Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(21): e2319519121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753508

ABSTRACT

Transforming smallholder farms is critical to global food security and environmental sustainability. The science and technology backyard (STB) platform has proved to be a viable approach in China. However, STB has traditionally focused on empowering smallholder farmers by transferring knowledge, and wide-scale adoption of more sustainable practices and technologies remains a challenge. Here, we report on a long-term project focused on technology scale-up for smallholder farmers by expanding and upgrading the original STB platform (STB 2.0). We created a formalized and standardized process by which to engage and collaborate with farmers, including integrating their feedback via equal dialogues in the process of designing and promoting technologies. Based on 288 site-year of field trials in three regions in the North China Plain over 5 y, we find that technologies cocreated through this process were more easily accepted by farmers and increased their crop yields and nitrogen factor productivity by 7.2% and 28.1% in wheat production and by 11.4% and 27.0% in maize production, respectively. In promoting these technologies more broadly, we created a "one-stop" multistakeholder program involving local government agencies, enterprises, universities, and farmers. The program was shown to be much more effective than the traditional extension methods applied at the STB, yielding substantial environmental and economic benefits. Our study contributes an important case study for technology scale-up for smallholder agriculture. The STB 2.0 platform being explored emphasizes equal dialogue with farmers, multistakeholder collaboration, and long-term investment. These lessons may provide value for the global smallholder research and practitioners.


Subject(s)
Agriculture , China , Agriculture/methods , Farmers , Humans , Crops, Agricultural/growth & development , Cooperative Behavior , Zea mays/growth & development , Sustainable Development , Conservation of Natural Resources/methods , Triticum/growth & development , Crop Production/methods
2.
Proc Natl Acad Sci U S A ; 120(2): e2201886120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595678

ABSTRACT

Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (-4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets.


Subject(s)
Ecosystem , Fabaceae , Agriculture/methods , Crops, Agricultural , Edible Grain
3.
Plant Cell ; 34(10): 4066-4087, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35880836

ABSTRACT

Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.


Subject(s)
Ammonium Compounds , Mycorrhizae , Ammonium Compounds/metabolism , Gene Expression Regulation, Plant , Mycorrhizae/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Soil , Zea mays/metabolism
4.
Glob Chang Biol ; 30(5): e17311, 2024 May.
Article in English | MEDLINE | ID: mdl-38742695

ABSTRACT

The soil microbial carbon pump (MCP) is increasingly acknowledged as being directly linked to soil organic carbon (SOC) accumulation and stability. Given the close coupling of carbon (C) and nitrogen (N) cycles and the constraints imposed by their stoichiometry on microbial growth, N addition might affect microbial growth strategies with potential consequences for necromass formation and carbon stability. However, this topic remains largely unexplored. Based on two multi-level N fertilizer experiments over 10 years in two soils with contrasting soil fertility located in the North (Cambisol, carbon-poor) and Southwest (Luvisol, carbon-rich), we hypothesized that different resource demands of microorganism elicit a trade-off in microbial growth potential (Y-strategy) and resource-acquisition (A-strategy) in response to N addition, and consequently on necromass formation and soil carbon stability. We combined measurements of necromass metrics (MCP efficacy) and soil carbon stability (chemical composition and mineral associated organic carbon) with potential changes in microbial life history strategies (assessed via soil metagenomes and enzymatic activity analyses). The contribution of microbial necromass to SOC decreased with N addition in the Cambisol, but increased in the Luvisol. Soil microbial life strategies displayed two distinct responses in two soils after N amendment: shift toward A-strategy (Cambisol) or Y-strategy (Luvisol). These divergent responses are owing to the stoichiometric imbalance between microbial demands and resource availability for C and N, which presented very distinct patterns in the two soils. The partial correlation analysis further confirmed that high N addition aggravated stoichiometric carbon demand, shifting the microbial community strategy toward resource-acquisition which reduced carbon stability in Cambisol. In contrast, the microbial Y-strategy had the positive direct effect on MCP efficacy in Luvisol, which greatly enhanced carbon stability. Such findings provide mechanistic insights into the stoichiometric regulation of MCP efficacy, and how this is mediated by site-specific trade-offs in microbial life strategies, which contribute to improving our comprehension of soil microbial C sequestration and potential optimization of agricultural N management.


Subject(s)
Carbon , Fertilizers , Nitrogen , Soil Microbiology , Soil , Soil/chemistry , Carbon/metabolism , Carbon/analysis , Nitrogen/metabolism , Nitrogen/analysis , Fertilizers/analysis , Carbon Cycle , Microbiota
5.
Environ Sci Technol ; 58(17): 7367-7379, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644786

ABSTRACT

Composting is widely used for organic waste management and is also a major source of nitrous oxide (N2O) emission. New insight into microbial sources and sinks is essential for process regulation to reduce N2O emission from composting. This study used genome-resolved metagenomics to decipher the genomic structures and physiological behaviors of individual bacteria for N2O sources and sinks during composting. Results showed that several nosZ-lacking denitrifiers in feedstocks drove N2O emission at the beginning of the composting. Such emission became negligible at the thermophilic stage, as high temperatures inhibited all denitrifiers for N2O production except for those containing nirK. The nosZ-lacking denitrifiers were notably enriched to increase N2O production at the cooling stage. Nevertheless, organic biodegradation limited energy availability for chemotaxis and flagellar assembly to restrain nirKS-containing denitrifiers for nitrate reduction toward N2O sources but insignificantly interrupt norBC- and nosZ-containing bacteria (particularly nosZ-containing nondenitrifiers) for N2O sinks by capturing N2O and nitric oxide (NO) for energy production, thereby reducing N2O emission at the mature stage. Furthermore, nosZII-type bacteria included all nosZ-containing nondenitrifiers and dominated N2O sinks. Thus, targeted strategies can be developed to restrict the physiological behaviors of nirKS-containing denitrifiers and expand the taxonomic distribution of nosZ for effective N2O mitigation in composting.


Subject(s)
Composting , Nitrous Oxide , Nitrous Oxide/metabolism , Bacteria/metabolism
6.
Nature ; 555(7696): 363-366, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29513654

ABSTRACT

Sustainably feeding a growing population is a grand challenge, and one that is particularly difficult in regions that are dominated by smallholder farming. Despite local successes, mobilizing vast smallholder communities with science- and evidence-based management practices to simultaneously address production and pollution problems has been infeasible. Here we report the outcome of concerted efforts in engaging millions of Chinese smallholder farmers to adopt enhanced management practices for greater yield and environmental performance. First, we conducted field trials across China's major agroecological zones to develop locally applicable recommendations using a comprehensive decision-support program. Engaging farmers to adopt those recommendations involved the collaboration of a core network of 1,152 researchers with numerous extension agents and agribusiness personnel. From 2005 to 2015, about 20.9 million farmers in 452 counties adopted enhanced management practices in fields with a total of 37.7 million cumulative hectares over the years. Average yields (maize, rice and wheat) increased by 10.8-11.5%, generating a net grain output of 33 million tonnes (Mt). At the same time, application of nitrogen decreased by 14.7-18.1%, saving 1.2 Mt of nitrogen fertilizers. The increased grain output and decreased nitrogen fertilizer use were equivalent to US$12.2 billion. Estimated reactive nitrogen losses averaged 4.5-4.7 kg nitrogen per Megagram (Mg) with the intervention compared to 6.0-6.4 kg nitrogen per Mg without. Greenhouse gas emissions were 328 kg, 812 kg and 434 kg CO2 equivalent per Mg of maize, rice and wheat produced, respectively, compared to 422 kg, 941 kg and 549 kg CO2 equivalent per Mg without the intervention. On the basis of a large-scale survey (8.6 million farmer participants) and scenario analyses, we further demonstrate the potential impacts of implementing the enhanced management practices on China's food security and sustainability outlook.


Subject(s)
Agriculture/methods , Conservation of Natural Resources , Crops, Agricultural/growth & development , Efficiency, Organizational , Farmers , China , Decision Support Techniques , Edible Grain/growth & development , Environmental Policy , Fertilizers/statistics & numerical data , Food Supply/methods , Greenhouse Effect , Nitrogen/metabolism , Oryza/growth & development , Triticum/growth & development , Zea mays/growth & development
7.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34556575

ABSTRACT

Hundreds of millions of smallholders in emerging countries substantially overuse nitrogen (N) fertilizers, driving local environmental pollution and global climate change. Despite local demonstration-scale successes, widespread mobilization of smallholders to adopt precise N management practices remains a challenge, largely due to associated high costs and complicated sampling and calculations. Here, we propose a long-term steady-state N balance (SSNB) approach without these complications that is suitable for sustainable smallholder farming. The hypothesis underpinning the concept of SSNB is that an intensively cultivated soil-crop system with excessive N inputs and high N losses can be transformed into a steady-state system with minimal losses while maintaining high yields. Based on SSNB, we estimate the optimized N application range across 3,824 crop counties for the three staple crops in China. We evaluated SSNB first in ca. 18,000 researcher-managed on-farm trials followed by testing in on-farm trials with 13,760 smallholders who applied SSNB-optimized N rates under the guidance of local extension staff. Results showed that SSNB could significantly reduce N fertilizer use by 21 to 28% while maintaining or increasing yields by 6 to 7%, compared to current smallholder practices. The SSNB approach could become an effective tool contributing to the global N sustainability of smallholder agriculture.

8.
J Environ Manage ; 354: 120378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350277

ABSTRACT

Fast development of farming practices in China is projected to result in additional carbon emissions and thus affect farmland ecosystems' environmental performance. Based on 454 farm surveys on the North and Northeast China Plain, the carbon footprint (CF) of two farmland ecosystems (irrigated system for wheat and maize on the North China Plain and rainfed system for maize on the Northeast Plain) were assessed and emission reduction pathways explored by quantifying greenhouse gas emissions of agricultural inputs and farm practices during the entire crop growing seasons with an agricultural footprint model. The results demonstrated that the GHG emissions from wheat and maize rotation in the irrigated system were 7.63 t CO2 eq ha-1 and 3.17 t CO2 eq ha-1 for single season maize in the rainfed system. While energy consumption accounted for 12.5%-21.3% of the carbon footprint in both systems, the group assessment found that the largest difference in GHG emissions between the high and low emission groups came from mechanical energy consumption. Approximately 50.6% and 39.2% of the mechanical carbon footprint of wheat and maize, respectively, were caused by irrigation practices in the irrigated system. Regarding the rainfed system, where 46.6% of mechanical carbon emissions were generated by maize tillage operations. In addition, scenario analysis indicated that the mechanical carbon footprint could be reduced to 56 kg CO2 eq t-1 for NCP-wheat and 26 kg CO2 eq t-1 for NCP-maize, respectively, by optimizing yields and irrigation practices in irrigated systems and that the mechanical carbon footprint of NEP-maize could be reduced to 25 kg CO2 eq t-1 by optimizing yields and tillage practices in rainfed systems. Therefore, improvement in mechanization in irrigation and tillage practices can contribute to reduce GHG emissions in China. Water-saving irrigation technology is recommended in irrigated area and conservation tillage is recommended in rainfed agricultural area to reduce carbon footprints.


Subject(s)
Carbon Dioxide , Carbon Footprint , Farms , Ecosystem , Agriculture/methods , China , Triticum , Zea mays , Carbon/analysis , Soil
9.
J Environ Manage ; 351: 119737, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064983

ABSTRACT

Setting nitrogen (N) emission targets for agricultural systems is crucial to prevent to air and groundwater pollution, yet such targets are rarely defined at the county level. In this study, we employed a forecasting-and-back casting approach to establish human health-based nitrogen targets for air and groundwater quality in Quzhou county, located in the North China Plain. By adopting the World Health Organization (WHO) phase I standard for PM2.5 concentration (35 µg m-3) and a standard of 11.3 mg NO3--N L-1 for nitrate in drinking water, we found that ammonia (NH3) emissions from the entire county must be reduced by at least 3.2 kilotons year-1 in 2050 to meet the WHO's PM2.5 phase I standard. Additionally, controlling other pollutants such as sulfur dioxide (SO2) and nitrogen oxides (NOx) is necessary, with required reductions ranging from 16% to 64% during 2017-2050. Furthermore, to meet the groundwater quality standard, nitrate nitrogen (NO3--N) leaching to groundwater should not exceed 0.8 kilotons year-1 by 2050. Achieving this target would require a 50% reduction in NH3 emissions and a 21% reduction in NO3--N leaching from agriculture in Quzhou in 2050 compared to their respective levels in 2017 (5.0 and 2.1 kilotons, respectively). Our developed method and the resulting N emission targets can support the development of environmentally-friendly agriculture by facilitating the design of control strategies to minimize agricultural N losses.


Subject(s)
Groundwater , Nitrates , Humans , Nitrates/analysis , Nitrogen/analysis , Goals , Environmental Monitoring/methods , China , Agriculture , Particulate Matter/analysis
10.
J Sci Food Agric ; 104(5): 2651-2659, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37985380

ABSTRACT

BACKGROUND: Zinc (Zn) deficiency in humans is of worldwide concern. The objective of this study was to investigate the Zn intake gap in Chinese adults and identify the potential role of biofortification technologies for wheat and rice, including crop nutrient management and breeding, in filling the gap. RESULTS: We use data from the China Health and Nutrition Survey in 2011 to identify food consumption patterns and dietary Zn intake of 4512 adults to define and quantify the Zn intake gap in the population. The dietary Zn intake gap of surveyed adults ranged from -0.8 to 6.53 mg day-1 across nine provinces and differences were associated with differences in food consumption patterns. Both dietary Zn intake and Zn gap for males were higher than for females. The potential of changes in five management strategies (improved nitrogen fertilization, improved phosphorus fertilization, foliar Zn fertilization, improved water management and growing varieties reaching the grain Zn breeding target) was analyzed. Breeding and foliar Zn fertilization were shown to be the two most effective management strategies that could increase dietary intake by 1.29 to 5 mg Zn day-1 dependent on sex and province. CONCLUSION: This study shows that the Zn gap varied across regions in China, with some large enough to warrant interventions. Wheat and rice as two major Zn sources could be targeted without a direct need for dietary diversification. By promoting both biofortification breeding of wheat and rice and Zn fertilization, dietary Zn intake could be enhanced to contribute to human health improvement in China. © 2023 Society of Chemical Industry.


Subject(s)
Oryza , Zinc , Male , Adult , Female , Humans , Zinc/analysis , Biofortification , Triticum , Plant Breeding , Minerals , Eating , China
11.
Glob Chang Biol ; 29(7): 1998-2014, 2023 04.
Article in English | MEDLINE | ID: mdl-36751727

ABSTRACT

Microbial necromass is a large and persistent component of soil organic carbon (SOC), especially under croplands. The effects of cropland management on microbial necromass accumulation and its contribution to SOC have been measured in individual studies but have not yet been summarized on the global scale. We conducted a meta-analysis of 481-paired measurements from cropland soils to examine the management effects on microbial necromass and identify the optimal conditions for its accumulation. Nitrogen fertilization increased total microbial necromass C by 12%, cover crops by 14%, no or reduced tillage (NT/RT) by 20%, manure by 21%, and straw amendment by 21%. Microbial necromass accumulation was independent of biochar addition. NT/RT and straw amendment increased fungal necromass and its contribution to SOC more than bacterial necromass. Manure increased bacterial necromass higher than fungal, leading to decreased ratio of fungal-to-bacterial necromass. Greater microbial necromass increases after straw amendments were common under semi-arid and in cool climates in soils with pH <8, and were proportional to the amount of straw input. In contrast, NT/RT increased microbial necromass mainly under warm and humid climates. Manure application increased microbial necromass irrespective of soil properties and climate. Management effects were especially strong when applied during medium (3-10 years) to long (10+ years) periods to soils with larger initial SOC contents, but were absent in sandy soils. Close positive links between microbial biomass, necromass and SOC indicate the important role of stabilized microbial products for C accrual. Microbial necromass contribution to SOC increment (accumulation efficiency) under NT/RT, cover crops, manure and straw amendment ranged from 45% to 52%, which was 9%-16% larger than under N fertilization. In summary, long-term cropland management increases SOC by enhancing microbial necromass accumulation, and optimizing microbial necromass accumulation and its contribution to SOC sequestration requires site-specific management.


Subject(s)
Carbon , Soil , Soil/chemistry , Manure , Nitrogen , Crops, Agricultural , Agriculture
12.
Environ Sci Technol ; 57(32): 12019-12032, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37527154

ABSTRACT

Many rivers are polluted with macro (>5 mm)- and microplastics (<5 mm). We assess plastic pollution in rivers from crop production and urbanization in 395 Chinese sub-basins. We develop and evaluate an integrated model (MARINA-Plastics model, China-1.0) that considers plastics in crop production (plastic films from mulching and greenhouses, diffuse sources), sewage systems (point sources), and mismanaged solid waste (diffuse source). Model results indicated that 716 kton of plastics entered Chinese rivers in 2015. Macroplastics in rivers account for 85% of the total amount of plastics (in mass). Around 71% of this total plastic is from about one-fifth of the basin area. These sub-basins are located in central and eastern China, and they are densely populated with intensive agricultural activities. Agricultural plastic films contribute 20% to plastics in Chinese rivers. Moreover, 65% of plastics are from mismanaged waste in urban and rural areas. Sewage is responsible for the majority of microplastics in rivers. Our study could support the design of plastic pollution control policies and thus contribute to green development in China and elsewhere.


Subject(s)
Plastics , Water Pollutants, Chemical , Rivers , Microplastics , Sewage , Water Pollutants, Chemical/analysis , Urbanization , Environmental Monitoring/methods , Crop Production , China
13.
J Environ Manage ; 345: 118531, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37423193

ABSTRACT

Soil amendments, including lime, biochar, industrial by-products, manure, and straw are used to alleviate soil acidification and improve crop productivity. Quantitative insight in the effect of these amendments on soil pH is limited, hampering their appropriate use. Until now, there is no comprehensive evaluation of the effects of soil amendments on soil acidity and yield, accounting for differences in soil properties. We synthesized 832 observations from 142 papers to explore the impact of these amendments on crop yield, soil pH and soil properties, focusing on acidic soils with a pH value below 6.5. Application of lime, biochar, by-products, manure, straw and combinations of them significantly increased soil pH by 15%, 12%, 15%, 13%, 5% and 17%, and increased crop yield by 29%, 57%, 50%, 55%, 9%, and 52%, respectively. The increase of soil pH was positively correlated with the increase in crop yield, but the relationship varied among crop types. The most substantial increases in soil pH and yield in response to soil amendments were found under long-term applications (>6 year) in strongly acidic (pH < 5.0) sandy soils with a low cation exchange capacity (CEC, <100 mmolc kg-1) and low soil organic matter content (SOM, <12 g kg-1). Most amendments increased soil CEC, SOM and base saturation (BS) and decreased soil bulk density (BD), but lime application increased soil BD (1%) induced by soil compaction. Soil pH and yield were positively correlated with CEC, SOM and BS, while yield declined when soils became compacted. Considering the impact of the amendments on soil pH, soil properties and crop yield as well as their costs, the addition of lime, manure and straw seem most appropriate in acidic soils with an initial pH range from <5.0, 5.0-6.0 and 6.0-6.5, respectively.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Manure , Calcium Compounds/chemistry , Charcoal/chemistry , Acids , Soil Pollutants/chemistry
14.
J Environ Manage ; 347: 119060, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37797509

ABSTRACT

The UN sustainable development goals ask countries to advance sustainable production methods in agriculture. While the need for a transition to sustainable agricultural production is widely felt, there is little insight into local stakeholders' perceptions regarding agroecosystem (dis)services in areas with intensive production methods. The North China Plain is an agricultural production area with intensive production systems and simplified agricultural landscapes. We conducted a survey with 267 farmers in Quzhou county in the North China Plain in 2020 to measure the perceived level of agroecosystem (dis)services supply and the changes therein between 2015 and 2020. We analyzed which explanatory factors were associated with farmers' perceptions. Provisioning services were at a high level, while the regulating and supporting ecosystem services were considered to be in low supply, as evidenced by low scores for the presence of natural enemies and earthworms, and for natural habitats such as hedgerows and windbreaks. Most of the participants did not perceive dis-services from agriculture. Differences in perception between villages with contrasting biophysical and socio-economic conditions highlight the relevance of contextualized policy development for agricultural landscape composition and configuration to manage ecosystem (dis)services.


Subject(s)
Ecosystem , Farmers , Humans , Agriculture/methods , Sustainable Development , China , Conservation of Natural Resources/methods
15.
J Sci Food Agric ; 103(15): 7816-7828, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37450651

ABSTRACT

BACKGROUND: Efficient utilization of phosphorus (P) has been a major challenge for sustainable agriculture. However, the responses of fertilizer rate, region, soil properties, cropping systems and genotypes to P have not been investigated comprehensively and systematically. RESULTS: A comprehensive analysis of 9863 fertilizer-P experiments on rice cultivation in China showed that rice yield  increased first and then fell down with the addition of P fertilizer, and the highest yield of 7963 kg ha-1 was observed under 100% P treatment. Under 100% P treatment, the yield response of applied P (YRP ) and agronomic efficiency of applied P (AEP ) were 12.8% and 30.1 kg ha-1 , respectively. Lower soil pH (< 5.5) and organic matter (< 30.0 g kg-1 ) were associated with lower YRP and AEP . By contrast, soil available P < 25.0 mg kg-1 resulted in decreased YRP (15.3 to 11.4%) and AEP (32.3 kg kg-1 to 26.2 kg kg-1 ), whereas soil available P > 25.0 mg kg-1 maintained the relatively stable YRP and AEP . Also, the YRP and AEP were significantly higher for single-cropping rice compared to other cropping systems. Moreover, the rice genotypes such as 'Longdun', 'Kendao' and 'Jigeng' had higher YRP and AEP than the average value. Overall, the fertilizer-P rate was the primary factor affecting YRP and AEP , and the recommended P fertilizer rate can be reduced by 9-21 kg P ha-1 compared to existing expert recommendations. CONCLUSION: The present study highlights the role of fertilizer-P rate in maximizing the YRP and AEP , thereby providing a strong basis for future fertilizer management in rice cultivation systems. © 2023 Society of Chemical Industry.


Subject(s)
Fertilizers , Oryza , Agriculture/methods , China , Fertilizers/analysis , Nitrogen/analysis , Oryza/growth & development , Phosphorus/analysis , Soil/chemistry
16.
Nature ; 537(7622): 671-674, 2016 09 29.
Article in English | MEDLINE | ID: mdl-27602513

ABSTRACT

Sustainably feeding the world's growing population is a challenge, and closing yield gaps (that is, differences between farmers' yields and what are attainable for a given region) is a vital strategy to address this challenge. The magnitude of yield gaps is particularly large in developing countries where smallholder farming dominates the agricultural landscape. Many factors and constraints interact to limit yields, and progress in problem-solving to bring about changes at the ground level is rare. Here we present an innovative approach for enabling smallholders to achieve yield and economic gains sustainably via the Science and Technology Backyard (STB) platform. STB involves agricultural scientists living in villages among farmers, advancing participatory innovation and technology transfer, and garnering public and private support. We identified multifaceted yield-limiting factors involving agronomic, infrastructural, and socioeconomic conditions. When these limitations and farmers' concerns were addressed, the farmers adopted recommended management practices, thereby improving production outcomes. In one region in China, the five-year average yield increased from 67.9% of the attainable level to 97.0% among 71 leading farmers, and from 62.8% to 79.6% countywide (93,074 households); this was accompanied by resource and economic benefits.


Subject(s)
Crop Production/methods , Crop Production/statistics & numerical data , Farmers/statistics & numerical data , Triticum/growth & development , Zea mays/growth & development , China , Climate Change , Crop Production/economics , Ecology , Environmental Policy , Nitrogen , Rural Population , Seeds , Socioeconomic Factors , Time Factors , Water
17.
Glob Chang Biol ; 27(10): 2011-2028, 2021 May.
Article in English | MEDLINE | ID: mdl-33528058

ABSTRACT

Current consensus on global climate change predicts warming trends with more pronounced temperature changes in winter than summer in the Northern Hemisphere at high latitudes. Moderate increases in soil temperature are generally related to faster rates of soil organic carbon (SOC) decomposition in Northern ecosystems, but there is evidence that SOC stocks have remained remarkably stable or even increased on the Tibetan Plateau under these conditions. This intriguing observation points to altered soil microbial mediation of carbon-cycling feedbacks in this region that might be related to seasonal warming. This study investigated the unexplained SOC stabilization observed on the Tibetan Plateau by quantifying microbial responses to experimental seasonal warming in a typical alpine meadow. Ecosystem respiration was reduced by 17%-38% under winter warming compared with year-round warming or no warming and coincided with decreased abundances of fungi and functional genes that control labile and stable organic carbon decomposition. Compared with year-round warming, winter warming slowed macroaggregate turnover rates by 1.6 times, increased fine intra-aggregate particulate organic matter content by 75%, and increased carbon stabilized in microaggregates within stable macroaggregates by 56%. Larger bacterial "necromass" (amino sugars) concentrations in soil under winter warming coincided with a 12% increase in carboxyl-C. These results indicate the enhanced physical preservation of SOC under winter warming and emphasize the role of soil microorganisms in aggregate life cycles. In summary, the divergent responses of SOC persistence in soils exposed to winter warming compared to year-round warming are explained by the slowing of microbial decomposition but increasing physical protection of microbially derived organic compounds. Consequently, the soil microbial response to winter warming on the Tibetan Plateau may cause negative feedbacks to global climate change and should be considered in Earth system models.


Subject(s)
Carbon , Soil , Ecosystem , Seasons , Soil Microbiology
18.
Environ Sci Technol ; 55(8): 4440-4451, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33793238

ABSTRACT

Pig production contributes considerably to land use and greenhouse gas (GHG) and reactive nitrogen (Nr) emissions. Land use strategies were widely proposed, but the spillover effects on biological flow are rarely explored. Here, we simultaneously assessed the carbon (C), nitrogen (N), and cropland footprints of China's pig production at the provincial scale in 2017. The environmental impacts of land use strategies were further evaluated. Results show that one kg live-weight pig production generated an average of 1.9 kg CO2-equiv and 59 g Nr emissions, occupying 3.5 m2 cropland, with large regional variations. A large reduction in GHG (58-64%) and Nr (12-14%) losses and occupied cropland (10-11%) could be achieved simultaneously if combined strategies of intensive crop production, improved feed-protein utilization efficiency, and feeding co-products were implemented. However, adopting a single strategy may have environmental side-effects. Reallocating cropland that pigs used for feed to plant food alternatives would enhance human-edible energy (3-20 times) and protein delivery (1-5 times) and reduce C and N footprints, except for rice and vegetables. Reallocating cropland to beef and milk production would decrease energy and protein supply. Therefore, a proper combination of land use strategies is essential to alleviate land use changes and nutrient emissions without sacrificing food supply.


Subject(s)
Greenhouse Effect , Greenhouse Gases , Animals , Carbon Footprint , Cattle , China , Greenhouse Gases/analysis , Nitrogen/analysis , Swine
19.
Proc Natl Acad Sci U S A ; 115(21): 5415-5419, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29735661

ABSTRACT

Protecting the environment and enhancing food security are among the world's Sustainable Development Goals and greatest challenges. International food trade is an important mechanism to enhance food security worldwide. Nonetheless, it is widely concluded that in international food trade importing countries gain environmental benefits, while exporting countries suffer environmental problems by using land and other resources to produce food for exports. Our study shows that international food trade can also lead to environmental pollution in importing countries. At the global level, our metaanalysis indicates that there was increased nitrogen (N) pollution after much farmland for domestically cultivated N-fixing soybeans in importing countries was converted to grow high N-demanding crops (wheat, corn, rice, and vegetables). The findings were further verified by an intensive study at the regional level in China, the largest soybean-importing country, where the conversion of soybean lands to corn fields and rice paddies has also led to N pollution. Our study provides a sharp contrast to the conventional wisdom that only exports contribute substantially to environmental woes. Our results suggest the need to evaluate environmental consequences of international trade of all other major goods and products in all importing countries, which have significant implications for fundamental rethinking in global policy-making and debates on environmental responsibilities among consumers, producers, and traders across the world.


Subject(s)
Agriculture/economics , Commerce , Conservation of Natural Resources/economics , Environmental Pollution/prevention & control , Food Supply/economics , Glycine max , Agriculture/methods , Conservation of Natural Resources/methods , Humans , International Cooperation
20.
Ecotoxicol Environ Saf ; 216: 112180, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33865187

ABSTRACT

Atmospheric nitrogen (N) deposition is a vital component of the global N cycle. Excessive N deposition on the Earth's surface has adverse impacts on ecosystems and humans. Quantification of atmospheric N deposition is indispensable for assessing and addressing N deposition-induced environmental issues. In the present review, we firstly summarized the current methods applied to quantify N deposition (wet, dry, and total N deposition), their advantages and major limitations. Secondly, we illustrated the long-term N deposition monitoring networks worldwide and the results attained via such long-term monitoring. Results show that China faces heavier N deposition than the United States, European countries, and other countries in East Asia. Next, we proposed a framework for estimating the atmospheric wet and dry N deposition using a combined method of surface monitoring, modeling, and satellite remote sensing. Finally, we put forth the critical research challenges and future directions of the atmospheric N deposition. CAPSULE: A review of quantification methods and the global data on nitrogen deposition and a systematic framework was proposed for quantifying nitrogen deposition.

SELECTION OF CITATIONS
SEARCH DETAIL