ABSTRACT
SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown. Here, we identified a SAMD9/9L effector domain that functions by binding to double-stranded nucleic acids (dsNA) and determined the crystal structure of the domain in complex with DNA. Aided with precise mutations that differentially perturb dsNA binding, we demonstrated that the antiviral and antiproliferative functions of the wild-type and GoF SAMD9/9L variants rely on dsNA binding by the effector domain. Furthermore, we showed that GoF variants inhibit global protein synthesis, reduce translation elongation, and induce proteotoxic stress response, which all require dsNA binding by the effector domain. The identification of the structure and function of a SAMD9/9L effector domain provides a therapeutic target for SAMD9/9L-associated human diseases.
Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Tumor Suppressor Proteins/chemistry , Binding Sites , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mutation , Protein Binding , Stress, Physiological , Structure-Activity Relationship , Tumor Suppressor Proteins/metabolismABSTRACT
A compact VHF/UHF ultrawideband discone antenna with consistent patterns is proposed in this article. The proposed antenna consists of a disk, a modified cone, an inverted cone, four shorting probes, and two sleeves. To improve the radiation angular distortion at high frequencies, two sleeves are inserted into the discone antenna. Higher-order modes are suppressed, and ultrawideband consistent patterns are obtained without antenna size increasing. An inverted cone and four shorting probes are introduced to achieve broadband and profile reduction. An antenna prototype is fabricated and measured. The proposed antenna possesses consistent patterns in a 11.36:1 bandwidth. The pattern nulls is improved by 26.1 dB. The antenna occupies a cylindrical volume of 0.227 λ0 (D) and 0.096 λ0 (H). It is a competitive candidate for future in-vehicle communication systems.
ABSTRACT
BACKGROUND: It is well known that hemp proteins have the disadvantages of poor solubility and poor emulsification. To improve these shortcomings, an alkali covalent cross-linking method was used to prepare hemp protein isolate-epigallocatechin-3-gallate biopolymer (HPI-EGCG) and the effects of different heat treatment conditions on the structure and emulsifying properties of the HPI-EGCG covalent complex were studied. RESULTS: The secondary and tertiary structures, solubility, and emulsification ability of the HPI-EGCG complexes were evaluated using particle size, zeta potential, circular dichroism (CD), and fluorescence spectroscopy indices. The results showed that the absolute value of zeta potential of HPI-EGCG covalent complex was the largest, 18.6 mV, and the maximum binding amount of HPI to EGCG was 29.18 µmol g-1 . Under heat treatment at 25-35 °C, the α-helix content was reduced from 1.87% to 0%, and the ß-helix content was reduced from 82.79% to 0% after the covalent binding of HPI and EGCG. The solubility and emulsification properties of the HPI-EGCG covalent complexes were improved significantly, and the emulsification activity index (EAI) and emulsion stability index (ESI) were increased by 2.77-fold and 1.21-fold, respectively. CONCLUSION: A new HPI-EGCG covalent complex was developed in this study to provide a theoretical basis for the application of HPI-EGCG in food industry. © 2023 Society of Chemical Industry.
Subject(s)
Cannabis , Catechin , Catechin/analogs & derivatives , Cannabis/chemistry , Heating , Antioxidants/chemistry , Catechin/chemistry , BiopolymersABSTRACT
The main protease (Mpro) is a validated antiviral drug target of SARS-CoV-2. A number of Mpro inhibitors have now advanced to animal model study and human clinical trials. However, one issue yet to be addressed is the target selectivity over host proteases such as cathepsin L. In this study we describe the rational design of covalent SARS-CoV-2 Mpro inhibitors with novel cysteine reactive warheads including dichloroacetamide, dibromoacetamide, tribromoacetamide, 2-bromo-2,2-dichloroacetamide, and 2-chloro-2,2-dibromoacetamide. The promising lead candidates Jun9-62-2R (dichloroacetamide) and Jun9-88-6R (tribromoacetamide) had not only potent enzymatic inhibition and antiviral activity but also significantly improved target specificity over caplain and cathepsins. Compared to GC-376, these new compounds did not inhibit the host cysteine proteases including calpain I, cathepsin B, cathepsin K, cathepsin L, and caspase-3. To the best of our knowledge, they are among the most selective covalent Mpro inhibitors reported thus far. The cocrystal structures of SARS-CoV-2 Mpro with Jun9-62-2R and Jun9-57-3R reaffirmed our design hypothesis, showing that both compounds form a covalent adduct with the catalytic C145. Overall, these novel compounds represent valuable chemical probes for target validation and drug candidates for further development as SARS-CoV-2 antivirals.
Subject(s)
Acetamides/pharmacology , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Cathepsin L/antagonists & inhibitors , Drug Design , Drug Discovery , Enzyme Inhibitors/pharmacology , Humans , Models, Molecular , Molecular Dynamics Simulation , Structure-Activity Relationship , Substrate SpecificityABSTRACT
As postulated by life-history theory, not all life-history traits can be maximized simultaneously. In ectothermic animals, climate warming is predicted to increase growth rates, but at a cost to overall life span. Maternal effects are expected to mediate this life-history trade-off, but such effects have not yet been explicitly elucidated. To understand maternal effects on the life-history responses to climate warming in lizard offspring, we conducted a manipulative field experiment on a desert-dwelling viviparous lacertid lizard Eremias multiocellata, using open-top chambers in a factorial design (maternal warm climate and maternal present climate treatments × offspring warm climate and offspring present climate treatments). We found that the maternal warm climate treatment had little impact on the physiological and life-history traits of adult females (i.e. metabolic rate, reproductive output, growth and survival). However, the offspring warm climate treatment significantly affected offspring growth, and both maternal and offspring warm climate treatments interacted to affect offspring survival. Offspring from the warm climate treatment grew faster than those from the present climate treatment. However, the offspring warm climate treatment significantly decreased the survival rate of offspring from maternal present climate treatment, but not for those from the maternal warm climate treatment. Our study demonstrates that maternal effects mediate the trade-off between growth and survival of offspring lizards, allowing them to grow fast without a concurrent cost of low survival rate (short life span). These findings stress the importance of adaptive maternal effects in buffering the impact of climate warming on organisms, which may help us to accurately predict the vulnerability of populations and species to future warming climates.
Subject(s)
Lizards , Animals , Climate , Climate Change , Female , Maternal Inheritance , ReproductionABSTRACT
Identifying intrinsic and extrinsic sources of variation in life history traits among populations has been well-studied at the post-embryonic stage but rarely at the embryonic stage. To reveal these sources of variation in the developmental success of embryos, we measured the physical characteristics of nest environments and conducted reciprocal egg-swap experiments in two populations of the toad-headed agamid lizard (Phrynocephalus przewalskii), isolated from each other by a mountain range. We determined the effects of population origin and nest environment on embryonic and offspring traits related to developmental success, including incubation period, hatching success, and offspring growth and survival. Females from the northern population constructed deeper nests that were colder and wetter than those from the southern population. Northern embryos had higher hatching success than the southern embryos when incubated at the northern nest environment, but not when they were incubated at the southern nest environment. The southern hatchlings grew faster than the northern hatchlings when incubated at the southern nest environment, but not after incubation at the northern nest environment. These phenomena likely reflect local adaptation of embryonic development to their nest environments among populations in lizards. In addition, the southern hatchlings had higher survivorship than the northern hatchlings regardless of nest environment, suggesting the southern population has evolved a superior phenotype at the hatchling stage to maximize its fitness.
Subject(s)
Lizards , Adaptation, Physiological , Animals , Embryonic Development , Female , Phenotype , TemperatureABSTRACT
Cellular membranes are maintained as closed compartments, broken up only transiently during membrane reorganization or lipid transportation. However, open-ended membranes, likely derived from scissions of the endoplasmic reticulum, persist in vaccinia virus-infected cells during the assembly of the viral envelope. A group of viral membrane assembly proteins (VMAPs) were identified as essential for this process. To understand the mechanism of VMAPs, we determined the 2.2-Å crystal structure of the largest member, named A6, which is a soluble protein with two distinct domains. The structure of A6 displays a novel protein fold composed mainly of alpha helices. The larger C-terminal domain forms a unique cage that encloses multiple glycerophospholipids with a lipid bilayer-like configuration. The smaller N-terminal domain does not bind lipid but negatively affects lipid binding by A6. Mutations of key hydrophobic residues lining the lipid-binding cage disrupt lipid binding and abolish viral replication. Our results reveal a protein modality for enclosing the lipid bilayer and provide molecular insight into a viral machinery involved in generating and/or stabilizing open-ended membranes.
Subject(s)
Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Vaccinia virus/chemistry , Viral Proteins/chemistry , Crystallography, X-Ray , Membrane Proteins/genetics , Vaccinia virus/genetics , Viral Proteins/geneticsABSTRACT
Orthopoxviruses (OPXVs) have a broad host range in mammalian cells, but Chinese hamster ovary (CHO) cells are nonpermissive for vaccinia virus (VACV). Here, we revealed a species-specific difference in host restriction factor SAMD9L as the cause for the restriction and identified orthopoxvirus CP77 as a unique inhibitor capable of antagonizing Chinese hamster SAMD9L (chSAMD9L). Two known VACV inhibitors of SAMD9 and SAMD9L (SAMD9&L), K1 and C7, can bind human and mouse SAMD9&L, but neither can bind chSAMD9L. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 knockout of chSAMD9L from CHO cells removed the restriction for VACV, while ectopic expression of chSAMD9L imposed the restriction for VACV in a human cell line, demonstrating that chSAMD9L is a potent restriction factor for VACV. In contrast to K1 and C7, cowpox virus CP77 can bind chSAMD9L and rescue VACV replication in cells expressing chSAMD9L, indicating that CP77 is yet another SAMD9L inhibitor but has a unique specificity for chSAMD9L. Binding studies showed that the N-terminal 382 amino acids of CP77 were sufficient for binding chSAMD9L and that both K1 and CP77 target a common internal region of SAMD9L. Growth studies with nearly all OPXV species showed that the ability of OPXVs to antagonize chSAMD9L correlates with CP77 gene status and that a functional CP77 ortholog was maintained in many OPXVs, including monkeypox virus. Our data suggest that a species-specific difference in rodent SAMD9L poses a barrier for cross-species OPXV infection and that OPXVs have evolved three SAMD9&L inhibitors with different specificities to overcome this barrier.IMPORTANCE Several OPXV species, including monkeypox virus and cowpox virus, cause zoonotic infection in humans. They are believed to use wild rodents as the reservoir or intermediate hosts, but the host or viral factors that are important for OPXV host range in rodents are unknown. Here, we showed that the abortive replication of several OPXV species in a Chinese hamster cell line was caused by a species-specific difference in the host antiviral factor SAMD9L, suggesting that SAMD9L divergence in different rodent species poses a barrier for cross-species OPXV infection. While the Chinese hamster SAMD9L could not be inhibited by two previously identified OPXV inhibitors of human and mouse SAMD9&L, it can be inhibited by cowpox virus CP77, indicating that OPXVs encode three SAMD9&L inhibitors with different specificities. Our data suggest that OPXV host range in broad rodent species depends on three SAMD9&L inhibitors with different specificities.
Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Orthopoxvirus/genetics , Animals , CHO Cells , Cell Line , Chlorocebus aethiops , Cricetinae , Cricetulus , HeLa Cells , Host Specificity , Humans , Mice , NIH 3T3 Cells , Orthopoxvirus/metabolism , Rodentia , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Vaccinia , Vaccinia virus/genetics , Vero Cells , Viral Proteins/metabolism , Virus ReplicationABSTRACT
Host restriction factors constitute a formidable barrier for viral replication to which many viruses have evolved counter-measures. Human SAMD9, a tumor suppressor and a restriction factor for poxviruses in cell lines, is antagonized by two classes of poxvirus proteins, represented by vaccinia virus (VACV) K1 and C7. A paralog of SAMD9, SAMD9L, is also encoded by some mammals, while only one of two paralogs is retained by others. Here, we show that SAMD9L functions similarly to SAMD9 as a restriction factor and that the two paralogs form a critical host barrier that poxviruses must overcome to establish infection. In mice, which naturally lack SAMD9, overcoming SAMD9L restriction with viral inhibitors is essential for poxvirus replication and pathogenesis. While a VACV deleted of both K1 and C7 (vK1L-C7L-) was restricted by mouse cells and highly attenuated in mice, its replication and virulence were completely restored in SAMD9L-/- mice. In humans, both SAMD9 and SAMD9L are poxvirus restriction factors, although the latter requires interferon induction in many cell types. While knockout of SAMD9 with Crispr-Cas9 was sufficient for abolishing the restriction for vK1L-C7L- in many human cells, knockout of both paralogs was required for abolishing the restriction in interferon-treated cells. Both paralogs are antagonized by VACV K1, C7 and C7 homologs from diverse mammalian poxviruses, but mouse SAMD9L is resistant to the C7 homolog encoded by a group of poxviruses with a narrow host range in ruminants, indicating that host species-specific difference in SAMD9/SAMD9L genes serves as a barrier for cross-species poxvirus transmission.
Subject(s)
Host Specificity/genetics , Poxviridae Infections/genetics , Poxviridae/genetics , Poxviridae/pathogenicity , Proteins/physiology , Tumor Suppressor Proteins/physiology , Animals , Cells, Cultured , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Mammals , Mice , Mice, Knockout , NIH 3T3 Cells , Poxviridae Infections/transmission , Poxviridae Infections/virology , Proteins/genetics , Sequence Homology , Tumor Suppressor Proteins/genetics , Vaccinia virus/genetics , Vaccinia virus/pathogenicity , Vero CellsABSTRACT
Reptiles are especially vulnerable to climate warming because their behavior, physiology, and life history are highly dependent on environmental temperature. In this study, we envisaged new probable mechanisms underlying the high vulnerability of lizards, wherein heat exposure induces oxidative stress and leads to immunosuppression. To test this hypothesis, we conducted a warming experiment on a lizard (Eremias multiocellata) from a desert steppe in Inner Mongolia from May to September using open-top chambers set up in their natural habitat and compared the components of oxidative stress (antioxidant ability [Superoxide dismutase (SOD) activity], extent of oxidative damage [malondialdehyde (MDA) content]), and immunocompetence (white blood cells [WBC] counts and immunoglobulin M [IgM] expression) between the warming and control groups. At the end of the experiment, the warming treatment did not affect the survival rate of the lizards. However, MDA content, but not SOD activity, was significantly higher in the warming group than in the control group. The WBC counts and IgM expression were significantly lower in the warming group than in the control group. Our results verified our hypothesis and provided novel cues and methods for the investigation of the mechanisms behind the high probability of extinction of other ectotherms under warming conditions.
Subject(s)
Hot Temperature/adverse effects , Immune Tolerance , Lizards/immunology , Oxidative Stress , Animals , Climate Change , Female , Immunoglobulin M/immunology , Leukocyte Count , MaleABSTRACT
BACKGROUND: Jaagsiekte sheep retrovirus (JSRV) causes a contagious lung cancer in sheep and goats that can be transmitted by aerosols produced by infected animals. Virus entry into cells is initiated by binding of the viral envelope (Env) protein to a specific cell-surface receptor, Hyal2. Unlike almost all other retroviruses, the JSRV Env protein is also a potent oncoprotein and is responsible for lung cancer in animals. Of concern, Hyal2 is a functional receptor for JSRV in humans. RESULTS: We show here that JSRV is fully capable of infecting human cells, as measured by its reverse transcription and persistence in the DNA of cultured human cells. Several studies have indicated a role for JSRV in human lung cancer while other studies dispute these results. To further investigate the role of JSRV in human lung cancer, we used highly-specific mouse monoclonal antibodies and a rabbit polyclonal antiserum against JSRV Env to test for JSRV expression in human lung cancer. JSRV Env expression was undetectable in lung cancers from 128 human subjects, including 73 cases of bronchioalveolar carcinoma (BAC; currently reclassified as lung invasive adenocarcinoma with a predominant lepidic component), a lung cancer with histology similar to that found in JSRV-infected sheep. The BAC samples included 8 JSRV DNA-positive samples from subjects residing in Sardinia, Italy, where sheep farming is prevalent and JSRV is present. We also tested for neutralizing antibodies in sera from 138 Peruvians living in an area where sheep farming is prevalent and JSRV is present, 24 of whom were directly exposed to sheep, and found none. CONCLUSIONS: We conclude that while JSRV can infect human cells, JSRV plays little if any role in human lung cancer.
Subject(s)
Adenocarcinoma/pathology , Adenocarcinoma/virology , Jaagsiekte sheep retrovirus/isolation & purification , Jaagsiekte sheep retrovirus/pathogenicity , Lung Neoplasms/pathology , Lung Neoplasms/virology , Adult , Aged , Aged, 80 and over , Animal Husbandry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Humans , Immunohistochemistry , Italy , Male , Microscopy , Middle Aged , Occupational Exposure , Viral Envelope Proteins/analysisABSTRACT
SFTS virus (SFTSV) is a highly pathogenic bunyavirus that causes severe fever with thrombocytopenia syndrome (SFTS), an emerging infectious disease in China. Laboratory mice have been reported to be susceptible to SFTSV infection, but the infection in nonhuman primates has not been investigated. This study is the first to report that, in rhesus macaques, SFTSV does not cause severe symptoms or death but causes fever, thrombocytopenia, leukocytopenia, and increased levels of transaminases and myocardial enzymes in blood. Viremia, virus-specific immunoglobulin M and immunoglobulin G antibodies, and neutralizing antibodies were identified in all infected macaques. Levels of the cytokines interferon γ, eotaxin, tumor necrosis factor α, and macrophage inflammatory protein 1ß were significantly elevated in the blood. Minor pathological lesions were observed in the liver and kidney during the late stages of infection. Overall, SFTSV infection in rhesus macaques resembled mild SFTS in humans.
Subject(s)
Bunyaviridae Infections/veterinary , Macaca mulatta/virology , Monkey Diseases/virology , Phlebovirus/immunology , Animals , Antibodies, Viral/blood , Bunyaviridae Infections/blood , Bunyaviridae Infections/immunology , Cytokines/blood , Disease Models, Animal , Female , Humans , Kidney/pathology , Kidney/virology , Liver/pathology , Liver/virology , Macaca mulatta/immunology , Mice , Monkey Diseases/blood , Monkey Diseases/immunology , RNA, Viral/bloodABSTRACT
The discovery of an emerging viral disease, severe fever with thrombocytopenia syndrome (SFTS), caused by SFTS virus (SFTSV), has prompted the need to understand pathogenesis of SFTSV. We are unique in establishing an infectious model of SFTS in C57/BL6 mice, resulting in hallmark symptoms of thrombocytopenia and leukocytopenia. Viral RNA and histopathological changes were identified in the spleen, liver, and kidney. However, viral replication was only found in the spleen, which suggested the spleen to be the principle target organ of SFTSV. Moreover, the number of macrophages and platelets were largely increased in the spleen, and SFTSV colocalized with platelets in cytoplasm of macrophages in the red pulp of the spleen. In vitro cellular assays further revealed that SFTSV adhered to mouse platelets and facilitated the phagocytosis of platelets by mouse primary macrophages, which in combination with in vivo findings, suggests that SFTSV-induced thrombocytopenia is caused by clearance of circulating virus-bound platelets by splenic macrophages. Thus, this study has elucidated the pathogenic mechanisms of thrombocytopenia in a mouse model resembling human SFTS disease.
Subject(s)
Fever/virology , Thrombocytopenia/virology , Virus Diseases/virology , Animals , Blood Platelets/immunology , Cell Adhesion , Disease Models, Animal , Fever/etiology , Fever/pathology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Phagocytosis , RNA, Viral/genetics , Thrombocytopenia/complications , Thrombocytopenia/pathology , Virus Diseases/complications , Virus Diseases/pathologyABSTRACT
Severe fever with thrombocytopenia syndrome is an emerging infectious disease caused by a novel bunyavirus (SFTSV). Lack of vaccines and inadequate therapeutic treatments have made the spread of the virus a global concern. Viral nucleocapsid protein (N) is essential for its transcription and replication. Here, we present the crystal structures of N from SFTSV and its homologs from Buenaventura (BUE) and Granada (GRA) viruses. The structures reveal that phleboviral N folds into a compact core domain and an extended N-terminal arm that mediates oligomerization, such as tetramer, pentamer, and hexamer of N assemblies. Structural superimposition indicates that phleboviral N adopts a conserved architecture and uses a similar RNA encapsidation strategy as that of RVFV-N. The RNA binding cavity runs along the inner edge of the ring-like assembly. A triple mutant of SFTSV-N, R64D/K67D/K74D, almost lost its ability to bind RNA in vitro, is deficient in its ability to transcribe and replicate. Structural studies of the mutant reveal that both alterations in quaternary assembly and the charge distribution contribute to the loss of RNA binding. In the screening of inhibitors Suramin was identified to bind phleboviral N specifically. The complex crystal structure of SFTSV-N with Suramin was refined to a 2.30-Å resolution. Suramin was found sitting in the putative RNA binding cavity of SFTSV-N. The inhibitory effect of Suramin on SFTSV replication was confirmed in Vero cells. Therefore, a common Suramin-based therapeutic approach targeting SFTSV-N and its homologs could be developed for containing phleboviral outbreaks.
Subject(s)
Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/therapeutic use , Phlebotomus Fever/drug therapy , Phlebovirus/drug effects , Suramin/chemistry , Suramin/therapeutic use , Amino Acid Sequence , Animals , Chlorocebus aethiops , Crystallization , Models, Molecular , Molecular Sequence Data , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Phlebotomus Fever/virology , Protein Folding , RNA, Viral/genetics , RNA, Viral/metabolism , Sequence Analysis, DNA , Structure-Activity Relationship , Suramin/metabolism , Vero Cells , Virus Replication/drug effectsABSTRACT
BACKGROUND: Enterovirus 71 (EV71) is the etiologic agent of hand-foot-and-mouth disease (HFMD) in the Asia-Pacific region, Many strategies have been applied to develop EV71 vaccines but no vaccines are currently available. Mucosal immunization of the VP1, a major immunogenic capsid protein of EV71, may be an alternative way to prevent EV71 infection. RESULTS: In this study, mucosal immunogenicity and protect function of recombinant VP1 protein (rVP1) in formulation with chitosan were tested and assessed in female ICR mouse model. The results showed that the oral immunization with rVP1 induced VP1-specific IgA antibodies in intestine, feces, vagina, and the respiratory tract and serum-specific IgG and neutralization antibodies in vaccinated mice. Splenocytes from rVP1-immunized mice induced high levels of Th1 (cytokine IFN-γ), Th2 (cytokine IL-4) and Th3 (cytokine TGF-ß) type immune responses after stimulation. Moreover, rVP1-immunized mother mice conferred protection (survival rate up to 30%) on neonatal mice against a lethal challenge of 103 plaque-forming units (PFU) EV71. CONCLUSIONS: These data indicated that oral immunization with rVP1 in formulation with chitosan was effective in inducing broad-spectrum immune responses and might be a promising subunit vaccine candidate for preventing EV71 infection.
Subject(s)
Adjuvants, Immunologic/administration & dosage , Chitosan/administration & dosage , Enterovirus A, Human/immunology , Enterovirus Infections/prevention & control , Vaccination/methods , Viral Structural Proteins/immunology , Viral Vaccines/immunology , Administration, Oral , Animals , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/blood , Antibodies, Viral/analysis , Antibodies, Viral/blood , Cytokines/metabolism , Disease Models, Animal , Enterovirus A, Human/genetics , Enterovirus Infections/immunology , Female , Immunity, Mucosal , Immunoglobulin A/analysis , Immunoglobulin G/blood , Leukocytes, Mononuclear/immunology , Mice, Inbred ICR , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Spleen/immunology , Survival Analysis , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Structural Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/geneticsABSTRACT
BACKGROUND: The immunocompetence handicap hypothesis suggests that males with a higher testosterone level should be better at developing male secondary traits, but at a cost of suppressed immune performance. As a result, we should expect that males with an increased testosterone level also possess a higher parasite load. However, previous empirical studies aimed to test this prediction have generated mixed results. Meanwhile, the effect of testosterone level on parasite load in female hosts remains poorly known. METHODS: In this study, we tested this prediction by manipulating testosterone level in Daurian ground squirrels (Spermophilus dauricus), a medium-sized rodent widely distributed in northeast Asia. S. dauricus is an important host of ticks and fleas and often viewed as a considerable reservoir of plague. Live-trapped S. dauricus were injected with either tea oil (control group) or testosterone (treatment group) and then released. A total of 10 days later, the rodents were recaptured and checked for ectoparasites. Fecal samples were also collected to measure testosterone level of each individual. RESULTS: We found that testosterone manipulation and sex of hosts interacted to affect tick load. At the end of the experiment, male squirrels subjected to testosterone implantation had an averagely higher tick load than males from the control group. However, this pattern was not found in females. Moreover, testosterone manipulation did not significantly affect flea load in S. dauricus. CONCLUSIONS: Our results only lent limited support for the immunocompetence handicap hypothesis, suggesting that the role of testosterone on regulating parasite load is relatively complex, and may largely depend on parasite type and gender of hosts.
Subject(s)
Flea Infestations , Rodent Diseases , Siphonaptera , Ticks , Animals , Female , Male , Sciuridae/parasitology , Flea Infestations/veterinary , Testosterone/physiology , Immunocompetence/physiologyABSTRACT
Climate warming poses a significant threat to species worldwide, particularly those inhabiting arid and semi-arid regions where extreme temperatures are increasingly prevalent. However, empirical studies investigating how moderate heat events affect the physiological processes of arid and semi-arid animals are largely scarce. To address this knowledge gap, we used an arid and semi-arid lizard species (Phrynocephalus przewalskii) as a study system. We manipulated thermal environments to simulate moderate heat events (43.5 ± 0.3°C during the heating period) for lizards and examined physiological and biochemical traits related to survival, metabolism, locomotion, oxidative stress, and telomere length. We found that the body condition and survival of the lizards were not significantly affected by moderate heat events, despite an increase in body temperature and a decrease in locomotion at high test temperatures were detected. Mechanistically, we found that the lizards exhibited down-regulated metabolic rates and enhanced activities of antioxidative enzymes, resulting in reduced oxidative damage and stable telomere length under moderate heat events. Based on these findings, which indicated a beneficial regulation of fitness by physiological and biochemical processes, we inferred that moderate heat events did not have a detrimental effect on the toad-headed agama, P. przewalskii. Overall, our research contributes to understanding the impacts of moderate heat events on arid and semi-arid species and highlights the adaptive responses and resilience exhibited by the toad-headed agama in the face of climate warming.
ABSTRACT
At a global scale, organisms are under threat due to various kinds of environmental changes, such as artificial light at night (ALAN), noise, climatic change and vegetation destruction. Usually, these changes co-vary in time and space and may take effect simultaneously. Although impacts of ALAN on biological processes have been well documented, our knowledge on the combined effects of ALAN and other environmental changes on animals remains limited. In this study, we conducted field experiments in semi-natural enclosures to explore the combined effects of ALAN and vegetation height on foraging behavior, vigilance, activity patterns and body weight in dwarf striped hamsters (Cricetulus barabensis), a nocturnal rodent widely distributed in East Asia. We find that ALAN and vegetation height affected different aspects of behavior. ALAN negatively affected search speed and positively affected handling speed, while vegetation height negatively affected giving-up density and positively affected body weight. ALAN and vegetation height also additively shaped total time spent in a food patch. No significant interactive effect of ALAN and vegetation height was detected. C. barabensis exposed to ALAN and short vegetation suffered a significant loss in body weight, and possessed a much narrower temporal niche (i.e. initiated activity later but became inactive earlier) than those under other combinations of treatments. The observed behavioral responses to ALAN and changes in vegetation height may bring fitness consequences, as well as further changes in structure and functioning of local ecosystems.
Subject(s)
Ecosystem , Rodentia , Animals , Light Pollution , Photoperiod , Body WeightABSTRACT
Higher temperatures enhance ectothermic metabolism and development, which can reduce individual health and life expectancy, and therefore increase their vulnerability to climate warming. However, the mechanistic causes and consequences of such a temperature-driven impact remain unclear. Our study aimed to address two questions: (1) does climate warming alter early-life growth and physiology, and, if so, what are the associated carry-over effects in terms of reduced survival, increased oxidative stress and telomere shortening? (2) can oxidative stress and telomere dynamics at early life stages predict the effect of climate warming on individual survival? To answer these questions, we conducted a longitudinal experiment under semi-natural conditions where we exposed multiocellated racerunner (Eremias multiocellata) to warming conditions from juvenile to adult stages. We found that exposure to climate warming enhanced growth rates, induced oxidative stress, and shortened telomere length of juvenile lizards. Warming conditions did not induce carry-over effects in terms of altered growth rate or physiology but resulted in increased mortality risk in the later life. Intriguingly, telomere shortening in young individuals was associated with mortality risk later in life. This study improves our mechanistic understanding of how global warming impacts on ectotherms' life-history traits, which encourages the inclusion of physiological information in assessing species vulnerability to climate change.