Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Med ; 22(1): 206, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769523

ABSTRACT

BACKGROUND: Numerous studies have been conducted to investigate the relationship between ABO and Rhesus (Rh) blood groups and various health outcomes. However, a comprehensive evaluation of the robustness of these associations is still lacking. METHODS: We searched PubMed, Web of Science, Embase, Scopus, Cochrane, and several regional databases from their inception until Feb 16, 2024, with the aim of identifying systematic reviews with meta-analyses of observational studies exploring associations between ABO and Rh blood groups and diverse health outcomes. For each association, we calculated the summary effect sizes, corresponding 95% confidence intervals, 95% prediction interval, heterogeneity, small-study effect, and evaluation of excess significance bias. The evidence was evaluated on a grading scale that ranged from convincing (Class I) to weak (Class IV). We assessed the certainty of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation criteria (GRADE). We also evaluated the methodological quality of included studies using the A Measurement Tool to Assess Systematic Reviews (AMSTAR). AMSTAR contains 11 items, which were scored as high (8-11), moderate (4-7), and low (0-3) quality. We have gotten the registration for protocol on the PROSPERO database (CRD42023409547). RESULTS: The current umbrella review included 51 systematic reviews with meta-analysis articles with 270 associations. We re-calculated each association and found only one convincing evidence (Class I) for an association between blood group B and type 2 diabetes mellitus risk compared with the non-B blood group. It had a summary odds ratio of 1.28 (95% confidence interval: 1.17, 1.40), was supported by 6870 cases with small heterogeneity (I2 = 13%) and 95% prediction intervals excluding the null value, and without hints of small-study effects (P for Egger's test > 0.10, but the largest study effect was not more conservative than the summary effect size) or excess of significance (P < 0.10, but the value of observed less than expected). And the article was demonstrated with high methodological quality using AMSTAR (score = 9). According to AMSTAR, 18, 32, and 11 studies were categorized as high, moderate, and low quality, respectively. Nine statistically significant associations reached moderate quality based on GRADE. CONCLUSIONS: Our findings suggest a potential relationship between ABO and Rh blood groups and adverse health outcomes. Particularly the association between blood group B and type 2 diabetes mellitus risk.


Subject(s)
ABO Blood-Group System , Meta-Analysis as Topic , Observational Studies as Topic , Rh-Hr Blood-Group System , Systematic Reviews as Topic , Humans , Systematic Reviews as Topic/methods , Observational Studies as Topic/methods
2.
Cancer Sci ; 114(8): 3162-3175, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37198999

ABSTRACT

CD8+ T lymphocyte-mediated immunity strategies have represented attractive weapons against breast cancer (BC) recently. However, the mechanisms underlying CD8+ T-lymphocyte infiltration still remain obscure. Here, using bioinformatics analysis, we identified four hub prognostic genes related to CD8+ T-lymphocyte infiltration (CHMP4A, CXCL9, GRHL2, and RPS29), among which CHMP4A was the most significant gene. High CHMP4A mRNA expression was significantly associated with longer overall survival (OS) in BC patients. Functional experiments showed that CHMP4A had the ability to promote CD8+ T-lymphocyte recruitment and infiltration and suppressed BC growth in vitro and in vivo. Mechanistically, CHMP4A stimulates CD8+ T-lymphocyte infiltration by downregulating LSD1 expression, leading to HERV dsRNA accumulation, and promoting IFNß and its downstream chemokine production. Collectively, CHMP4A is not only a novel positive predictor for prognosis in BC but also a stimulator of CD8+ T-lymphocyte infiltration regulated by the LSD1/IFNß pathway. This study suggests that CHMP4A may be a novel target for improving the effectiveness of immunotherapy in patients with BC.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Animals , Humans , Female , CD8-Positive T-Lymphocytes , Breast Neoplasms/metabolism , Prognosis , Mammary Neoplasms, Animal/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism
3.
BMC Med ; 21(1): 264, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468867

ABSTRACT

BACKGROUND: Since the coronavirus disease 2019 (COVID-19) outbreak, many COVID-19 variants have emerged, causing several waves of pandemics and many infections. Long COVID-19, or long-term sequelae after recovery from COVID-19, has aroused worldwide concern because it reduces patient quality of life after rehabilitation. We aimed to characterize the functional differential profile of the oral and gut microbiomes and serum metabolites in patients with gastrointestinal symptoms associated with long COVID-19. METHODS: We prospectively collected oral, fecal, and serum samples from 983 antibiotic-naïve patients with mild COVID-19 and performed a 3-month follow-up postdischarge. Forty-five fecal and saliva samples, and 25 paired serum samples were collected from patients with gastrointestinal symptoms of long COVID-19 at follow-up and from healthy controls, respectively. Eight fecal and saliva samples were collected without gastrointestinal symptoms of long COVID-19 at follow-up. Shotgun metagenomic sequencing of fecal samples and 2bRAD-M sequencing of saliva samples were performed on these paired samples. Two published COVID-19 gut microbiota cohorts were analyzed for comparison. Paired serum samples were analyzed using widely targeted metabolomics. RESULTS: Mild COVID-19 patients without gastrointestinal symptoms of long COVID-19 showed little difference in the gut and oral microbiota during hospitalization and at follow-up from healthy controls. The baseline and 3-month samples collected from patients with gastrointestinal symptoms associated with long COVID-19 showed significant differences, and ectopic colonization of the oral cavity by gut microbes including 27 common differentially abundant genera in the Proteobacteria phylum, was observed at the 3-month timepoint. Some of these bacteria, including Neisseria, Lautropia, and Agrobacterium, were highly related to differentially expressed serum metabolites with potential toxicity, such as 4-chlorophenylacetic acid, 5-sulfoxymethylfurfural, and estradiol valerate. CONCLUSIONS: Our study characterized the changes in and correlations between the oral and gut microbiomes and serum metabolites in patients with gastrointestinal symptoms associated with long COVID-19. Additionally, our findings reveal that ectopically colonized bacteria from the gut to the oral cavity could exist in long COVID-19 patients with gastrointestinal symptoms, with a strong correlation to some potential harmful metabolites in serum.


Subject(s)
COVID-19 , Humans , Post-Acute COVID-19 Syndrome , Aftercare , Quality of Life , SARS-CoV-2 , Patient Discharge , Feces/microbiology , Bacteria/genetics , RNA, Ribosomal, 16S
4.
J Transl Med ; 21(1): 679, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773127

ABSTRACT

BACKGROUND: Radiotherapy can cause kidney injury in patients with cervical cancer. This study aims to investigate the possible molecular mechanisms by which CpG-ODNs (Cytosine phosphate guanine-oligodeoxynucleotides) regulate the PARP1 (poly (ADP-ribose) polymerase 1)/XRCC1 (X-ray repair cross-complementing 1) signaling axis and its impact on radiation kidney injury (RKI) in cervical cancer radiotherapy. METHODS: The GSE90627 dataset related to cervical cancer RKI was obtained from the Gene Expression Omnibus (GEO) database. Bioinformatics databases and R software packages were used to analyze the target genes regulated by CpG-ODNs. A mouse model of RKI was established by subjecting C57BL/6JNifdc mice to X-ray irradiation. Serum blood urea nitrogen (BUN) and creatinine levels were measured using an automated biochemical analyzer. Renal tissue morphology was observed through HE staining, while TUNEL staining was performed to detect apoptosis in renal tubular cells. ELISA was conducted to measure levels of oxidative stress-related factors in mouse serum and cell supernatant. An in vitro cell model of RKI was established using X-ray irradiation on HK-2 cells for mechanism validation. RT-qPCR was performed to determine the relative expression of PARP1 mRNA. Cell proliferation activity was assessed using the CCK-8 assay, and Caspase 3 activity was measured in HK-2 cells. Immunofluorescence was used to determine γH2AX expression. RESULTS: Bioinformatics analysis revealed that the downstream targets regulated by CpG-ODNs in cervical cancer RKI were primarily PARP1 and XRCC1. CpG-ODNs may alleviate RKI by inhibiting DNA damage and oxidative stress levels. This resulted in significantly decreased levels of BUN and creatinine in RKI mice, as well as reduced renal tubular and glomerular damage, lower apoptosis rate, decreased DNA damage index (8-OHdG), and increased levels of antioxidant factors associated with oxidative stress (SOD, CAT, GSH, GPx). Among the CpG-ODNs, CpG-ODN2006 had a more pronounced effect. CpG-ODNs mediated the inhibition of PARP1, thereby suppressing DNA damage and oxidative stress response in vitro in HK-2 cells. Additionally, PARP1 promoted the formation of the PARP1 and XRCC1 complex by recruiting XRCC1, which in turn facilitated DNA damage and oxidative stress response in renal tubular cells. Overexpression of either PARP1 or XRCC1 reversed the inhibitory effects of CpG-ODN2006 on DNA damage and oxidative stress in the HK-2 cell model and RKI mouse model. CONCLUSION: CpG-ODNs may mitigate cervical cancer RKI by blocking the activation of the PARP1/XRCC1 signaling axis, inhibiting DNA damage and oxidative stress response in renal tubule epithelial cells.


Subject(s)
Cytosine , Kidney , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Creatinine , DNA Damage , Guanine/pharmacology , Kidney/injuries , Kidney/radiation effects , Mice, Inbred C57BL , Oligodeoxyribonucleotides/pharmacology , Oxidative Stress , Phosphates/pharmacology , Poly (ADP-Ribose) Polymerase-1/pharmacology , X-ray Repair Cross Complementing Protein 1
5.
J Cell Mol Med ; 26(14): 4048-4060, 2022 07.
Article in English | MEDLINE | ID: mdl-35748101

ABSTRACT

BRAF T1799A mutation is the most common genetic variation in thyroid cancer, resulting in the production of BRAF V600E mutant protein reported to make cells resistant to apoptosis. However, the mechanism by which BRAF V600E regulates cell death remains unknown. We constructed BRAF V600E overexpression and knockdown 8505C and BCPAP papillary and anaplastic thyroid cancer cell to investigate regulatory mechanism of BRAF V600E in cell death induced by staurosporine (STS). Induced BRAF V600E expression attenuated STS-induced papillary and anaplastic thyroid cancer death, while BRAF V600E knockdown aggravated it. TMRM and calcein-AM staining showed that opening of the mitochondrial permeability transition pore (mPTP) during STS-induced cell death could be significantly inhibited by BRAF V600E. Moreover, our study demonstrated that BRAF V600E constitutively activates mitochondrial ERK (mERK) to inhibit GSK-3-dependent CypD phosphorylation, thereby making BRAF V600E mutant tumour cells more resistant to mPTP opening. In the mitochondria of BRAF V600E mutant cells, there was an interaction between ERK1/2 and GSKa/ß, while upon BRAF V600E knockdown, interaction of GSKa/ß to ERK was decreased significantly. These results show that in thyroid cancer, BRAF V600E regulates the mitochondrial permeability transition through the pERK-pGSK-CypD pathway to resist death, providing new intervention targets for BRAF V600E mutant tumours.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Cell Death , Glycogen Synthase Kinase 3/genetics , Humans , Mitochondrial Transmembrane Permeability-Driven Necrosis , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/pathology
6.
Biochem Biophys Res Commun ; 599: 120-126, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35180471

ABSTRACT

Paclitaxol is a first-line treatment for triple-negative breast cancer (TNBC). The molecular mechanisms underlying paclitaxol resistance in TNBC remain largely unclear. In this study, differential expressed genes (DEGs) between TNBC cells and paclitaxol-resistant (taxol-R) TNBC cells were screened by bioinformatics analysis. Among these DEGs, USP18 mRNA expression was significantly increased in taxol-R TNBC cells. USP18 overexpression reduced paclitaxol sensitivity by decreasing paclitaxol-induced apoptosis and cell cycle arrest in TNBC cells. In contrast, USP18 knockdown increased paclitaxol mediated anticancer activity in taxol-R TNBC cells in vitro and in vivo. Mechanistically, USP18 induced autophagy, an important pathway in chemotherapy resistance. The autophagy inhibitor leupeptin could effectively reverse the effect of USP18 on paclitaxol resistance phenotype. These findings suggested that USP18 may be a promising target for overcoming paclitaxol resistance in TNBC.


Subject(s)
Autophagy/drug effects , Paclitaxel/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Ubiquitin Thiolesterase/genetics , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, Inbred BALB C , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Ubiquitin Thiolesterase/metabolism , Xenograft Model Antitumor Assays
7.
J Exp Bot ; 73(14): 4696-4715, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35429161

ABSTRACT

Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and histone modification, but the precise mechanism is as yet unclear. Here, we analysed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac with gene expression and transcript elongation. During flag leaf aging, we observed 1249 up-regulated differentially expressed genes (DEGs) and 996 down-regulated DEGs, showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac. We produced a landscape of H3K9 acetylation-modified gene expression targets that include known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis-related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac, and elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.


Subject(s)
Oryza , Acetylation , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Protein Processing, Post-Translational
8.
Transp Policy (Oxf) ; 118: 165-178, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35125680

ABSTRACT

The pandemic caused by coronavirus disease 2019(COVID-19) continues to disrupt the global supply chain system, bringing new risks and challenges. The uncertainty created by COVID-19 makes it is difficult for various industries to deal with the pandemic. Since the pandemic, the supply chain's resilience has been discussed and examined in some studies. However, most existing works start from a single industry perspective or pay more attention to the disturbance caused by changes in the production side. Supply chain networks of different industries, mainly transport networks, are relatively limited under the epidemic's impact. In this paper, from the perspective of highway freight transport, a comprehensive competitiveness evaluation framework was proposed to reveal and the disruption and resilience of the supply chain under the outbreak based on nine indexes with five dimensions, including efficiency, capacity, activity, connectivity, and negotiability. Based on the availability of the data(Large-scale truck trajectory), we sorted out seven categories of Chinese industries(related to highway transport) and divided them into four categories respectively: (a) Slight disruption and worse resilience; (b) Slight disruption and remarkable resilience; (c) Serious disruption and worse resilience; (d) Serious disruption and remarkable resilience. The measurement results of supply chain network performance show that the industries (cold-chain, general products, and other industries) dominated by "Efficiency - Negotiability - Connectivity" are slightly disrupted (about 33%), forming a spatial diffusion with Wuhan(the city where the pandemic first broke out) as the disrupted center, spreading outward in a circle structure. Simultaneously, five urban agglomerations surrounding it have been impacted. By contrast, due to the strict isolation measures, the industries (building materials, construction, engineering, and high-value products industry) more vulnerable to be disrupted seriously (about 82%) tend to be the pattern of "Capacity - Activity". However, a large-scale centralized disruption was observed in the Triangle of Central China urban agglomeration was presented, resulting in almost stagnation of industry development. Meanwhile, as the future of the pandemic remains uncertain, the supply chain represented by the engineering industry, construction industry, etc are deserved to be paid more attention in line with they are prone to large-scale centralized damage due to the disruption of a single city node.

9.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361014

ABSTRACT

A link between the scent and color of Narcissus tazetta flowers can be anticipated due to their biochemical origin, as well as their similar biological role. Despite the obvious aesthetic and ecological significance of these colorful and fragrant components of the flowers and the molecular profiles of their pigments, fragrant formation has addressed in some cases. However, the regulatory mechanism of the correlation of fragrant components and color patterns is less clear. We simultaneously used one way to address how floral color and fragrant formation in different tissues are generated during the development of an individual plant by transcriptome-based weighted gene co-expression network analysis (WGCNA). A spatiotemporal pattern variation of flavonols/carotenoids/chlorophyll pigmentation and benzenoid/phenylpropanoid/ monoterpene fragrant components between the tepal and corona in the flower tissues of Narcissus tazetta, was exhibited. Several candidate transcription factors: MYB12, MYB1, AP2-ERF, bZIP, NAC, MYB, C2C2, C2H2 and GRAS are shown to be associated with metabolite flux, the phenylpropanoid pathway to the production of flavonols/anthocyanin, as well as related to one branch of the phenylpropanoid pathway to the benzenoid/phenylpropanoid component in the tepal and the metabolite flux between the monoterpene and carotenoids biosynthesis pathway in coronas. It indicates that potential competition exists between floral pigment and floral fragrance during Narcissus tazetta individual plant development and evolutionary development.


Subject(s)
Flavonols/metabolism , Flowers/metabolism , Gene Regulatory Networks , Narcissus/genetics , Pigmentation , Transcriptome , Anthocyanins/genetics , Anthocyanins/metabolism , Flavonols/genetics , Flowers/genetics , Narcissus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
BMC Cancer ; 20(1): 443, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32429919

ABSTRACT

BACKGROUND: Human papillomavirus (HPV) testing is more sensitive than cytology for detecting cervical cancer and its precursors. This study aimed to analyze the prevalence of high-risk HPV genotypes and evaluate the role of HPV genotyping triage for detecting high-grade squamous intraepithelial lesions, adenocarcinoma in situ and cervical cancer (HSIL+) in HPV-positive women with normal cytology. METHODS: A retrospective study was performed in women who had undergone co-screening at the China Medical University-affiliated Shengjing Hospital between 2012 and 2014. RESULTS: Of the 34,587 women, 2665 HPV-positive women with normal cytology who had received colposcopy were eligible for analysis. In HSIL+ groups of 204 women, the common genotypes were HPV16, HPV52, HPV58, HPV33, HPV31 and HPV18 in order of prevalence. The proportion of histological HSIL+ in women infected with HPV33 or HPV31 was not significantly different compared to women infected with HPV16 (P = 0.30, P = 0.19, respectively). The odds ratios for histological HSIL+ were 3.26 (95% confidence interval [CI]: 2.41-4.40) in women with HPV16/18, 4.21 (95% CI: 2.99-5.93) in those with HPV16/18/31/33, and 5.73 (95% CI: 3.30-9.97) in those with HPV16/18/31/33/52/58. Including HPV31/33 genotyping together with HPV16/18 significantly increased the proportion of HSIL+ detection from 63.2 to 77.5% (P = 0.002) without significantly increasing the colposcopy per HSIL+ detection ratio (7.7 to 8.1, P = 0.66). CONCLUSIONS: HPV genotyping played an important role in managing HPV-positive women with normal cytology. Genotyping for HPV31/33 should be added to the previously recommended HPV16/18 genotyping in triaging HPV-positive women in northeastern China.


Subject(s)
Alphapapillomavirus/genetics , Cytodiagnosis/methods , DNA, Viral/analysis , Early Detection of Cancer/methods , Papillomavirus Infections/complications , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Neoplasms/diagnosis , Adult , Aged , Alphapapillomavirus/isolation & purification , China/epidemiology , Female , Follow-Up Studies , Genotype , Hospitals/statistics & numerical data , Humans , Middle Aged , Neoplasm Grading , Papillomavirus Infections/virology , Retrospective Studies , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/virology , Uterine Cervical Dysplasia/epidemiology , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/virology
12.
Inorg Chem ; 58(12): 7746-7753, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31140790

ABSTRACT

An exceptionally stable metal-organic framework based on one-dimensional (1D) TbIII chains with significant green emission under excitation energy, {[Tb(TATMA)(H2O)·2H2O} n (namely, 1), has been fabricated successfully under hydrothermal conditions. By virtue of the spectral overlap between the absorbance spectra of nitrofurans (NFAs) and the excitation spectrum of MOF 1, the resultant sample exhibits outstandingly sensitive and selective luminescence detectability for NFT ( Ksv = 3.35 × 104 M-1) and NFZ ( Ksv = 3.00 × 104 M-1) by quenching phenomenon. More importantly, it can detect NFAs in water from bovine serum samples. The portable MOF film can be easily prepared and used with excellent stability and recursitivity.

13.
Inorg Chem ; 57(12): 7314-7320, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29877696

ABSTRACT

A versatile microporous zinc(II) MOF (1) with plentiful Lewis basic sites and open metal sites synchronously has been synthesized successfully. The resultant microporous material displays excellent selectivity adsorption for small gases. The IAST selectivity values for CO2/CH4, C2H6/CH4, CO2/N2, and C3H8/CH4 are 7, 21, 38, and 125 at 101 kPa and 298 K, respectively. 1 exhibits remarkably heterogeneous catalytic performance for acid-base one-pot reactions. Furthermore, 1 exhibits recyclable selective detectability for TNP. The results illustrate that 1 is a versatile material for selective gas adsorption, cooperative catalysis, and luminescent sensing.

15.
World J Clin Cases ; 12(21): 4601-4608, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39070814

ABSTRACT

BACKGROUND: Currently, the use of dienogest in clinical practice has increased significantly, and many studies have focused on its effectiveness and safety in the treatment of endometriosis and adenomyosis; however, the effects of treatment with dienogest on uterine fibroid size in patients with endometriosis or adenomyosis have not been investigated. AIM: To explore changes in fibroid size in patients with concomitant uterine fibroids undergoing dienogest treatment for endometriosis or adenomyosis and to evaluate the effectiveness and safety of the drug. METHODS: The clinical data of patients with uterine fibroids treated with dienogest for endometriosis or adenomyosis at Peking University First Hospital from January 2021 to January 2023 were retrospectively analyzed. RESULTS: The maximum uterine fibroid diameter and volume increased after 3 months, 6 months and 1 year of dienogest treatment compared with those before treatment (P < 0.01). The maximum diameter and volume of the uterine adenomyoma increased after 3 months of dienogest treatment but decreased after 6 months and 1 year of treatment compared with those before treatment, but the difference was not significant (P > 0.05). Endometrial thickness and antigen 125 levels were significantly thinner and decreased, respectively, after dienogest treatment (P < 0.01). Pearson's correlation analysis revealed that the increase in uterine fibroid volume after 3 months of dienogest treatment was positively correlated with the basic uterine fibroid volume (r = 0.792, P < 0.01). Among 64 patients with dysmenorrhea, 63 experienced significant relief of dysmenorrhea after 6 months of treatment with dienogest, and all patients experienced significant relief of dysmenorrhea after 12 months. Patients were able to tolerate the drugs, with an average drug tolerance score of 8.73. CONCLUSION: The use of dienogest in patients with endometriosis or adenomyosis combined with uterine fibroids can effectively relieve the patient's pain symptoms and significantly reduce the sizes of ovarian endometriotic cysts, but it cannot inhibit uterine fibroid growth.

16.
Endosc Ultrasound ; 13(2): 65-75, 2024.
Article in English | MEDLINE | ID: mdl-38947752

ABSTRACT

Artificial intelligence (AI) is an epoch-making technology, among which the 2 most advanced parts are machine learning and deep learning algorithms that have been further developed by machine learning, and it has been partially applied to assist EUS diagnosis. AI-assisted EUS diagnosis has been reported to have great value in the diagnosis of pancreatic tumors and chronic pancreatitis, gastrointestinal stromal tumors, esophageal early cancer, biliary tract, and liver lesions. The application of AI in EUS diagnosis still has some urgent problems to be solved. First, the development of sensitive AI diagnostic tools requires a large amount of high-quality training data. Second, there is overfitting and bias in the current AI algorithms, leading to poor diagnostic reliability. Third, the value of AI still needs to be determined in prospective studies. Fourth, the ethical risks of AI need to be considered and avoided.

17.
Inflammation ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180578

ABSTRACT

Previous research has shown that the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in macrophages can promote severe acute pancreatitis through the release of inflammatory factors. The role of this pathway in pancreatic acinar cells, however, has not been studied, and understanding its mechanism could be crucial. We analysed plasma from 50 acute pancreatitis (AP) patients and 10 healthy donors using digital PCR, which links mitochondrial DNA (mtDNA) levels to the severity of AP. Single-cell sequencing of the pancreas during AP revealed differentially expressed genes and pathways in acinar cells. Experimental studies using mouse and cell models, which included mtDNA staining and quantitative PCR, revealed mtDNA leakage and the activation of STING-related pathways, indicating potential inflammatory mechanisms in AP. In conclusion, our study revealed that the mtDNA-STING-nuclear factor κB(NF-κB) pathway in pancreatic acinar cells could be a novel pathogenic factor in AP.

18.
Article in English | MEDLINE | ID: mdl-38809723

ABSTRACT

Advancements in brain-machine interfaces (BMIs) have led to the development of novel rehabilitation training methods for people with impaired hand function. However, contemporary hand exoskeleton systems predominantly adopt passive control methods, leading to low system performance. In this work, an active brain-controlled hand exoskeleton system is proposed that uses a novel augmented reality-fused stimulus (AR-FS) paradigm as a human-machine interface, which enables users to actively control their fingers to move. Considering that the proposed AR-FS paradigm generates movement artifacts during hand movements, an enhanced decoding algorithm is designed to improve the decoding accuracy and robustness of the system. In online experiments, participants performed online control tasks using the proposed system, with an average task time cost of 16.27 s, an average output latency of 1.54 s, and an average correlation instantaneous rate (CIR) of 0.0321. The proposed system shows 35.37% better efficiency, 8.03% reduced system delay, and 35.28% better stability than the traditional system. This study not only provides an efficient rehabilitation solution for people with impaired hand function but also expands the application prospects of brain-control technology in areas such as human augmentation, patient monitoring, and remote robotic interaction. The video in Graphical Abstract Video demonstrates the user's process of operating the proposed brain-controlled hand exoskeleton system.

19.
Chin Med J (Engl) ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816396

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the main types of malignant tumor of the digestive system, and patient prognosis is affected by difficulties in early diagnosis, poor treatment response, and a high postoperative recurrence rate. Carbohydrate antigen 19-9 (CA19-9) has been widely used as a biomarker for the diagnosis and postoperative follow-up of PDAC patients. Nevertheless, the production mechanism and potential role of CA19-9 in PDAC progression have not yet been elucidated. METHODS: We performed single-cell RNA sequencing on six samples pathologically diagnosed as PDAC (three CA19-9-positive and three CA19-9-negative PDAC samples) and two paracarcinoma samples. We also downloaded and integrated PDAC samples (three each from CA19-9-positive and CA19-9-negative patients) from an online database. The dynamics of the proportion and potential function of each cell type were verified through immunofluorescence. Moreover, we built an in vitro coculture cellular model to confirm the potential function of CA19-9. RESULTS: Three subtypes of cancer cells with a high ability to produce CA19-9 were identified by the markers TOP2A, AQP5, and MUC5AC. CA19-9 production bypass was discovered on antigen-presenting cancer-associated fibroblasts (apCAFs). Importantly, the proportion of immature ficolin-1 positive (FCN1+) macrophages was high in the CA19-9-negative group, and the proportion of mature M2-like macrophages was high in the CA19-9-positive group. High proportions of these two macrophage subtypes were associated with an unfavourable clinical prognosis. Further experiments indicated that CA19-9 could facilitate the transformation of M0 macrophages into M2 macrophages in the tumor microenvironment. CONCLUSIONS: Our study described CA19-9 production at single-cell resolution and the dynamics of the immune atlas in CA19-9-positive and CA19-9-negative PDAC. CA19-9 could promote M2 polarization of macrophage in the pancreatic tumor microenvironment.

20.
J Hazard Mater ; 467: 133631, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38335610

ABSTRACT

Ubiquitous pollution due to microplastics through the food chain is a major cause of various deleterious effects on the human health. The aim of this study was to determine the existence of microplastics and the internal mechanism of microplastics as accelerators of cholelithiasis. Gallstones were collected from 16 patients after cholecystectomy, and microplastics in the gallstones were detected through laser direct infrared and pyrolysis gas chromatographymass spectrometry examinations. Mice model of gallstone were constructed with or without different diameters of microplastic (0.5, 5 and 50 µm). The affinity between microplastic and cholesterol or bilirubin was tested by co-culturing and qualified using molecular dynamics simulations. Finally, altered gut microbiota among the groups were identified using 16 s rRNA sequencing. The presence of microplastics in the gallstones of all the patients were confirmed. Microplastic content was significantly higher in younger chololithiasis patients (age<50 years). Mice fed a high-cholesterol diet with microplastic drinks showed more severe chololithiasis. In terms of the mechanism, microplastics showed a higher affinity for cholesterol than for bilirubin. Significant alterations in the gut microbiota have also been identified after microplastic intake in mice. Our study revealed the presence of microplastics in human gallstones, showcasing their potential to aggravate chololithiasis by forming large cholesterol-microplastic heteroaggregates and altering the gut microbiota.


Subject(s)
Gallstones , Humans , Animals , Mice , Middle Aged , Microplastics , Plastics , Cholesterol , Bilirubin
SELECTION OF CITATIONS
SEARCH DETAIL