Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Chem Rev ; 123(3): 989-1039, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36580359

ABSTRACT

Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L-1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization.

2.
BMC Plant Biol ; 24(1): 187, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38481163

ABSTRACT

BACKGROUND: As the second largest leafy vegetable, cabbage (Brassica oleracea L. var. capitata) is grown globally, and the characteristics of the different varieties, forms, and colors of cabbage may differ. In this study, five analysis methods-variance analysis, correlation analysis, cluster analysis, principal component analysis, and comprehensive ranking-were used to evaluate the quality indices (soluble protein, soluble sugar, and nitrate), antioxidant content (vitamin C, polyphenols, and flavonoids), and mineral (K, Ca, Mg, Cu, Fe, Mn, and Zn) content of 159 varieties of four forms (green spherical, green oblate, purple spherical, and green cow heart) of cabbage. RESULTS: The results showed that there are significant differences among different forms and varieties of cabbage. Compared to the other three forms, the purple spherical cabbage had the highest flavonoid, K, Mg, Cu, Mn, and Zn content. A scatter plot of the principal component analysis showed that the purple spherical and green cow heart cabbage varieties were distributed to the same quadrant, indicating that their quality indices and mineral contents were highly consistent, while those of the green spherical and oblate varieties were irregularly distributed. Overall, the green spherical cabbage ranked first, followed by the green cow heart, green oblate, and purple spherical varieties. CONCLUSIONS: Our results provide a theoretical basis for the cultivation and high-quality breeding of cabbage.


Subject(s)
Antioxidants , Brassica , Antioxidants/metabolism , Brassica/genetics , Brassica/metabolism , Plant Breeding , Flavonoids/metabolism , Minerals/metabolism
3.
Small ; 20(8): e2307863, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37822157

ABSTRACT

The low energy efficiency and limited cycling life of rechargeable Zn-air batteries (ZABs) arising from the sluggish oxygen reduction/evolution reactions (ORR/OERs) severely hinder their commercial deployment. Herein, a zeolitic imidazolate framework (ZIF)-derived strategy associated with subsequent thermal fixing treatment is proposed to fabricate dual-atom CoFe─N─C nanorods (Co1 Fe1 ─N─C NRs) containing atomically dispersed bimetallic Co/Fe sites, which can promote the energy efficiency and cyclability of ZABs simultaneously by introducing the low-potential oxidation redox reactions. Compared to the mono-metallic nanorods, Co1 Fe1 ─N─C NRs exhibit remarkable ORR performance including a positive half-wave potential of 0.933 V versus reversible hydrogen electrode (RHE) in alkaline electrolyte. Surprisingly, after introducing the potassium iodide (KI) additive, the oxidation overpotential of Co1 Fe1 ─N─C NRs to reach 10 mA cm-2 can be significantly reduced by 395 mV compared to the conventional destructive OER. Theoretical calculations show that the markedly decreased overpotential of iodide oxidation can be ascribed to the synergistic effects of neighboring Co─Fe diatomic sites as the unique adsorption sites. Overall, aqueous ZABs assembled with Co1 Fe1 ─N─C NRs and KI as the air-cathode catalyst and electrolyte additive, respectively, can deliver a low charging voltage of 1.76 V and ultralong cycling stability of over 230 h with a high energy efficiency of ≈68%.

4.
Acta Neurochir (Wien) ; 166(1): 200, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689141

ABSTRACT

BACKGROUND: The Cisternostomy is a novel surgical concept in the treatment of Traumatic Brain Injury (TBI), which can effectively drain the bloody cerebrospinal fluid from the skull base cistern, reduce the intracranial pressure, and improve the return of bone flap, but its preventive role in post-traumatic hydrocephalus (PTH) is unknow. The purpose of this paper is to investigate whether Cisternostomy prevents the occurrence of PTH in patients with moderate and severe TBI. METHODS: A retrospective analysis of clinical data of 86 patients with moderate and severe TBI from May 2019 to October 2021 was carried out in the Brain Trauma Center of Tianjin Huanhu Hospital. Univariate analysis was performed to examine the gender, age, preoperative Glasgow Coma Scale (GCS) score, preoperative Rotterdam CT score, decompressive craniectomy rate, intracranial infection rate, the incidence of subdural fluid, and incidence of hydrocephalus in patients between the Cisternostomy group and the non-Cisternostomy surgery group. we also analyzed the clinical outcome indicators like GCS at discharge,6 month GOS-E and GOS-E ≥ 5 in two groups.Additionaly, the preoperative GCS score, decompressive craniectomy rate, age, and gender of patients with PTH and non hydrocephalus were compared. Further multifactorial logistic binary regression was performed to explore the risk factors for PTH. Finally, we conducted ROC curve analysis on the statistically significant results from the univariate regression analysis to predict the ability of each risk factor to cause PTH. RESULTS: The Cisternostomy group had a lower bone flap removal rate(48.39% and 72.73%, p = 0.024)., higer GCS at discharge(11.13 ± 2.42 and 8.93 ± 3.31,p = 0.000) and better 6 month GOS-E(4.55 ± 1.26 and 3.95 ± 1.18, p = 0.029)than the non-Cisternostomy group However, there was no statistical difference in the incidence of hydrocephalus between the two groups (25.81% and 30.91%, p = 0.617). Moreover, between the hydrocephalus group and no hydrocephalus group,there were no significant differences in the incidence of gender, age, intracranial infection, and subdural fluid. While there were statistical differences in peroperative GCS score, Rotterdam CT score, decompressive craniectomy rate, intracranial infection rate, and the incidence of subdural fluid in the two groups, there was no statistical difference in the percentage of cerebral cisterns open drainage between the hydrocephalus group and no hydrocephalus group (32.00% and 37.70%, p = 0.617). Multifactorial logistic binary regression analysis results revealed that the independent risk factors for PTH were intracranial infection (OR = 18.460, 95% CI: 1.864-182.847 p = 0.013) and subdural effusion (OR = 10.557, 95% CI: 2.425-35.275 p = 0.001). Further, The ROC curve analysis showed that peroperative GCS score, Rotterdam CT score and subdural effusion had good ACU(0.785,0.730,and 0.749), with high sensitivity and specificity to predict the occurrence of PTH. CONCLUSIONS: Cisternostomy may decrease morbidities associated with removal of the bone flap and improve the clinical outcome, despite it cannot reduce the disability rate in TBI patients.Intracranial infection and subdural fluid were found to be the independent risk factors for PTH in patients with TBI,and the peroperative GCS score, Rotterdam CT score and subdural effusion had higher sensitivity and specificity to predict the occurrence of PTH. And more importantly, no correlation was observed between open drainage of the cerebral cisterns and the occurrence of PTH, indicating that Cisternostomy may not be beneficial in preventing the occurrence of PTH in patients with moderate and severe TBI.


Subject(s)
Brain Injuries, Traumatic , Hydrocephalus , Humans , Male , Female , Brain Injuries, Traumatic/surgery , Brain Injuries, Traumatic/complications , Middle Aged , Adult , Hydrocephalus/surgery , Hydrocephalus/etiology , Hydrocephalus/prevention & control , Retrospective Studies , Decompressive Craniectomy/methods , Aged , Postoperative Complications/prevention & control , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Young Adult , Glasgow Coma Scale
5.
BMC Plant Biol ; 23(1): 214, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095428

ABSTRACT

BACKGROUND: BRASSINAZOLE-RESISTANT (BZR) is a class of specific transcription factor (TFs) involved in brassinosteroid (BR) signal transduction. The regulatory mechanism of target genes mediated by BZR has become one of the key research areas in plant BR signaling networks. However, the functions of the BZR gene family in cucumber have not been well characterized. RESULTS: In this study, six CsBZR gene family members were identified by analyzing the conserved domain of BES1 N in the cucumber genome. The size of CsBZR proteins ranges from 311 to 698 amino acids and are mostly located in the nucleus. Phylogenetic analysis divided CsBZR genes into three subgroups. The gene structure and conserved domain showed that the BZR genes domain in the same group was conserved. Cis-acting element analysis showed that cucumber BZR genes were mainly involved in hormone response, stress response and growth regulation. The qRT-PCR results also confirmed CsBZR response to hormones and abiotic stress. CONCLUSION: Collectively, the CsBZR gene is involved in regulating cucumber growth and development, particularly in hormone response and response to abiotic stress. These findings provide valuable information for understanding the structure and expression patterns of BZR genes.


Subject(s)
Cucumis sativus , Cucumis sativus/genetics , Genome, Plant , Phylogeny , Brassinosteroids/metabolism , Multigene Family , Hormones/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics
6.
Small ; 19(21): e2207991, 2023 May.
Article in English | MEDLINE | ID: mdl-36843282

ABSTRACT

Single-atom Fe-N-C (Fe1 -N-C) materials represent the benchmarked electrocatalysts for oxygen reduction reaction (ORR). However, single Fe atoms in the carbon skeletons cannot be fully utilized due to the mass transfer limitation, severely restricting their intrinsic ORR properties. Herein, a self-sacrificing template strategy is developed to fabricate ultrathin nanosheets assembled Fe1 -N-C hollow microspheres (denoted as Fe1 /N-HCMs) by rational carbonization of Fe3+ chelating polydopamine coated melamine cyanuric acid complex. The shell of Fe1 /N-HCMs is constructed by ultrathin nanosheets with thickness of only 2 nm, which is supposed to be an ideal platform to isolate and fully expose single metal atoms. Benefiting from unique hierarchical hollow architecture with highly open porous structure, 2 nm-thick ultrathin nanosheet subunits and abundant Fe-N4 O1 active sites revealed by X-ray absorption fine structure analysis, the Fe1 /N-HCMs exhibit high ORR performance with a positive half-wave potential of 0.88 V versus the reversible hydrogen electrode and robust stability. When served as air-cathode catalysts with ultralow loading mass of 0.25 mg cm-2 , Fe1 /N-HCMs based Zn-air batteries present a maximum power density of 187 mW cm-2 and discharge specific capacity of 806 mA h gZn -1 in primary Zn-air batteries, all exceeding those of commercial Pt/C.

7.
Small ; 19(37): e2301715, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37144443

ABSTRACT

Electrocatalysts based on Fe and other transition metals are regarded as most promising candidates for accelerating the oxygen evolution reaction (OER), whereas whether Fe is the catalytic active site for OER is still under debate. Here, unary Fe- and binary FeNi- based catalysts, FeOOH and FeNi(OH)x , are produced by self-reconstruction. The former is a dual-phased FeOOH, possessing abundant oxygen vacancies (VO ) and mixed-valence states, delivering the highest OER performance among all the unary iron oxides- and hydroxides- based powder catalysts reported to date, supporting Fe can be catalytically active for OER. As to binary catalyst, FeNi(OH)x is fabricated featuring 1) an equal molar content of Fe and Ni and 2) rich VO , both of which are found essential to enable abundant stabilized reactive centers (FeOOHNi) for high OER performance. Fe is found to be oxidized to 3.5+ during the *OOH process, thus, Fe is identified to be the active site in this new layered double hydroxide (LDH) structure with Fe:Ni = 1:1. Furthermore, the maximized catalytic centers enable FeNi(OH)x @NF (nickel foam) as low-cost bifunctional electrodes for overall water-splitting, delivering excellent performance comparable to commercial electrodes based on precious metals, which overcomes a major obstacle to the commercialization of bifunctional electrodes: prohibitive cost.

8.
Neurosurg Rev ; 46(1): 196, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37555964

ABSTRACT

Controversies persist regarding the benefits of surgery in elderly patients with meningiomas. The objective of this study was to develop decision-making scale to clarify the necessity for surgical intervention and provide clinical consultation for this special population. This retrospective cohort study was conducted at a single center and included 478 elderly patients (≥ 65 years) who underwent meningioma resection. Follow-up was recorded to determine recurrence and mortality rates. Univariate and multivariate analyses were performed to identify significantly preoperative factors, and prognostic prediction models were developed with determined cutoff values for the prognostic index (PI). Model discrimination was evaluated using Kaplan-Meier curves based on the PI stratification, which categorized patients into low- and high-risk groups. A decision-making tree was then established based on the risk stratification from both models. Among all patients analyzed (n = 478), 62 (13.0%) experience recurrence and 47 (10.0%) died during the follow-up period. Significantly preoperative parameters from both models included advanced age, aCCI, recurrent tumor, motor cortex involvement, male sex, peritumoral edema, and tumor located in skull base (all P < 0.05). According to the classification of PI from the two models, the decision-making tree provided four recommendations that can be used for clinical consultation. Surgery is not recommended for patients assigned to the high-risk group in both models. Patients who meet the low-risk criteria in any model may undergo surgical intervention, but the final decision should depend on the surgeon's expertise.


Subject(s)
Meningeal Neoplasms , Meningioma , Aged , Humans , Cohort Studies , Meningeal Neoplasms/surgery , Meningioma/surgery , Neoplasm Recurrence, Local/surgery , Retrospective Studies , Treatment Outcome
9.
Chem Biodivers ; 20(1): e202200961, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36522286

ABSTRACT

Cinobufagin (CB), with its steroidal nucleus structure, is one of the major, biologically active components of Chan Su. Recent studies have shown that CB exerts inhibitory effects against numerous cancer cells. However, the effects of CB regarding the metastasis of non-small cell lung cancer (NSCLC) and the involved mechanisms need to be further studied. The purpose of the present study aimed to report the inhibitory function of CB against proliferation and metastasis of H1299 cells. CB inhibited proliferation of H1299 lung cancer cells with an IC50 value of 0.035±0.008 µM according to the results of MTT assays. Antiproliferative activity was also observed in colony forming cell assays. In addition, 5-ethynyl-2'-deoxyuridine (EdU) retention assays revealed that CB significantly inhibited the rate of DNA synthesis in H1299 cells. Moreover, results of the scratch wound healing assays and transwell migration assays displayed that CB exhibited significant inhibition against migration and invasion of H1299 cells. Furthermore, CB could concentration-dependently reduce the expression of integrin α2, ß-catenin, FAK, Src, c-Myc, and STAT3 in H1299 cells. These western blotting results indicated that CB might target integrin α2, ß-catenin, FAK and Src to suppress invasion and migration of NSCLC, which was consistent with the network pharmacology analysis results. Collectively, findings of the current study suggest that CB possesses promising activity against NSCLC growth and metastasis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , beta Catenin , Integrin alpha2 , Cell Line, Tumor , Cell Proliferation , Cell Movement
10.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047010

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) are promising for large-scale energy storage systems due to their high safety, large capacity, cost-effectiveness, and environmental friendliness. However, their commercialization is currently hindered by several challenging issues, including cathode degradation and zinc dendrite growth. Recently, metal-organic frameworks (MOFs) and their derivatives have gained significant attention and are widely used in AZIBs due to their highly porous structures, large specific surface area, and ability to design frameworks for Zn2+ shuttle. Based on preceding contributions, this review aims to generalize two design principles for MOF-based materials in AZIBs: cathode preparation and anode protection. For cathode preparation, we mainly introduce novel MOF-based electrode materials such as pure MOFs, porous carbon materials, metal oxides, and their compounds, focusing on the analysis of the specific capacity of AZIBs. For anode protection, we systematically analyze MOF-based materials used as 3D Zn architecture, solid electrolyte interfaces, novel separators, and solid-state electrolytes, highlighting the improvement in the cyclic stability of Zn anodes. Finally, we propose the future development of MOF-based materials in AZIBs. Our work can give some clues for raising the practical application level of aqueous ZIBs.


Subject(s)
Metal-Organic Frameworks , Zinc , Ions , Oxides , Carbon
11.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108434

ABSTRACT

Low-light intensity affects plant growth and development and, finally, causes a decrease in yield and quality. There is a need for improved cropping strategies to solve the problem. We previously demonstrated that moderate ammonium:nitrate ratio (NH4+:NO3-) mitigated the adverse effect caused by low-light stress, although the mechanism behind this alleviation is unclear. The hypothesis that the synthesis of nitric oxide (NO) induced by moderate NH4+:NO3- (10:90) involved in regulating photosynthesis and root architecture of Brassica pekinesis subjected to low-light intensity was proposed. To prove the hypothesis, a number of hydroponic experiments were conducted. The results showed that in plants exposed to low-light intensity, the exogenous donors NO (SNP) and NH4+:NO3- (N, 10:90) treatments significantly increased leaf area, growth range, and root fresh weight compared with nitrate treatment. However, the application of hemoglobin (Hb, NO scavenger), N-nitro-l-arginine methyl ester (L-NAME, NOS inhibitor), and sodium azide (NaN3, NR inhibitor) in N solution remarkably decreased the leaf area, canopy spread, the biomass of shoot and root, the surface area, and volume and tips of the root. The application of N solution and exogenous SNP significantly enhanced Pn (Net photosynthetic rate) and rETR (relative electron transport rates) compared with solo nitrate. While all these effects of N and SNP on photosynthesis, such as Pn, Fv/Fm (maximum quantum yield of PSII), Y(II) (actual photosynthetic efficiency), qP (photochemical quenching), and rETR were reversed when the application of Hb, L-NAME, and NaN3 in N solution. The results also showed that the N and SNP treatments were more conducive to maintaining cell morphology, chloroplast structure, and a higher degree of grana stacking of low-light treated plants. Moreover, the application of N significantly increased the NOS and NR activities, and the NO levels in the leaves and roots of mini Chinese cabbage seedlings treated with N were significantly higher than those in nitrate-treated plants. In conclusion, the results of this study showed that NO synthesis induced by the appropriate ammonia-nitrate ratio (NH4+:NO3- = 10:90) was involved in the regulation of photosynthesis and root structure of Brassica pekinesis under low-light stress, effectively alleviating low-light stress and contributing to the growth of mini Chinese cabbage under low-light stress.


Subject(s)
Ammonium Compounds , Brassica , Nitrates/pharmacology , Nitric Oxide/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Photosynthesis , Seedlings , Ammonium Compounds/pharmacology , Plant Leaves , Plant Roots , Nitrogen/pharmacology
12.
Int J Mol Sci ; 24(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958744

ABSTRACT

Drought stress restricts vegetable growth, and abscisic acid plays an important role in its regulation. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) is a key enzyme in regulating ABA signal transduction in plants, and it plays a significant role in response to multiple abiotic stresses. Our previous experiments demonstrated that the SnRK2.11 gene exhibits a significant response to drought stress in cucumbers. To further investigate the function of SnRK2.11 under drought stress, we used VIGS (virus-induced gene silencing) technology to silence this gene and conducted RNA-seq analysis. The SnRK2.11-silencing plants displayed increased sensitivity to drought stress, which led to stunted growth and increased wilting speed. Moreover, various physiological parameters related to photosynthesis, chlorophyll fluorescence, leaf water content, chlorophyll content, and antioxidant enzyme activity were significantly reduced. The intercellular CO2 concentration, non-photochemical burst coefficient, and malondialdehyde and proline content were significantly increased. RNA-seq analysis identified 534 differentially expressed genes (DEGs): 311 were upregulated and 223 were downregulated. GO functional annotation analysis indicated that these DEGs were significantly enriched for molecular functions related to host cells, enzyme activity, and stress responses. KEGG pathway enrichment analysis further revealed that these DEGs were significantly enriched in phytohormone signalling, MAPK signalling, and carotenoid biosynthesis pathways, all of which were associated with abscisic acid. This study used VIGS technology and transcriptome data to investigate the role of CsSnRK2.11 under drought stress, offering valuable insights into the mechanism of the SnRK2 gene in enhancing drought resistance in cucumbers.


Subject(s)
Cucumis sativus , Drought Resistance , Cucumis sativus/genetics , Cucumis sativus/metabolism , Plant Proteins/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Droughts , Stress, Physiological/genetics , Chlorophyll/metabolism , Antioxidants/metabolism , Gene Expression Regulation, Plant
13.
J Environ Manage ; 341: 117941, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37178544

ABSTRACT

Treatment of the planting and breeding waste is becoming a big issue due to their significant quantities. Composting could be an effective alternative for planting and breeding waste management which could be used as fertilizer. The purpose of this research was to evaluate the effect of planting and breeding waste on baby cabbage growth and soil properties, to establish a suitable agricultural cycle model for semi-arid area in central Gansu Province. The planting and breeding wastes [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR) and corn straw (CS)] were used as the raw materials in this study, which were designed 8 compost formulas for composting fermentation. With no fertilization (CK1) and local commercial organic fertilizer (CK2) as the control, the comprehensive evaluation of planting and breeding waste composts on the yield of baby cabbage, fertilizer utilization rate, soil physical and chemical properties and microbial diversity were studied to select the best compost formula suitable for the growth of baby cabbage. And the material flow and energy flow analysis of the circulation model established by the formula were carried out. The results showed that the biological yield and economic yield of baby cabbage, absorption and recycling utilization of total phosphorus (TP) and total potassium (TK) reached the maximum under the formula of SM: TV: MR: CS = 6:2:1:1. Compared with CK2, the formula of SM: TV: MR: CS = 6:2:1:1 significantly increased the richness of soil bacteria and beneficial bacteria Proteobacteria, and decreased the relative abundance of harmful bacteria Olpidiomycota. Principal component analysis showed the comprehensive score of SM: TV: MR: CS = 6:2:1:1 was the best organic compost formula suitable for producing high-quality and high-yield baby cabbage and improving soil environment. Therefore, this formula can be used as a reference organic fertilizer formula for field cultivation of baby cabbage.


Subject(s)
Brassica , Composting , Cattle , Female , Animals , Sheep , Soil/chemistry , Manure , Fertilizers , Plant Breeding , Nutrients
14.
BMC Genomics ; 23(1): 563, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933381

ABSTRACT

BACKGROUND: Type 2C protein phosphatase (PP2C) is a negative regulator of ABA signaling pathway, which plays important roles in stress signal transduction in plants. However, little research on the PP2C genes family of cucumber (Cucumis sativus L.), as an important economic vegetable, has been conducted. RESULTS: This study conducted a genome-wide investigation of the CsPP2C gene family. Through bioinformatics analysis, 56 CsPP2C genes were identified in cucumber. Based on phylogenetic analysis, the PP2C genes of cucumber and Arabidopsis were divided into 13 groups. Gene structure and conserved motif analysis showed that CsPP2C genes in the same group had similar gene structure and conserved domains. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the cucumber PP2C genes family. In addition, the expression of CsPP2Cs under different abiotic treatments was analyzed by qRT-PCR. The results reveal that CsPP2C family genes showed different expression patterns under ABA, drought, salt, and cold treatment, and that CsPP2C3, 11-17, 23, 45, 54 and 55 responded significantly to the four stresses. By predicting the cis-elements in the promoter, we found that all CsPP2C members contained ABA response elements and drought response elements. Additionally, the expression patterns of CsPP2C genes were specific in different tissues. CONCLUSIONS: The results of this study provide a reference for the genome-wide identification of the PP2C gene family in other species and provide a basis for future studies on the function of PP2C genes in cucumber.


Subject(s)
Arabidopsis , Cucumis sativus , Arabidopsis/genetics , Arabidopsis/metabolism , Cucumis sativus/genetics , Cucumis sativus/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
15.
Mol Biol Evol ; 38(6): 2582-2596, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33616658

ABSTRACT

Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.


Subject(s)
Evolution, Molecular , Genes, MHC Class I , Killer Cells, Natural/physiology , Receptors, KIR/genetics , China , HLA-A Antigens/metabolism , HLA-B Antigens/metabolism , Humans , Receptors, KIR/metabolism
16.
Biochem Biophys Res Commun ; 586: 34-41, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34826698

ABSTRACT

Molecular biomarkers play an important guidance role in the diagnosis and treatment of glioma. It has been found that TRAM2 (translocation associated membrane protein 2) drives human cancers development. Here we report that TRAM2 activity is required for malignancy properties of glioma. In this study, we demonstrated that TRAM2 is over-expressed in glioma and cell lines, particularly in the mesenchymal subtype, and glioma patients with high expression of TRAM2 is associated with poorer survival. Silencing of TRAM2 significantly suppresses glioma cell proliferation, invasion, migration and EMT in vitro, and inhibits tumorigenicity of glioma cell in vivo. We further identify that TRAM2 is positively associated with activation of the PI3K/AKT/mTOR signaling in glioma. 740Y-P, a PI3K activator, reversed the effects of TRAM2 silencing on glioma cell proliferation, invasion, migration and EMT process. Taken together, these findings establish that TRAM2/PI3K/AKT/mTOR signaling drives malignancy properties of glioma and indicate that TRAM2 may act as a potential therapeutic target for glioma.


Subject(s)
Brain Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Glioma/genetics , Membrane Glycoproteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/genetics , Animals , Apoptosis/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Glioma/mortality , Glioma/pathology , Humans , Membrane Glycoproteins/metabolism , Mice , Mice, Nude , Neoplasm Grading , Neuroglia/metabolism , Neuroglia/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Survival Analysis , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
17.
Small ; 18(49): e2205033, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36285776

ABSTRACT

Transition metal-nitrogen-carbon (TM-N-C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF-L nanorods as self-sacrifice templates, a ZIF-phase-transition strategy is developed to fabricate ZIF-8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe-N-C hollow nanorods (denoted as Fe1 -N-C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X-ray absorption fine structure analysis confirm abundant Fe-N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe-N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1 -N-C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half-wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK ) of Fe1 -N-C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm-2 , 21 times higher than that of Pt/C. The assembled Zn-air battery using Fe1 -N-C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm-2 .

18.
Neurosurg Rev ; 45(4): 2845-2855, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35508819

ABSTRACT

Although every glioma patient varies in tumor size, location, histological grade and molecular biomarkers, non-tumoral morphological abnormalities are commonly detected by a statistical comparison among patient groups, missing the information of individual morphological alterations. In this study, we introduced an individual-level structural abnormality detection method for glioma patients and proposed several abnormality indexes to depict individual atrophy patterns. Forty-five patients with a glioma in the frontal lobe and fifty-one age-matched healthy controls participated in the study. Individual structural abnormality maps (SAM) were generated using patients' preoperative T1 images, by calculating the degree of deviation of voxel volume in each patient with the normative model built from healthy controls. Based on SAM, a series of individual abnormality indexes were computed, and their relationship with glioma characteristics was explored. The results demonstrated that glioma patients showed unique non-tumoral atrophy patterns with overlapping atrophy regions mainly located at hippocampus, parahippocampus, amygdala, insula, middle temporal gyrus and inferior temporal gyrus, which are closely related to the human cognitive functions. The abnormality indexes were associated with several molecular biomarkers including isocitrate dehydrogenase (IDH) mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutation. Our study provides an effective way to access the individual-level non-tumoral structural abnormalities in glioma patients, which has the potential to significantly improve individualized precision medicine.


Subject(s)
Brain Neoplasms , Glioma , Telomerase , Atrophy , Brain Neoplasms/pathology , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Telomerase/genetics
19.
Neurosurg Rev ; 45(5): 3405-3415, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36063221

ABSTRACT

Meningioangiomatosis (MA) is a disease that is extremely rarely reported. Sporadic MA is occasionally combined with meningioma or other lesions (identified as non-pure MA). This retrospective study investigated the difference between pure MA and non-pure MA by exploring clinical manifestations, histopathology characteristics, and outcomes of MA after surgery. We reviewed the medical records of 36 histopathologically confirmed MA patients (18 pure MA and 18 non-pure MA) who received surgery at our institution between 2012 and 2021. We compared differences in demographic, clinical, imaging, pathological features, and surgical outcomes between pure MA and non-pure MA through descriptive statistics. Compared to non-pure MA, pure MA presented with a more prominent male predilection (5:1 vs. 1.57:1, P = 0.264), a higher seizure incidence (83.3% vs 50.0%, P = 0.038), a more seizure type of GTCS (14/15 vs 5/9, P = 0.047), a less prominent enhancement on MRI (27.8% vs 88.9%, P < 0.001) and a preference of temporal and frontal lobe (100% vs 44.4%, P < 0.001). The differences in clinical characteristics between pure MA and non-pure MA demonstrate their disparate biological natures. Pure MA seems to be a non-neoplastic lesion, while non-pure MA is commonly combined with meningioma, which is a neoplastic lesion. A correct differential diagnosis can be achieved via a triad of the type of seizure, the location of lesion and the radiological presentation. MA is curable and the prognosis is excellent as most patients are free of seizure and recurrence after surgical treatment.


Subject(s)
Central Nervous System Vascular Malformations , Meningeal Neoplasms , Meningioma , China , Humans , Magnetic Resonance Imaging , Male , Meningeal Neoplasms/diagnosis , Meningeal Neoplasms/pathology , Meningeal Neoplasms/surgery , Meningioma/diagnosis , Meningioma/pathology , Meningioma/surgery , Prognosis , Retrospective Studies , Seizures/etiology
20.
Int J Mol Sci ; 23(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36430578

ABSTRACT

Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin ß (IMPß) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPß genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.


Subject(s)
Karyopherins , Plant Development , Humans , alpha Karyopherins/genetics , beta Karyopherins/metabolism , Karyopherins/genetics , Plant Development/genetics , Plant Growth Regulators , Zea mays/genetics , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL