Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Publication year range
1.
Plant Cell ; 36(3): 497-509, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38124350

ABSTRACT

Protein O-glycosylation is a nutrient signaling mechanism that plays an essential role in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) posttranslationally modify hundreds of intracellular proteins with O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation, and loss of both SPY and SEC causes embryo lethality in Arabidopsis (Arabidopsis thaliana). Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a SPY O-fucosyltransferase inhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and elicited phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defective sugar-dependent growth. In contrast, SOFTI did not visibly affect the spy mutant. Similarly, SOFTI inhibited the sugar-dependent growth of tomato (Solanum lycopersicum) seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor that can be used as a chemical tool for functional studies of O-fucosylation and potentially for agricultural management.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Repressor Proteins/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Fucose/metabolism , Seedlings/metabolism , Sugars/metabolism
2.
J Biol Chem ; 300(8): 107563, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002680

ABSTRACT

CD8+ T cell immunity, mediated by human leukocyte antigen (HLA) and T cell receptor (TCR), plays a critical role in conferring immune memory and protection against viral pathogens. The emergence of SARS-CoV-2 variants poses a serious challenge to the efficacy of current vaccines. Whereas numerous SARS-CoV-2 mutations associated with immune escape from CD8+ T cells have been documented, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored. Here, we studied an HLA-A24-restricted NYN epitope (Spike448-456) that elicits broad CD8+ T cell responses in COVID-19 patients characterized by a common TCR repertoire. Four natural mutations, N450K, L452Q, L452R, and Y453F, arose within the NYN epitope and have been transmitted in certain viral lineages. Our findings indicate that these mutations have minimal impact on the epitope's presentation by cell surface HLA, yet they diminish the affinities of their respective peptide-HLA complexes (pHLAs) for NYN peptide-specific TCRs, particularly L452R and Y453F. Furthermore, we determined the crystal structure of HLA-A24 loaded with the Y453F peptide (NYNYLFRLF), and subsequently a ternary structure of the public TCRNYN-I complexed to the original NYN-HLA-A24 (NYNYLYRLF). Our structural analysis unveiled that despite competent presentation by HLA, the mutant Y453F peptide failed to establish a stable TCR-pHLA ternary complex due to reduced peptide: TCR contacts. This study supports the idea that cellular immunity restriction is an important driving force behind viral evolution.

3.
BMC Plant Biol ; 24(1): 567, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880885

ABSTRACT

Cadmium (Cd) is a nonessential element in plants and has adverse effects on the growth and development of plants. However, the molecular mechanisms of Cd phytotoxicity, tolerance and accumulation in hyperaccumulators Solanum nigrum L. has not been well understood. Here, physiology, transcriptome, and metabolome analyses were conducted to investigate the influence on the S. nigrum under 0, 25, 50, 75 and 100 µM Cd concentrations for 7 days. Pot experiments demonstrated that compared with the control, Cd treatment significantly inhibited the biomass, promoted the Cd accumulation and translocation, and disturbed the balance of mineral nutrient metabolism in S. nigrum, particularly at 100 µM Cd level. Moreover, the photosynthetic pigments contents were severely decreased, while the content of total protein, proline, malondialdehyde (MDA), H2O2, and antioxidant enzyme activities generally increased first and then slightly declined with increasing Cd concentrations, in both leaves and roots. Furthermore, combined with the previous transcriptomic data, numerous crucial coding-genes related to mineral nutrients and Cd ion transport, and the antioxidant enzymes biosynthesis were identified, and their expression pattern was regulated under different Cd stress. Simultaneously, metabolomic analyses revealed that Cd treatment significantly changed the expression level of many metabolites related to amino acid, lipid, carbohydrate, and nucleotide metabolism. Metabolic pathway analysis also showed that S. nigrum roots activated some differentially expressed metabolites (DEMs) involved in energy metabolism, which may enhance the energy supply for detoxification. Importantly, central common metabolism pathways of DEGs and DEMs, including the "TCA cycle", "glutathione metabolic pathway" and "glyoxylate and dicarboxylate metabolism" were screened using conjoint transcriptomics and metabolomics analysis. Our results provide some novel evidences on the physiological and molecular mechanisms of Cd tolerance in hyperaccumulator S. nigrum plants.


Subject(s)
Cadmium , Metabolome , Solanum nigrum , Transcriptome , Solanum nigrum/genetics , Solanum nigrum/metabolism , Solanum nigrum/drug effects , Cadmium/toxicity , Cadmium/metabolism , Transcriptome/drug effects , Metabolome/drug effects , Metabolomics , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics
4.
Cardiovasc Diabetol ; 23(1): 73, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38365751

ABSTRACT

BACKGROUND: Stress hyperglycemia ratio (SHR) has recently been recognized as a novel biomarker that accurately reflects acute hyperglycemia status and is associated with poor prognosis of heart failure. We evaluated the relationship between SHR and clinical outcomes in patients with severe aortic stenosis receiving transcatheter aortic valve replacement (TAVR). METHODS: There were 582 patients with severe native aortic stenosis who underwent TAVR consecutively enrolled in the study. The formula used to determine SHR was as follows: admission blood glucose (mmol/L)/(1.59×HbA1c[%]-2.59). The primary endpoint was defined as all-cause mortality, while secondary endpoints included a composite of cardiovascular mortality or readmission for heart failure, and major adverse cardiovascular events (MACE) including cardiovascular mortality, non-fatal myocardial infarction, and non-fatal stroke. Multivariable Cox regression and restricted cubic spline analysis were employed to assess the relationship between SHR and endpoints, with hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: During a median follow-up of 3.9 years, a total of 130 cases (22.3%) of all-cause mortality were recorded. Results from the restricted cubic spline analysis indicated a linear association between SHR and all endpoints (p for non-linearity > 0.05), even after adjustment for other confounding factors. Per 0.1 unit increase in SHR was associated with a 12% (adjusted HR: 1.12, 95% CI: 1.04-1.21) higher incidence of the primary endpoint, a 12% (adjusted HR: 1.12, 95% CI: 1.02-1.22) higher incidence of cardiovascular mortality or readmission for heart failure, and a 12% (adjusted HR: 1.12, 95% CI: 1.01-1.23) higher incidence of MACE. Subgroup analysis revealed that SHR had a significant interaction with diabetes mellitus with regard to the risk of all-cause mortality (p for interaction: 0.042). Kaplan-Meier survival analysis showed that there were significant differences in the incidence of all endpoints between the two groups with 0.944 as the optimal binary cutoff point of SHR (all log-rank test: p < 0.05). CONCLUSIONS: Our study indicates linear relationships of SHR with the risk of all-cause mortality, cardiovascular mortality or readmission for heart failure, and MACE in patients with severe aortic stenosis receiving TAVR after a median follow-up of 3.9 years. Patients with an SHR exceeding 0.944 had a poorer prognosis compared to those with lower SHR values.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Hyperglycemia , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Prognosis , Aortic Valve/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Prospective Studies , Treatment Outcome , Hyperglycemia/diagnosis , Risk Factors
5.
Microb Pathog ; 195: 106751, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880314

ABSTRACT

Short-beak and dwarfism syndrome (SBDS) is a new disease caused by a genetic variant of goose parvovirus in ducks that results in enormous economic losses for the waterfowl industry. Currently, there is no commercial vaccine for this disease, so it is urgent to develop a safer and more effective vaccine to prevent this disease. In this study, we optimized the production conditions to enhance the expression of the recombinant VP2 protein and identified the optimal conditions for subsequent large-scale expression. Furthermore, the protein underwent purification via nickel column affinity chromatography, followed by concentration using ultrafiltration tube. Subsequently, it was observed by transmission electron microscopy (TEM) that the NGPV recombinant VP2 protein assembled into virus-like particles (VLPs) resembling those of the original virus. Finally, the ISA 78-VG adjuvant was mixed with the NGPV-VP2 VLPs to be prepared as a subunit vaccine. Furthermore, both agar gel precipitation test (AGP) and serum neutralization test demonstrated that NGPV VLP subunit vaccine could induce the increase of NGPV antibody in breeding ducks. The ducklings were also challenged with the NGPV, and the results showed that the maternal antibody level could provide sufficient protection to the ducklings. These results indicated that the use of the NGPV VLP subunit vaccine based on the baculovirus expression system could facilitate the large-scale development of a reliable vaccine in the future.

6.
Microb Pathog ; 193: 106786, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971506

ABSTRACT

To better understand the interaction between attenuated vaccines and host antiviral responses, we used bioinformatics and public transcriptomics data to analyze the immune response mechanisms of host cells after canine distemper virus (CDV) infection in Vero cells and screened for potential key effector factors. In this study, CDV-QN-1 infect with Vero cells at an MOI of 0.5, and total RNA was extracted from the cells 24 h later and reverse transcribed into cDNA. Transcriptome high-throughput sequencing perform using Illumina. The results showed that 438 differentially expressed genes were screened, of which 409 were significantly up-regulated and 29 were significantly down-regulated. Eight differentially expressed genes were randomly selected for RT-qPCR validation, and the change trend was consistent with the transcriptomics data. GO and KEGG analysis of differentially expressed genes revealed that most of the differentially expressed genes in CDV-QN-1 infection in the early stage were related to immune response and antiviral activity. The enriched signaling pathways mainly included the interaction between cytokines and cytokine receptors, the NF-kappa B signaling pathway, the Toll-like receptor signaling pathway, and the NOD-like receptor signaling pathway. This study provides a foundation for further exploring the pathogenesis of CDV and the innate immune response of host cells in the early stage of infection.


Subject(s)
Distemper Virus, Canine , Gene Expression Profiling , Vaccines, Attenuated , Animals , Vero Cells , Chlorocebus aethiops , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Distemper Virus, Canine/genetics , Distemper Virus, Canine/immunology , Transcriptome , Signal Transduction , Computational Biology , High-Throughput Nucleotide Sequencing , Viral Vaccines/immunology , Viral Vaccines/genetics , Cytokines/metabolism , Cytokines/genetics , Distemper/virology , Distemper/genetics , Distemper/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , NF-kappa B/metabolism , NF-kappa B/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
7.
Microb Pathog ; 186: 106503, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142905

ABSTRACT

Porcine epidemic diarrhea (PED), caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly contagious enteric disease with a high mortality rate in suckling piglets. Identification of proteins associated with PEDV infection may provide insights into the pathogenesis of this viral disease. In this study, we employed tandem mass tag (TMT) quantitative protein analysis to investigate proteomic changes in PK15 cells following PEDV infection, and differential protein expression profiles were obtained at 0 h, 24 h, and 48 h post-infection. Overall, a total of 6330 proteins were identified. Applying criteria for fold change >1.5 < 0.67 and p-values <0.05 resulted in the identification of 59 up-regulated proteins and 103 down-regulated proteins that exhibited significant alterations in the H24 group compared to the H0 group. The H48 group demonstrated significant upregulation of 110 proteins and downregulation of 144 proteins compared to the H0 group; additionally, there were also 10 upregulated and 30 downregulated proteins in the H48 group when compared to the H24 group. These differentially expressed proteins (DEPs) were involved in immune response regulation, signal transduction, lipid transport and metabolism processes as well as cell apoptosis pathways. Based on these DEPs, we propose that PEDV may disrupt signal transduction pathways along with lipid transport and metabolism processes leading to maximal viral replication, it may also trigger inflammatory cascades accordingly. These findings could provide valuable information for elucidating specific pathogenesis related to PEDV infection while contributing towards developing new antiviral strategies.


Subject(s)
Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/physiology , Proteomics/methods , Proteins/metabolism , Signal Transduction , Lipids
8.
Theor Appl Genet ; 137(7): 150, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847846

ABSTRACT

Grain size is a crucial agronomic trait that determines grain weight and final yield. Although several genes have been reported to regulate grain size in rice (Oryza sativa), the function of Wall-Associated Kinase family genes affecting grain size is still largely unknown. In this study, we identified GRAIN WEIGHT AND NUMBER 1 (GWN1) using map-based cloning. GWN1 encodes the OsWAK74 protein kinase, which is conserved in plants. GWN1 negatively regulates grain length and weight by regulating cell proliferation in spikelet hulls. We also found that GWN1 negatively influenced grain number by influencing secondary branch numbers and finally increased plant grain yield. The GWN1 gene was highly expressed in inflorescences and its encoded protein is located at the cell membrane and cell wall. Moreover, we identified three haplotypes of GWN1 in the germplasm. GWN1hap1 showing longer grain, has not been widely utilized in modern rice varieties. In summary, GWN1 played a very important role in regulating grain length, weight and number, thereby exhibiting application potential in molecular breeding for longer grain and higher yield.


Subject(s)
Edible Grain , Oryza , Plant Proteins , Seeds , Oryza/genetics , Oryza/growth & development , Oryza/enzymology , Edible Grain/genetics , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/growth & development , Seeds/genetics , Phenotype , Gene Expression Regulation, Plant , Cloning, Molecular , Chromosome Mapping , Haplotypes , Cell Wall/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Genes, Plant
9.
Langmuir ; 40(32): 17001-17008, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39073323

ABSTRACT

The solid-solid insulation interface structure is a typical interface in extra-high-voltage power equipment, in which the multilayer epoxy resin material is a key component in the insulation structure of the power equipment, and the study of its interface characteristics is the most important. In this paper, epoxy-epoxy cross-linking interface specimens were prepared through experiments, and the degree of cross-linking between the interfaces was analyzed by changing the ratio of the curing agent and adding hydroxyl-terminated liquid nitrile rubber (HTBN) particles; it can be concluded that there exists a weak cross-linking reaction between the interfaces. The electrical tree measurement and alternating current (AC) breakdown test platform were set up, and three different cases of no interface, the electric field direction parallel to the interface, and the electric field direction perpendicular to the interface were tested, through which it was concluded that the existence of the interface inhibited the development of the electrical tree. For the three different cases of AC breakdown tested, it was concluded that the presence of an interface enhances the AC breakdown strength when the electric field direction is parallel to the interface and decreases the AC breakdown strength when the electric field direction is perpendicular to the interface through the interface, affecting the charge transport.

10.
Mol Cell Probes ; 77: 101973, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39025272

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.

11.
Environ Sci Technol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141343

ABSTRACT

Rapid urbanization and industrialization have resulted in diverse anthropogenic activities and emissions between urban and non-urban regions, leading to varying levels of exposure to air pollutants and associated health risks. However, endeavors to mitigate air pollution and health benefits have displayed considerable heterogeneity across different regions. Therefore, comprehending the changes in air pollutant concentrations and health impacts within an urbanization context is imperative for promoting environmental equity. This paper uses gross domestic product (GDP)- and population-weighted methods to distinguish anthropogenic emissions from urban and non-urban areas in China and quantified their contributions to fine particulate matter (PM2.5) using the Community Multiscale Air Quality (CMAQ) model in 2010 and 2019. Anthropogenic emissions from urban and non-urban (outside urban) regions decreased by 26 and 44% from 2010 to 2019, respectively, resulting in 31 and 28% reductions of PM2.5 in China. PM2.5-related premature mortality attributed to non-urban and urban anthropogenic emission decreases by 8%. Non-urban anthropogenic activities are the main contributor to PM2.5 (56% in 2010 and 2019) and its associated premature mortality (59%), which also predominantly affects non-urban premature mortality (37-42% in 2010-2019). Population changes increase the proportion of premature mortality in urban populations (7-19%) from 2010 to 2019. This study emphasizes the shift of affected populations due to urbanization and population changes.

12.
Environ Sci Technol ; 58(20): 8685-8695, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709795

ABSTRACT

Forecasting alterations in ambient air pollution and the consequent health implications is crucial for safeguarding public health, advancing environmental sustainability, informing economic decision making, and promoting appropriate policy and regulatory action. However, predicting such changes poses a substantial challenge, requiring accurate data, sophisticated modeling methodologies, and a meticulous evaluation of multiple drivers. In this study, we calculate premature deaths due to ambient fine particulate matter (PM2.5) exposure in India from the 2020s (2016-2020) to the 2100s (2095-2100) under four different socioeconomic and climate scenarios (SSPs) based on four CMIP6 models. PM2.5 concentrations decreased in all SSP scenarios except for SSP3-7.0, with the lowest concentration observed in SSP1-2.6. The results indicate an upward trend in the five-year average number of deaths across all scenarios, ranging from 1.01 million in the 2020s to 4.12-5.44 million in the 2100s. Further analysis revealed that the benefits of reducing PM2.5 concentrations under all scenarios are largely mitigated by population aging and growth. These findings underscore the importance of proactive measures and an integrated approach in India to improve atmospheric quality and reduce vulnerability to aging under changing climate conditions.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , India , Humans , Air Pollutants/analysis , Environmental Exposure , Climate
13.
Mol Breed ; 44(8): 50, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39070774

ABSTRACT

Cold stress is one of the main abiotic stresses that affects rice growth and production worldwide. Dissection of the genetic basis is important for genetic improvement of cold tolerance in rice. In this study, a new source of cold-tolerant accession from the Yunnan plateau, Lijiangxiaoheigu, was used as the donor parent and crossed with a cold-sensitive cultivar, Deyou17, to develop recombinant inbred lines (RILs) for quantitative trait locus (QTL) analysis for cold tolerance at the early seedling and booting stages in rice. In total, three QTLs for cold tolerance at the early seedling stage on chromosomes 2 and 7, and four QTLs at the booting stage on chromosomes 1, 3, 5, and 7, were identified. Haplotype and linear regression analyses showed that QTL pyramiding based on the additive effect of these favorable loci has good potential for cold tolerance breeding. Effect assessment in the RIL and BC3F3 populations demonstrated that qCTB1 had a stable effect on cold tolerance at the booting stage in the genetic segregation populations. Under different cold stress conditions, qCTB1 was fine-mapped to a 341-kb interval between markers M3 and M4. Through the combination of parental sequence comparison, candidate gene-based association analysis, and tissue and cold-induced expression analyses, eight important candidate genes for qCTB1 were identified. This study will provide genetic resources for molecular breeding and gene cloning to improve cold tolerance in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01488-3.

14.
Environ Res ; 250: 118505, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38387497

ABSTRACT

In arid regions, montane lakes are valuable water sources and play important ecological roles. However, recent human-induced inputs of organic pollutants are threatening lake ecology in such regions and becoming a matter of great concern. To investigate pollutant histories and sources, we measured polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in a dated sediment core that spans the last ∼350 years, from montane Lake Issyk-Kul (Kyrgyzstan, Central Asia). Results showed that organic pollutants were delivered to Lake Issyk-Kul in four stages and that their concentrations increased from Stage I (∼1670-1800 CE) to Stage IV (∼2000-2010 CE). Furthermore, we tracked the sources of sedimented PAHs using their ratios combined with n-alkanes data. Ratios of PAHs Ant/(Ant + Phe), Flt/(Flt + Pyr) and Bap/BghiP indicated that inputs during Stage II (∼1800-1970 CE) and Stage III (∼1970-2000 CE) came mainly from high-temperature combustion of coal and vehicle emissions. PAHs in Stage I and Stage IV, however, were mainly derived from low-temperature combustion and petrogenic sources. Diagnostic PAH ratios, combined with the natural n-alkane ratio (NAR<0) and unresolved complex mixtures (UCM), showed that the sources of PAHs in Stage I were mainly from erosion of bedrock and partly influenced by forest wildfires, different from the source during Stage IV, which was mainly from refined petroleum caused by accidental spills. Our assessment of the contamination history of the lake indicates that toxicity risk to the waterbody from sediment PAHs is low, but recent discharges arising from traffic deserve attention.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Lakes/chemistry , Geologic Sediments/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Kyrgyzstan , Alkanes/analysis
15.
BMC Vet Res ; 20(1): 336, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080763

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets, which has brought huge economic losses to the pork industry worldwide since its first discovery in the early 1970s in Europe. Passive immunization with neutralizing antibodies against PEDV is an effective prevention measure. To date, there are no effective therapeutic drugs to treat the PEDV infection. RESULTS: We conducted a screening of specific nanobodies against the S1 protein from a phage display library obtained from immunized alpacas. Through competitive binding to antigenic epitopes, we selected instead of chose nanobodies with high affinity and constructed a multivalent tandem. These nanobodies were shown to inhibit PEDV infectivity by the neutralization assay. The antiviral capacity of nanobody was found to display a dose-dependent pattern, as demonstrated by IFA, TCID50, and qRT-PCR analyses. Notably, biparatopic nanobody SF-B exhibited superior antiviral activity. Nanobodies exhibited low cytotoxicity and high stability even under harsh temperature and pH conditions, demonstrating their potential practical applicability to animals. CONCLUSIONS: Nanobodies exhibit remarkable biological properties and antiviral effects, rendering them a promising candidate for the development of anti-PEDV drugs.


Subject(s)
Antibodies, Neutralizing , Coronavirus Infections , Porcine epidemic diarrhea virus , Single-Domain Antibodies , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Camelids, New World/immunology , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/immunology , Swine , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/prevention & control , Vero Cells
16.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612931

ABSTRACT

Citrocin is an anti-microbial peptide that holds great potential in animal feed. This study evaluates the anti-microbial and anti-biofilm properties of Citrocin and explores the mechanism of action of Citrocin on the biofilm of P. aeruginosa. The results showed that Citrocin had a significant inhibitory effect on the growth of P. aeruginosa with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.3 mg/mL. All five concentrations (1/4MIC, 1/2MIC, MIC, 2MIC, and 4MIC) of Citrocin inhibited P. aeruginosa biofilm formation. Citrocin at the MIC, 2MIC and 4MIC removed 42.7%, 76.0% and 83.2% of mature biofilms, respectively, and suppressed the swarming motility, biofilm metabolic activity and extracellular polysaccharide production of P. aeruginosa. Metabolomics analysis indicated that 0.3 mg/mL of Citrocin up- regulated 26 and down-regulated 83 metabolites, mainly comprising amino acids, fatty acids, organic acids and sugars. Glucose and amino acid metabolic pathways, including starch and sucrose metabolism as well as arginine and proline metabolism, were highly enriched by Citrocin. In summary, our research reveals the anti-biofilm mechanism of Citrocin at the metabolic level, which provides theoretical support for the development of novel anti-biofilm strategies for combatting P. aeruginosa.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Polysaccharides , Starch , Amino Acids , Biofilms , Peptides
17.
Virol J ; 20(1): 303, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38115115

ABSTRACT

BACKGROUND: Pseudorabies virus (PRV) causes substantial losses in the swine industry worldwide. Attenuated PRV strains with deletions of immunomodulatory genes glycoprotein E (gE), glycoprotein I (gI) and thymidine kinase (TK) are candidate vaccines. However, the effects of gE/gI/TK deletions on PRV-host interactions are not well understood. METHODS: To characterize the impact of gE/gI/TK deletions on host cells, we analyzed and compared the transcriptomes of PK15 cells infected with wild-type PRV (SD2017), PRV with gE/gI/TK deletions (SD2017gE/gI/TK) using RNA-sequencing. RESULTS: The attenuated SD2017gE/gI/TK strain showed increased expression of inflammatory cytokines and pathways related to immunity compared to wild-type PRV. Cell cycle regulation and metabolic pathways were also perturbed. CONCLUSIONS: Deletion of immunomodulatory genes altered PRV interactions with host cells and immune responses. This study provides insights into PRV vaccine design.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Swine Diseases , Swine , Animals , Herpesvirus 1, Suid/genetics , Thymidine Kinase/genetics , Viral Envelope Proteins/genetics , Glycoproteins/genetics , Gene Expression Profiling
18.
PLoS One ; 19(3): e0300178, 2024.
Article in English | MEDLINE | ID: mdl-38512952

ABSTRACT

Self-healing microcapsules in the asphalt pavement must be kept intact under vehicle load to ensure there is enough rejuvenator in capsules when cracks appear in asphalt pavement. In this paper, the crack resistance of self-healing microcapsules in asphalt pavement was evaluated. Firstly, an expanding multi-scale analysis was conducted based on proposed mesoscopic mechanical models with the aim to determine the mechanical parameters for the following contracting multi-scale analysis. Secondly, the periodic boundary condition was introduced for the contracting multi-scale analysis and the stress field of the capsule wall was obtained. Finally, the effects of the design parameters of the microcapsule on its crack resistance in asphalt pavement were investigated. The results showed that the incorporation of microcapsules has almost no effect on the elastic constants of the asphalt mixture. The core could be simplified as an approximately incompressible solid with the elastic constants determined by the proposed mesoscopic mechanical model. With the increase of the modulus of the capsule wall, the mean maximum tensile stress of the capsule wall increased from 0.372 MPa to 0.465 MPa, while with the decrease of the relative radius of the capsule core, the mean maximum tensile stress of the capsule wall increased from 0.349 MPa to 0.461 MPa. The change in the mean maximum tensile stress of the capsule wall caused by the change of capsule diameter was within 5%. The relative radius of the capsule core and the elastic modulus of capsule wall were two key parameters in capsule design. Besides, the microcapsules with the wall made of resin would not crack under the vehicle load before microcracks occurred in asphalt pavement.


Subject(s)
Familial Mediterranean Fever , Prunella , Capsules , Hydrocarbons , Elastic Modulus
19.
Heart Lung ; 65: 84-92, 2024.
Article in English | MEDLINE | ID: mdl-38447328

ABSTRACT

BACKGROUND: The occurrence of chronic obstructive pulmonary disease (COPD) is associated with oxidative stress. Oxidation Balance Score (OBS) can evaluate the oxidation and antioxidant status of the body. However, we found no studies that examined the association between the two. OBJECTIVE: To assess the association between OBS and COPD prevalence, and to explore dietary and lifestyle patterns aimed at preventing and delay COPD in adults. METHOD: We included 13,909 participants using data from the NHANES. Weighted logistic regression model and weighted restricted cubic spline curve were used to explore the relationship between OBS and COPD. Subgroup analysis and sensitivity analysis were used to determine the stability of results. Mediation analysis was employed to assess the effect of inflammatory factors. RESULT: In logistic regression model, compared with the lowest quartile of OBS, the highest quartile of OBS, diet OBS, lifestyle OBS and COPD had odd ratios OR(95%CI)=0.67 (0.51, 0.89), OR (95% CI) = 0.71 (0.55, 0.93), and OR (95% CI) = 0.39 (0.26, 0.58) respectively. The restricted cubic spline curve reveals that OBS and dietary OBS exhibit an L-shaped curve in relation to COPD prevalence, while lifestyle OBS shows a negative correlation curve with COPD prevalence. Subgroup analysis and sensitivity analysis proved the robustness of the association. Mediation analysis demonstrated that inflammatory factors mediate the association of OBS on the prevalence of COPD. CONCLUSION: The increase of OBS, dietary OBS, and lifestyle OBS was associated with a decrease in the prevalence of COPD, but excessive OBS and dietary OBS were associated with an inapparent decrease or even increased risk of COPD.


Subject(s)
Antioxidants , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Cross-Sectional Studies , Nutrition Surveys , Prevalence , Pulmonary Disease, Chronic Obstructive/epidemiology
20.
Materials (Basel) ; 17(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399193

ABSTRACT

Urea-formaldehyde (UF) is a common shell material for self-healing microcapsules; however, the influence of urea-formaldehyde microcapsules (UFMs) on the road performance of bituminous mixtures and the sensitivity of their healing abilities remains unclear. In this paper, UFMs were prepared via in situ polymerization (ISP), followed by an investigation into the road performance of UFM self-healing bituminous mixtures through various tests, including wheel tracking, immersed Marshall, freeze-thaw splitting, low-temperature bending, and three-point bending fatigue tests. Subsequently, the impact of the damage degree, healing duration, and temperature on the self-healing property was discussed. The results indicated that incorporating 3 wt% UFMs into bitumen significantly improved the high-temperature stability and fatigue resistance of the bituminous mixture; for example, its dynamic stability and fatigue life could be increased by about 16.5% and 10%, respectively. However, it diminished the thermal crack resistance, as evidenced by decreases in bending tensile strength and strain by 3.7% and 10.1%, respectively. And it did not markedly improve the moisture susceptibility. Additionally, the maximum improvement observed in the healing rate was about 9%. Furthermore, the healing duration and temperature positively influenced the bituminous mixture's self-healing, whereas the degree of damage exerted a negative impact, with a relatively significant effect.

SELECTION OF CITATIONS
SEARCH DETAIL