Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Angew Chem Int Ed Engl ; 53(8): 2176-80, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24453167

ABSTRACT

Controlling exchange coupling between hard magnetic and soft magnetic phases is the key to the fabrication of advanced magnets with tunable magnetism and high energy density. Using FePt as an example, control over the magnetism in exchange-coupled nanocomposites of hard magnetic face-centered tetragonal (fct) FePt and soft magnetic Co (or Ni, Fe2C) is shown. The dispersible hard magnetic fct-FePt nanoparticles are first prepared with their coercivity (Hc) reaching 33 kOe. Then core/shell fct-FePt/Co (or Ni, Fe2C) nanoparticles are synthesized by reductive thermal decomposition of the proper metal precursors in the presence of fct-FePt nanoparticles. These core/shell nanoparticles are strongly coupled by exchange interactions and their magnetic properties can be rationally tuned by the shell thickness of the soft phase. This work provides an ideal model system for the study of exchange coupling at the nanoscale, which will be essential for building superstrong magnets for various permanent magnet applications in the future.

2.
Res Sq ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38766187

ABSTRACT

The human gut microbiome is a promising therapeutic target, but interventions are hampered by our limited understanding of microbial ecosystems. Here, we present a platform to develop, evaluate, and score approaches to learn ecological interactions from microbiome time series data. The microbiome time series inference standardized test (MTIST) comprises: a simulation framework for the in silico generation of microbiome study data akin to what is obtained with quantitative next-generation sequencing approaches, a compilation of a large curated data set generated by the simulation framework representing 648 simulated microbiome studies containing 18,360 time series, with a total of 2,182,800 species abundance measurements, and a scoring method to rank ecological inference algorithms. We use the MTIST platform to rank five implementations of microbiome inference approaches, revealing that while all algorithms performed well on ecosystems with few species (3 and 10), all algorithms failed to infer most interaction in a large ecosystem with 100 member species. However, we do find that the strongest interactions within a large ecosystem are inferred with higher success by all algorithms. Finally, we use the MTIST platform to compare different microbiome study designs, characterizing tradeoffs between samples per subject and number of subjects. Interestingly, we find that when only few samples can be collected per subject, ecological inference is most successful when these samples are collected with highest feasible temporal frequency. Taken together, we provide a computational tool to aid the development of better microbiome ecosystem inference approaches, which will be crucial towards the development of reliable and predictable therapeutic approaches that target the microbiome ecosystem.

3.
Biomater Sci ; 12(3): 634-649, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38047368

ABSTRACT

Exosomes have emerged as a promising tool for the delivery of drugs and genetic materials, owing to their biocompatibility and non-immunogenic nature. However, challenges persist in achieving successful oral delivery due to their susceptibility to degradation in the harsh gastrointestinal (GI) environment and impeded transport across the mucus-epithelium barrier. To overcome these challenges, we have developed high-purity bovine milk exosomes (mExo) as a scalable and efficient oral drug delivery system, which can be customized by incorporating hydrophilic and zwitterionic motifs on their surface. In our study, we observed significantly improved transport rates by 2.5-4.5-fold in native porcine intestinal mucus after the introduction of hydrophilic and zwitterionic surface modifications, as demonstrated by transwell setup and fluorescence recovery after photobleaching (FRAP) analysis. Remarkably, mExo functionalized by a block peptide (BP), consisting of cationic and anionic amino acids arranged in blocks at the two ends, demonstrated superior tolerability in the acidic gastric environment (with a protein recovery rate of 84.8 ± 7.7%) and exhibited a 2.5-fold increase in uptake by intestinal epithelial cells. Furthermore, both mExo and mExo-BP demonstrated successful intracellular delivery of functional siRNA, resulting in up to 65% suppression of the target green fluorescence protein (GFP) gene expression at a low dose of siRNA (5 pmol) without causing significant toxicity. These findings highlight the immense potential of modifying mExo with hydrophilic and zwitterionic motifs for effective oral delivery of siRNA therapies.


Subject(s)
Exosomes , Nanoparticles , Animals , Swine , Milk , Exosomes/metabolism , Drug Delivery Systems/methods , Peptides/metabolism , RNA, Small Interfering/metabolism , Permeability , Mucus/metabolism , Administration, Oral , Drug Carriers/chemistry , Nanoparticles/chemistry
4.
Small Methods ; : e2301443, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607953

ABSTRACT

Gene therapy has the potential to facilitate targeted expression of therapeutic proteins to promote cartilage regeneration in osteoarthritis (OA). The dense, avascular, aggrecan-glycosaminoglycan (GAG) rich negatively charged cartilage, however, hinders their transport to reach chondrocytes in effective doses. While viral vector mediated gene delivery has shown promise, concerns over immunogenicity and tumorigenic side-effects persist. To address these issues, this study develops surface-modified cartilage-targeting exosomes as non-viral carriers for gene therapy. Charge-reversed cationic exosomes are engineered for mRNA delivery by anchoring cartilage targeting optimally charged arginine-rich cationic motifs into the anionic exosome bilayer by using buffer pH as a charge-reversal switch. Cationic exosomes penetrated through the full-thickness of early-stage arthritic human cartilage owing to weak-reversible ionic binding with GAGs and efficiently delivered the encapsulated eGFP mRNA to chondrocytes residing in tissue deep layers, while unmodified anionic exosomes do not. When intra-articularly injected into destabilized medial meniscus mice knees with early-stage OA, mRNA loaded charge-reversed exosomes overcame joint clearance and rapidly penetrated into cartilage, creating an intra-tissue depot and efficiently expressing eGFP; native exosomes remained unsuccessful. Cationic exosomes thus hold strong translational potential as a platform technology for cartilage-targeted non-viral delivery of any relevant mRNA targets for OA treatment.

5.
Small ; 9(8): 1321-8, 2013 Apr 22.
Article in English | MEDLINE | ID: mdl-23494938

ABSTRACT

Phase-controlled nickel sulfide (Ni3 S4 and NiS1.03 ) nanoparticle (NP)/nitrogen-doped graphene (NG) composites are prepared through a facile one-pot hydrothermal process. The composites show ultrahigh capacity retentions of 98.87% and 95.94% for Ni3 S4 /NG and NiS1.03 /NG electrodes, respectively, as anode materials for lithium ion batteries.

6.
Chemistry ; 19(16): 5183-90, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23447515

ABSTRACT

Cobalt sulfide is a good candidate for both lithium ion batteries (LIBs) and cathodic oxygen reduction reaction (ORR), but low conductivity, poor cyclability, capacity fading, and structural changes hinder its applications. The incorporation of graphene into Co3S4 makes it a promising electrode by providing better electrochemical coupling, enhanced conductivity, fast mobility of ions and electrons, and a stabilized structure due to its elastic nature. With the objective of achieving high-performance composites, herein we report a facile hydrothermal process for growing Co3S4 nanotubes (NTs) on graphene (G) sheets. Electrochemical impedance spectroscopy (EIS) verified that graphene dramatically increases the conductivity of the composites to almost twice that of pristine Co3S4. Electrochemical measurements indicated that the as-synthesized Co3S4/G composites exhibit good cyclic stability and a high discharge capacity of 720 mA h g(-1) up to 100 cycles with 99.9% coulombic efficiency. Furthermore, the composites react with dissolved oxygen in the ORR by four- and two-electron mechanisms in both acidic and basic media with an onset potential close to that of commercial Pt/C. The stability of the composites is much higher than that of Pt/C, and exhibit high methanol tolerance. Thus, these properties endorse Co3 S4 /G composites as auspicious candidates for both LIBs and ORR.

7.
ACS Nano ; 17(7): 6649-6663, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36989423

ABSTRACT

Cartilage tissue exhibits early degenerative changes with onset of osteoarthritis (OA). Early diagnosis is critical as there is only a narrow time window during which therapeutic intervention can reverse disease progression. Computed tomography (CT) has been considered for cartilage imaging as a tool for early OA diagnosis by introducing radio-opaque contrast agents like ioxaglate (IOX) into the joint. IOX, however, is anionic and thus repelled by negatively charged cartilage glycosaminoglycans (GAGs) that hinders its intra-tissue penetration and partitioning, resulting in poor CT attenuation. This is further complicated by its short intra-tissue residence time owing to rapid clearance from joints, which necessitates high doses causing toxicity concerns. Here we engineer optimally charged cationic contrast agents based on cartilage negative fixed charge density by conjugating cartilage targeting a cationic peptide carrier (CPC) and multi-arm avidin nanoconstruct (mAv) to IOX, such that they can penetrate through the full thickness of cartilage within 6 h using electrostatic interactions and elicit similar CT signal with about 40× lower dose compared to anionic IOX. Their partitioning and distribution correlate strongly with spatial GAG distribution within healthy and early- to late-stage arthritic bovine cartilage tissues at 50-100× lower doses than other cationic contrast agents used in the current literature. The use of contrast agents at low concentrations also allowed for delineation of cartilage from subchondral bone as well as other soft tissues in rat tibial joints. These contrast agents are safe to use at current doses, making CT a viable imaging modality for early detection of OA and staging of its severity.


Subject(s)
Cartilage, Articular , Osteoarthritis , Rats , Animals , Cattle , Contrast Media/therapeutic use , Cartilage, Articular/diagnostic imaging , Tomography, X-Ray Computed/methods , Ioxaglic Acid/therapeutic use , Cations , Osteoarthritis/diagnostic imaging , Early Diagnosis
8.
medRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-33907755

ABSTRACT

SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell dataset of peripheral blood of patients with acute COVID-19 and of healthy volunteers before and after receiving the SARS-CoV-2 mRNA vaccine and booster. We compared host immune responses to the virus and vaccine using transcriptional profiling, coupled with B/T cell receptor repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. These findings were validated in an independent dataset. Analysis of B and T cell repertoires revealed that, while the majority of clonal lymphocytes in COVID-19 patients were effector cells, clonal expansion was more evident among circulating memory cells in vaccine recipients. Furthermore, while clonal αß T cell responses were observed in both COVID-19 patients and vaccine recipients, dramatic expansion of clonal γδT cells was found only in infected individuals. Our dataset enables comparative analyses of immune responses to infection versus vaccination, including clonal B and T cell responses. Integrating our data with publicly available datasets allowed us to validate our findings in larger cohorts. To our knowledge, this is the first dataset to include comprehensive profiling of longitudinal samples from healthy volunteers pre/post SARS-CoV-2 vaccine and booster.

9.
iScience ; 26(12): 108572, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38213787

ABSTRACT

SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αß T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.

10.
Methods Mol Biol ; 2393: 797-812, 2022.
Article in English | MEDLINE | ID: mdl-34837212

ABSTRACT

Here we describe methods for synthesizing cationic contrast agents for computed tomography (CT) of cartilage for early diagnosis of tissue degeneration. CT imaging of soft tissues like cartilage is possible only if radio-opaque contrast agents (e.g., ioxaglate) can penetrate through the full thickness of tissue in sufficient concentrations. Ioxaglate (IOX), however, is anionic and is repelled by the negatively charged cartilage matrix resulting in poor CT attenuation. Here we demonstrate cartilage penetrating cationic contrast agents using multi-arm Avidin (mAv) conjugated to ioxaglate (mAv-IOX). mAv-IOX rapidly penetrates through the full thickness of cartilage in high concentrations owing to weak-reversible nature of electrostatic interactions resulting in high CT attenuation even with low doses unlike IOX. The technology has the potential for enabling clinical CT of cartilage and other negatively charged soft tissues.


Subject(s)
Osteoarthritis , Avidin , Cartilage, Articular/diagnostic imaging , Cations , Contrast Media , Early Diagnosis , Humans , Ioxaglic Acid , Osteoarthritis/diagnostic imaging , Tomography, X-Ray Computed
11.
Methods Mol Biol ; 2394: 537-553, 2022.
Article in English | MEDLINE | ID: mdl-35094345

ABSTRACT

Here we describe methods for synthesizing cationic multiarm Avidin (mAv) nanoconstruct that has a wide range of applications in drug delivery and imaging for a variety of negatively charged tissues. The multiarm structure provides multiple sites for covalent conjugation of drugs. We use avidin-biotin reaction that gives the flexibility for conjugating any desired biotinylated drug to mAv by simple mixing at room temperature. We also describe methods to control hydrolysis rates of ester linkers to enable sustained (and tunable) drug release rates in therapeutic doses.


Subject(s)
Avidin , Drug Delivery Systems , Avidin/chemistry , Biotin , Cations , Technology
12.
Acta Biomater ; 151: 278-289, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35963518

ABSTRACT

Charge-based drug delivery has proven to be effective for targeting negatively charged cartilage for the treatment of osteoarthritis. Cartilage is surrounded by synovial fluid (SF), which is comprised of negatively charged hyaluronic acid and hydrophobic proteins that can competitively bind cationic carriers and prevent their transport into cartilage. Here we investigate the relative contributions of charge and hydrophobic effects on the binding of cationic carriers within healthy and arthritic SF by comparing the transport of arginine-rich cartilage targeting cationic peptide carriers with hydrophilic (CPC +14N) or hydrophobic property (CPC +14A). CPC +14N had significantly greater intra-cartilage uptake in presence of SF compared to CPC +14A in-vitro and in vivo. In presence of individual anionic SF constituents, both CPCs maintained similar high intra-cartilage uptake while in presence of hydrophobic constituents, CPC +14N had greater uptake confirming that hydrophobic and not charge interactions are the dominant cause of competitive binding within SF. Results also demonstrate that short-range effects can synergistically stabilize intra-cartilage charge-based binding - a property that can be utilized for enhancing drug-carrier residence time in arthritic cartilage with diminished negative fixed charge density. The work provides a framework for the rational design of cationic carriers for developing targeted therapies for another complex negatively charged environments. STATEMENT OF SIGNIFICANCE: This work demonstrates that hydrophobic and not charge interactions are the dominant cause of the binding of cationic carriers in synovial fluid. Therefore, cationic carriers can be effectively used for cartilage targeting if they are made hydrophilic. This can facilitate clinical translation of various osteoarthritis drugs for cartilage repair that have failed due to a lack of effective cartilage targeting methods. It also demonstrates that short-range hydrogen bonds can synergistically stabilize electrostatic binding in cartilage offering a method for enhancing the targeting and residence time of cationic carriers within arthritic cartilage with reduced charge density. Finally, the cartilage-synovial fluid unit provides an excellent model of a complex negatively charged environment and allows us to generalize these findings and develop targeted therapies for other charged tissue-systems.


Subject(s)
Cartilage, Articular , Osteoarthritis , Arginine/pharmacology , Binding, Competitive , Cartilage/metabolism , Cartilage, Articular/metabolism , Cations/chemistry , Drug Carriers/chemistry , Humans , Hyaluronic Acid/pharmacology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Peptides/chemistry , Synovial Fluid/metabolism
13.
bioRxiv ; 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35262080

ABSTRACT

The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate in a mouse model that SARS-CoV-2 infection can induce gut microbiome dysbiosis, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Comparison with stool samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.

14.
Nat Commun ; 13(1): 5926, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319618

ABSTRACT

Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.


Subject(s)
Bacteremia , COVID-19 , Coinfection , Gastrointestinal Microbiome , Mice , Animals , Dysbiosis/microbiology , Anti-Bacterial Agents , SARS-CoV-2 , Bacteria
15.
Biomater Sci ; 9(12): 4260-4277, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33367332

ABSTRACT

Bovine milk-derived exosomes have recently emerged as a promising nano-vehicle for the encapsulation and delivery of macromolecular biotherapeutics. Here we engineer high purity bovine milk exosomes (mExo) with modular surface tunability for oral delivery of small interfering RNA (siRNA). We utilize a low-cost enrichment method combining casein chelation with differential ultracentrifugation followed by size exclusion chromatography, yielding mExo of high concentration and purity. Using in vitro models, we demonstrate that negatively charged hydrophobic mExos can penetrate multiple biological barriers to oral drug delivery. A hydrophilic polyethylene glycol (PEG) coating was introduced on the mExo surface via passive, stable hydrophobic insertion of a conjugated lipid tail, which significantly reduced mExo degradation in acidic gastric environment and enhanced their permeability through mucin by over 3× compared to unmodified mExo. Both mExo and PEG-mExo exhibited high uptake by intestinal epithelial cells and mediated functional intracellular delivery of siRNA, thereby suppressing the expression of the target green fluorescence protein (GFP) gene by up to 70%. We also show that cationic chemical transfection is significantly more efficient in loading siRNA into mExo than electroporation. The simplicity of isolating high purity mExo in high concentrations and equipping them with tunable surface properties, demonstrated here, paves way for the development of mExo as an effective, scalable platform technology for oral drug delivery of siRNA.


Subject(s)
Exosomes , Animals , Cattle , Drug Delivery Systems , Milk , Mucus , Polyethylene Glycols , RNA, Small Interfering
16.
Biomater Sci ; 9(6): 2146-2161, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33496688

ABSTRACT

Strategies to direct the differentiation of endogenous bone marrow derived mesenchymal stem cells (BMSCs) in vivo following recruitment to the injured site are critical to realizing the potential of stem cell-based therapies. But the differentiation efficiency of BMSCs remains limited without direction. Here we demonstrated a novel strategy to promote neuronal differentiation of BMSCs using cross-linked polyethylenimine (PEI) grafted graphene oxide (GO) as the enzyme responsive vector for delivering active genes to BMSCs. In vivo, a core-shell microfiber arrayed hydrogel with a chemokine (SDF-1α) and the cross-linked GO-PEI/pDNAs-bFGF microparticles incorporated into the shell and core, respectively, were constructed. The arrayed hydrogel was shown to recruit and stimulate the neural-like differentiation of BMSCs effectively by delivering the CXCL12 and GO-PEI/pDNAs-bFGF in a self-controlled manner. With this strategy, both in vitro and in vivo neuronal differentiation of BMSCs with function were accelerated significantly. The cross-linked GO-PEI mediated gene transfection together with a multi-functional microfiber arrayed hydrogel provide a translatable approach for endogenous stem cell-based regenerative therapy.


Subject(s)
Graphite , Mesenchymal Stem Cells , Animals , Bone Marrow , Bone Marrow Cells , Cell Differentiation , Chemokine CXCL12 , Hydrogels , Rats
17.
Nano Today ; 342020 Oct.
Article in English | MEDLINE | ID: mdl-32802145

ABSTRACT

Negatively charged tissues are ubiquitous in the human body and are associated with a number of common diseases yet remain an outstanding challenge for targeted drug delivery. While the anionic proteoglycans are critical for tissue structure and function, they make tissue matrix dense, conferring a high negative fixed charge density (FCD) that makes drug penetration through the tissue deep zones and drug delivery to resident cells extremely challenging. The high negative FCD of these tissues is now being utilized by taking advantage of electrostatic interactions to create positively charged multi-stage delivery methods that can sequentially penetrate through the full thickness of tissues, create a drug depot and target cells. After decades of work on attempting delivery using strong binding interactions, significant advances have recently been made using weak and reversible electrostatic interactions, a characteristic now considered essential to drug penetration and retention in negatively charged tissues. Here we discuss these advances using examples of negatively charged tissues (cartilage, meniscus, tendons and ligaments, nucleus pulposus, vitreous of eye, mucin, skin), and delve into how each of their structures, tissue matrix compositions and high negative FCDs create barriers to drug entry and explore how charge interactions are being used to overcome these barriers. We review work on tissue targeting cationic peptide and protein-based drug delivery, compare and contrast drug delivery designs, and also present examples of technologies that are entering clinical trials. We also present strategies on further enhancing drug retention within diseased tissues of lower FCD by using synergistic effects of short-range binding interactions like hydrophobic and H-bonds that stabilize long-range charge interactions. As electrostatic interactions are incorporated into design of drug delivery materials and used as a strategy to create properties that are reversible, tunable and dynamic, bio-electroceuticals are becoming an exciting new direction of research and clinical work.

18.
MethodsX ; 7: 100882, 2020.
Article in English | MEDLINE | ID: mdl-32405463

ABSTRACT

Here we describe methods for synthesizing a cationic, multi-arm Avidin (mAv) nano-construct that has a wide range of applications in drug delivery and imaging of negatively charged tissues. We use Avidin-biotin technology that gives the flexibility for conjugating biotinylated Dexamethasone to mAv by simple mixing at room temperature. We also describe methods to control hydrolysis rates of ester linkers to enable sustained (and tunable) drug release rates in therapeutic doses.•Multi-arm structure provides multiple sites for covalent conjugation of drugs•Use of Avidin-biotin reaction gives multi-arm nano-construct a modular design enabling conjugation and delivery of similar sized biotinylated drugs.

19.
Elife ; 92020 08 17.
Article in English | MEDLINE | ID: mdl-32804637

ABSTRACT

Nuclear RNAi provides a highly tractable system to study RNA-mediated chromatin changes and epigenetic inheritance. Recent studies have indicated that the regulation and function of nuclear RNAi-mediated heterochromatin are highly complex. Our knowledge of histone modifications and the corresponding histonemodifying enzymes involved in the system remains limited. In this study, we show that the heterochromatin mark, H3K23me3, is induced by nuclear RNAi at both exogenous and endogenous targets in C. elegans. In addition, dsRNA-induced H3K23me3 can persist for multiple generations after the dsRNA exposure has stopped. We demonstrate that the histone methyltransferase SET-32, methylates H3K23 in vitro. Both set-32 and the germline nuclear RNAi Argonaute, hrde-1, are required for nuclear RNAi-induced H3K23me3 in vivo. Our data poise H3K23me3 as an additional chromatin modification in the nuclear RNAi pathway and provides the field with a new target for uncovering the role of heterochromatin in transgenerational epigenetic silencing.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Histone Methyltransferases/genetics , Histones/metabolism , RNA Interference , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Histone Methyltransferases/metabolism , RNA, Nuclear/genetics , RNA, Nuclear/metabolism
20.
J Control Release ; 318: 109-123, 2020 02.
Article in English | MEDLINE | ID: mdl-31843642

ABSTRACT

Targeted drug delivery to joint tissues like cartilage remains a challenge that has prevented clinical translation of promising osteoarthritis (OA) drugs. Local intra-articular (IA) injections of drugs suffer from rapid clearance from the joint space and slow diffusive transport through the dense, avascular cartilage matrix comprised of negatively charged glycosaminoglycans (GAGs). Here we apply drug carriers that leverage electrostatic interactions with the tissue's high negative fixed charge density (FCD) for delivering small molecule drugs to cartilage cell and matrix sites. We demonstrate that a multi-arm cationic nano-construct of Avidin (mAv) with 28 sites for covalent drug conjugation can rapidly penetrate through the full thickness of cartilage in high concentration and have long intra-cartilage residence time in both healthy and arthritic cartilage via weak-reversible binding with negatively charged aggrecans. mAv's intra-cartilage mean uptake was found to be 112× and 33× the equilibration bath concentration in healthy and arthritic (50% GAG depleted) cartilage, respectively. mAv was conjugated with Dexamethasone (mAv-Dex), a broad-spectrum glucocorticoid, using a combination of hydrolysable ester linkers derived from succinic anhydride (SA), 3,3-dimethylglutaric anhydride (GA) and phthalic anhydride (PA) in 2:1:1 M ratio that enabled 50% drug release within 38.5 h followed by sustained release in therapeutic doses over 2 weeks. A single 10 µM low dose of controlled release mAv-Dex (2:1:1) effectively suppressed IL-1α-induced GAG loss, cell death and inflammatory response significantly better than unmodified Dex over 2 weeks in cartilage explant culture models of OA. With this multi-arm design, <1 µM Avidin was needed - a concentration which has been shown to be safe, preventing further GAG loss and cytotoxicity. A charge-based cartilage homing drug delivery platform like this can elicit disease modifying effects as well as facilitate long-term symptomatic pain and inflammation relief by enhancing tissue specificity and prolonging intra-cartilage residence time of OA drugs. This nano-construct thus has high translational potential for enabling intra-cartilage delivery of a broad array of small molecule OA drugs and their combinations to chondrocytes, enabling OA treatment with a single injection of low drug doses and eliminating toxicity issues associated with multiple high dose injections.


Subject(s)
Cartilage, Articular , Osteoarthritis , Avidin/therapeutic use , Chondrocytes , Drug Carriers/therapeutic use , Humans , Injections, Intra-Articular , Osteoarthritis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL