, this is the first comprehensive survey of SE-associated lncRNAs in HCC. HSAL3 is a novel SE-driven oncogenic lncRNA, and siHSAL3 loaded nanoparticles are therapeutic candidates for HCC. This work sheds lights on the merit of anchoring SE-driven oncogenic lncRNAs for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Transcription Factors/genetics
10.
BMC Genomics ; 24(1): 2, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36597034

ABSTRACT

BACKGROUND: Maintaining osmotic equilibrium plays an important role in the survival of cold-water fishes. Heat stress has been proven to reduce the activity of Na+/K+-ATPase in the gill tissue, leading to destruction of the osmotic equilibrium. However, the mechanism of megatemperature affecting gill osmoregulation has not been fully elucidated. RESULTS: In this study, Siberian sturgeon (Acipenser baerii) was used to analyze histopathological change, plasma ion level, and transcriptome of gill tissue subjected to 20℃, 24℃and 28℃. The results showed that ROS level and damage were increased in gill tissue with the increasing of heat stress temperature. Plasma Cl- level at 28℃ was distinctly lower than that at 20℃ and 24℃, while no significant difference was found in Na+ and K+ ion levels among different groups. Transcriptome analysis displayed that osmoregulation-, DNA-repair- and apoptosis-related terms or pathways were enriched in GO and KEGG analysis. Moreover, 194 osmoregulation-related genes were identified. Amongst, the expression of genes limiting ion outflow, occluding (OCLN), and ion absorption, solute carrier family 4, member 2 (AE2) solute carrier family 9, member 3 (NHE3) chloride channel 2 (CLC-2) were increased, while Na+/K+-ATPase alpha (NKA-a) expression was decreased after heat stress. CONCLUSIONS: This study reveals for the first time that the effect of heat stress on damage and osmotic regulation in gill tissue of cold-water fishes. Heat stress increases the permeability of fish's gill tissue, and induces the gill tissue to keep ion balance through active ion absorption and passive ion outflow. Our study will contribute to research of global-warming-caused effects on cold-water fishes.


Subject(s)
Gene Expression Profiling , Gills , Animals , Gills/metabolism , Temperature , Water/metabolism , Sodium/metabolism , Adenosine Triphosphatases/metabolism , Fishes/metabolism
11.
Neurobiol Dis ; 185: 106250, 2023 09.
Article in English | MEDLINE | ID: mdl-37536385

ABSTRACT

Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-ß (TGF-ß)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.


Subject(s)
Retinal Pigment Epithelium , Wet Macular Degeneration , Humans , Aged , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Angiogenesis Inhibitors/metabolism , Angiogenesis Inhibitors/therapeutic use , Epithelial-Mesenchymal Transition , Vascular Endothelial Growth Factor A/metabolism , Visual Acuity , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/metabolism , Wet Macular Degeneration/pathology , Fibrosis
12.
Langmuir ; 39(45): 16101-16110, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37920930

ABSTRACT

Bubble nucleation has a significant influence on mass transfer and energy conversion in electrochemical gas-evolving reactions. In this work, we establish a theoretical model for bubble nucleation from gas cavities on gas-evolving surfaces. Based on analyses of transient gas diffusion within the concentration boundary layer and supersaturation equation for stable bubble nuclei, we determined the size ranges of effective nucleation cavities on gas-evolving surfaces under different levels of supersaturation conditions. In addition, a criterion for the incipience of bubble nucleation on gas-evolving surfaces is proposed. We investigate the effects of the contact angle, cone angle, concentration boundary layer thickness, ambient pressure, and temperature on the size ranges of effective nucleation cavities, respectively. We demonstrate that a larger contact angle or a smaller cone angle can broaden the size range of effective cavities, thereby promoting bubble nucleation from cavities. We also show that increasing the concentration boundary layer thickness causes larger cavities to become effective nucleation sites, which significantly expands the size range of effective cavities. In contrast, increasing the ambient pressure enables smaller cavities to become effective nucleation sites, resulting in an expansion in the size range of effective cavities. Results of this work will contribute to the manipulation of bubble nucleation densities and the optimal design of gas-evolving electrodes in various electrochemical gas-evolving reactions.

13.
Pharmacol Res ; 187: 106559, 2023 01.
Article in English | MEDLINE | ID: mdl-36403720

ABSTRACT

Retinal Müller glial dysfunction and intracellular edema are important mechanisms leading to diabetic macular edema (DME). Aquaporin 11 (AQP11) is primarily expressed in Müller glia with unclear functions. This study aims to explore the role of AQP11 in the pathogenesis of intracellular edema of Müller glia in diabetic retinopathy (DR). Here, we found that AQP11 expression, primarily located at the endfeet of Müller glia, was down-regulated with diabetes progression, accompanied by intracellular edema, which was alleviated by intravitreal injection of lentivirus-mediated AQP11 overexpression. Similarly, intracellular edema of hypoxia-treated rat Müller cell line (rMC-1) was aggravated by AQP11 inhibition, while attenuated by AQP11 overexpression, accompanied by enhanced function in glutamate metabolism and reduced cell death. The down-regulation of AQP11 was also verified in the Müller glia from the epiretinal membranes (ERMs) of proliferative DR (PDR) patients. Mechanistically, down-regulation of AQP11 in DR was mediated by the HIF-1α-dependent and independent miRNA-AQP11 axis. Overall, we deciphered the AQP11 down-regulation, mediated by miRNA-AQP11 axis, resulted in Müller drainage dysfunction and subsequent intracellular edema in DR, which was partially reversed by AQP11 overexpression. Our findings propose a novel mechanism for the pathogenesis of DME, thus targeting AQP11 regulation provides a new therapeutic strategy for DME.


Subject(s)
Aquaporins , Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , MicroRNAs , Rats , Animals , Diabetic Retinopathy/pathology , MicroRNAs/genetics , Down-Regulation , Aquaporins/metabolism
14.
Mol Biol Rep ; 50(2): 1885-1894, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36515825

ABSTRACT

Cellular Retinol Binding Protein 1 (CRBP1) gene is a protein coding gene located on human chromosome 3q21, which codifies a protein named CRBP1. CRBP1 is widely expressed in many tissues as a chaperone protein to regulate the uptake, subsequent esterification and bioavailability of retinol. CRBP1 combines retinol and retinaldehyde with high affinity to protect retinoids from non-specific oxidation, and transports retinoids to specific enzymes to promote the biosynthesis of retinoic acid. The vital role of CRBP1 in retinoids metabolism has been gradually discovered, which has been implicated in tumorigenesis. However, the precise functions of CRBP1 in different diseases are still poorly understood. The purpose of this review is to provide an overview of the role of CRBP1 in various diseases, especially in both the promotion and inhibition of cancers, which may also offer a novel biomarker and potential therapeutic target for human diseases.


Subject(s)
Neoplasms , Vitamin A , Humans , Retinol-Binding Proteins, Cellular/genetics , Retinol-Binding Proteins, Cellular/metabolism , Vitamin A/metabolism , Biomarkers, Tumor/genetics , Retinoids/metabolism , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Tretinoin
15.
Phys Chem Chem Phys ; 25(15): 10384-10391, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37013446

ABSTRACT

The present work concerns a basic issue in molecular science, i.e., constructing a high energy isomer with a given composition. Three compositions of CH3NO2, CH4N2O2, and CH3NO3 are adopted to construct various isomers with the internal energy calculated and compared to ascertain its dependence on the linking order of atoms. Thereby, a simple rule for constructing high energy CHNO isomers is summarized. The separation of reducing C/H atoms and oxidizing O atoms by N atoms as well as the direct linkage of C-C, C-H, and O-O, benefits for high energy; on the other hand, the O-O linkage leads to low molecular stability, and thus the separation of double O atoms by a N atom is necessary to build a stable energetic molecule. The direct linkage of C-O and O-H significantly weakens or diminishes the activity of related atoms, and the O atoms can thus be called died O atoms. This rule is expected to promote the screening of high energy molecules in the fields of fuels and energetic materials.

16.
Curr Treat Options Oncol ; 24(9): 1274-1292, 2023 09.
Article in English | MEDLINE | ID: mdl-37407889

ABSTRACT

OPINION STATEMENT: Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment because of its advantages such as minimal invasiveness and selective destruction. With the development of PDT, impressive progress has been made in the preparation of photosensitizers, particularly porphyrin photosensitizers. However, the limited tissue penetration of the activating light wavelengths and relatively low light energy capture efficiency of porphyrin photosensitizers are two major disadvantages in conventional photosensitizers. Therefore, tissue penetration needs to be enhanced and the light energy capture efficiency of porphyrin photosensitizers improved through structural modifications. The indirect excitation of porphyrin photosensitizers using fluorescent donors (fluorescence resonance energy transfer) has been successfully used to address these issues. In this review, the enhancement of the light energy capture efficiency of porphyrins is discussed.


Subject(s)
Photochemotherapy , Porphyrins , Humans , Photosensitizing Agents/chemistry , Porphyrins/chemistry
17.
Metab Brain Dis ; 38(4): 1311-1321, 2023 04.
Article in English | MEDLINE | ID: mdl-36642760

ABSTRACT

To 1) investigate the morphological brain-tissue changes in patients with dialysis- and non-dialysis-dependent chronic kidney disease (CKD); 2) analyze the effects of CKD on whole-brain cortical thickness, cortical volume, surface area, and surface curvature; and 3) analyze the correlation of these changes with clinical and biochemical indices. This study included normal controls (NCs, n = 34) and patients with CKD who were divided into dialysis (dialysis-dependent chronic kidney disease [DD-CKD], n = 26) and non-dialysis (non-dialysis patients who underwent cranial magnetic resonance imaging scans [NDD-CKD], n = 26) groups. Cortical thickness, volume, surface area, and surface curvature in each group were calculated using FreeSurfer software. Brain morphological indicators with statistical differences were correlated with clinical and biochemical indicators. Patients with CKD exhibited a significant and widespread decrease in cortical thickness and volume compared with NCs. Among the brain regions associated with higher neural activity, patients with CKD exhibited more significant morphological changes in the paracentral gyrus, transverse temporal gyrus, and lateral occipital cortex than in other brain regions. Cortical thickness and volume in patients with CKD correlated with blood pressure, lipid, hemoglobin, creatinine, and urea nitrogen levels. The extent of brain atrophy was further increased in the DD-CKD group compared with that in the NDD-CKD group. Patients with CKD potentially exhibit a certain degree of structural brain-tissue imaging changes, with morphological changes more pronounced in patients with DD-CKD, suggesting that blood urea nitrogen and dialysis may be influential factors in brain morphological changes in patients with CKD.


Subject(s)
Brain , Renal Insufficiency, Chronic , Humans , Brain/diagnostic imaging , Renal Insufficiency, Chronic/diagnostic imaging , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/complications , Renal Dialysis , Magnetic Resonance Imaging/methods
18.
BMC Musculoskelet Disord ; 24(1): 392, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37198619

ABSTRACT

BACKGROUND: Both Kinesio Tape (KT) and Compression Sleeves (CS) can relieve Delayed Onset Muscle Soreness (DOMS) to a certain extent, but there is no study report on the difference in the effectiveness of the KT and CS whether the effect is better when used at the same time. The purpose of this study was to compare the effects of KT and CS on the recovery of muscle soreness, isokinetic strength, and body fatigue after DOMS. METHODS: In this single-blinded randomized controlled trial, 32 participants aged 18 to 24 years were randomly divided into Control group (CG), Compression Sleeves group (CSG), Kinesio Tape group (KTG), Compression Sleeves and Kinesio Tape group (CSKTG), between October 2021 and January 2022. KTG uses Kinesio Tape, CSG wears Compression Sleeves, and CSKTG uses both Compression Sleeves and Kinesio Tape. Outcomes were performed at five-time points (baseline, 0 h, 24 h, 48 h, 72 h), Primary outcome was pain level Visual Analogue Scale (VAS), and Secondary outcomes were Interleukin 6, Peak Torque/Body Weight, Work Fatigue. Statistical analyses were performed using the repeated measures analysis of variance method. SETTING: Laboratory. RESULTS: After the intervention, VAS reached the highest at 24 h after exercise-induced muscle soreness, while the KTG and CSG at each time point were less than CG, and the scores of CSKTG at 24 h and 48 h were less than those of KTG and CSG in the same period (P < 0.05). Interleukin 6, at 24 h, CSKTG is lower than KTG 0.71(95%CI: 0.43 to 1.86) and CG 1.68(95%CI: 0.06 to 3.29). Peak Torque/Body Weight, at 24 h, CG was lower than CSKTG 0.99(95%CI: 0.42 to 1.56), KTG 0.94(95%CI: 0.37 to 1.52), and CSG 0.72(95%CI: 0.14 to 1.29); at 72 h, CG was lower than CSKTG 0.65(95%CI: 0.13 to 1.17) and KTG 0.58(95%CI: 0.06 to 1.10). Work Fatigue, at 24 h, CG was lower than KTG 0.10(95%CI: 0.02 to 1.78) and CSKTG 0.01(95%CI: -0.07 to 0.09). At 48 h, CG was lower than KTG 0.10(95%CI: 0.13 to 1.17) and CSKTG 0.11(95%CI: 0.03 to 0.18). CONCLUSIONS: Kinesio Tape can significantly reduce DOMS pain, and Kinesio Tape has a better recovery effect on Delayed Onset Muscle Soreness than Compression Sleeves. Kinesio Tape combined with Compression Sleeves is helpful to alleviate the Delayed Onset Muscle Soreness pain, speeding up the recovery of muscle strength, and shortening the recovery time after Delayed Onset Muscle Soreness. TRIAL REGISTRATION: Registration number: This study was also registered on 11/10/2021, at the Chinese Clinical Trial Registry (ChiCTR2100051973).


Subject(s)
Athletic Tape , Myalgia , Humans , Myalgia/etiology , Myalgia/therapy , Interleukin-6 , Exercise Therapy , Fatigue
19.
Int J Mol Sci ; 24(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37373406

ABSTRACT

Large-scale mortality due to Aeromonas hydrophila (A. hydrophila) infection has considerably decreased the yield of the Chinese pond turtle (Mauremys reevesii). Purslane is a naturally active substance with a wide range of pharmacological functions, but its antibacterial effect on Chinese pond turtles infected by A. hydrophila infection is still unknown. In this study, we investigated the effect of purslane on intestinal morphology, digestion activity, and microbiome of Chinese pond turtles during A. hydrophila infection. The results showed that purslane promoted epidermal neogenesis of the limbs and increased the survival and feeding rates of Chinese pond turtles during A. hydrophila infection. Histopathological observation and enzyme activity assay indicated that purslane improved the intestinal morphology and digestive enzyme (α-amylase, lipase and pepsin) activities of Chinese pond turtle during A. hydrophila infection. Microbiome analysis revealed that purslane increased the diversity of intestinal microbiota with a significant decrease in the proportion of potentially pathogenic bacteria (such as Citrobacter freundii, Eimeria praecox, and Salmonella enterica) and an increase in the abundance of probiotics (such as uncultured Lactobacillus). In conclusion, our study uncovers that purslane improves intestinal health to protect Chinese pond turtles against A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Portulaca , Turtles , Animals , Digestion , Gastrointestinal Microbiome , Turtles/microbiology , Turtles/physiology , Gram-Negative Bacterial Infections/complications , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/therapy , Feeding Behavior
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(1): 21-25, 2023 Jan 10.
Article in Zh | MEDLINE | ID: mdl-36584995

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and genetic basis of two Chinese pedigrees affected with Joubert syndrome. METHODS: Clinical data of the two pedigrees was collected. Genomic DNA was extracted from peripheral blood samples and subjected to high-throughput sequencing. Candidate variants were verified by Sanger sequencing. Prenatal diagnosis was carried out for a high-risk fetus from pedigree 2. RESULTS: The proband of pedigree 1 was a fetus at 23+5 weeks gestation, for which both ultrasound and MRI showed "cerebellar vermis malformation" and "molar tooth sign". No apparent abnormality was noted in the fetus after elected abortion. The fetus was found to harbor c.812+3G>T and c.1828G>C compound heterozygous variants of the INPP5E gene, which have been associated with Joubert syndrome type 1. The proband from pedigree 2 had growth retardation, mental deficiency, peculiar facial features, low muscle tone and postaxial polydactyly of right foot. MRI also revealed "cerebellar dysplasia" and "molar tooth sign". The proband was found to harbor c.485C>G and c.1878+1G>A compound heterozygous variants of the ARMC9 gene, which have been associated with Joubert syndrome type 30. Prenatal diagnosis found that the fetus only carried the c.485C>G variant. A healthy infant was born, and no anomalies was found during the follow-up. CONCLUSION: The compound heterozygous variants of the INPP5E and ARMC9 genes probably underlay the disease in the two pedigrees. Above finding has expanded the spectrum of pathogenic variants underlying Joubert syndrome and provided a basis for genetic counseling and prenatal diagnosis.


Subject(s)
Abnormalities, Multiple , Eye Abnormalities , Kidney Diseases, Cystic , Female , Humans , Pregnancy , Pedigree , Cerebellum/diagnostic imaging , Cerebellum/abnormalities , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Eye Abnormalities/genetics , Eye Abnormalities/diagnosis , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/diagnosis , Phosphoric Monoester Hydrolases/genetics , Retina/diagnostic imaging , Retina/abnormalities , East Asian People , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL