Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 509
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Biol Evol ; 41(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38758089

ABSTRACT

Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.


Subject(s)
Chromatin , Diploidy , Evolution, Molecular , Gossypium , Polyploidy , Gossypium/genetics , Chromatin/genetics , Gene Expression Regulation, Plant , Genome, Plant , Nucleosomes/genetics , Genes, Duplicate , Promoter Regions, Genetic
2.
Exp Cell Res ; 434(1): 113877, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38072302

ABSTRACT

Exploration of the molecular mechanisms of mesenchymal stem cell (MSC) growth has significant clinical benefits. Long non-coding RNAs (lncRNAs) have been reported to play vital roles in the regulation of the osteogenic differentiation of MSCs. However, the mechanism by which lncRNA affects the proliferation and apoptosis of MSCs is unclear. In this study, sequencing analysis revealed that LINC00707 was significantly decreased in non-adherent human MSCs (non-AC-hMSCs) compared to adherent human MSCs. Moreover, LINC00707 overexpression promoted non-AChMSC proliferation, cell cycle progression from the G0/G1 phase to the S phase and inhibited apoptosis, whereas LINC00707 silencing had the opposite effect. Furthermore, LINC00707 interacted directly with the quaking (QKI) protein and enhanced the E3 ubiquitin-protein ligase ring finger protein 6 (RNF6)-mediated ubiquitination of the QKI protein. Additionally, the overexpression of QKI rescued the promotive effects on proliferation and inhibitory effects on apoptosis in non-AC-hMSCs induced by the ectopic expression of LINC00707. Thus, LINC00707 contributes to the proliferation and apoptosis in non-AChMSCs by regulating the ubiquitination and degradation of the QKI protein.


Subject(s)
Mesenchymal Stem Cells , RNA, Long Noncoding , Humans , Osteogenesis/genetics , Cell Proliferation/genetics , Apoptosis/genetics , Mesenchymal Stem Cells/metabolism , Ubiquitination , RNA, Long Noncoding/metabolism , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism
3.
Small ; 20(2): e2303464, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670207

ABSTRACT

Silicon nanocrystals (SiNCs) have attracted extensive attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, these applications are mainly focused on fluorescent SiNCs, little attention is paid to SiNCs with room-temperature phosphorescence (RTP) and their relative applications, especially water-dispersed ones. Herein, this work presents water-dispersible RTP SiNCs (UA-SiNCs) and their optical applications. The UA-SiNCs with a uniform particle size of 2.8 nm are prepared by thermal hydrosilylation between hydrogen-terminated SiNCs (H-SiNCs) and 10-undecenoic acid (UA). Interestingly, the resultant UA-SiNCs can exhibit tunable long-lived RTP with an average lifetime of 0.85 s. The RTP feature of the UA-SiNCs is confirmed to the n-π* transitions of their surface C═O groups. Subsequently, new dual-modal emissive UA-SiNCs-based ink is fabricated by blending with sodium alginate (SA) as the binder. The customized anticounterfeiting labels are also prepared on cellulosic substrates by screen-printing technique. As expected, UA-SiNCs/SA ink exhibits excellent practicability in anticounterfeiting applications. These findings will trigger the rapid development of RTP SiNCs, envisioning enormous potential in future advanced applications such as high-level anti-counterfeiting, information encryption, and so forth.

4.
Small ; 20(26): e2310615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258355

ABSTRACT

High-entropy ceramics exhibit various excellent properties owing to their high configurational entropy, which is caused by multi-principal elements sharing one lattice site. The configurational entropy will further increase significantly if multi-principal elements randomly share two different lattice sites. For this purpose, pseudobrookite phase containing two cationic lattice sites (A and B sites) is selected, and corresponding high-entropy pseudobrookite (M2+ 0.4M3+ 1.2)Ti1.4O5 is synthesized. Herein, the distribution of the 2-valent and 3-valent cations in the A and B sites are analysed in depth. The distance between the A and B sites in the crystal structure models which are constructed by the Rietveld analysis is calculated and defined as distance d. Meanwhile, the atomic column positions in the STEM images are quantified by a model-based mathematical algorithm, and the corresponding distance d are calculated. By comparing the distance d, it is determine that the 2-valent and 3-valent cations are jointly and disorderly distributed in the A and B sites in high-entropy (M2+ 0.4M3+ 1.2)Ti1.4O5. The density functional theory (DFT) simulations also demonstrate that this type of crystal structure is more thermodynamically stable. The higher degree of cationic disorder leads to a higher configurational entropy in high-entropy (M2+ 0.4M3+ 1.2)Ti1.4O5, and endows high-entropy (M2+ 0.4M3+ 1.2)Ti1.4O5 with very low thermal conductivity (1.187-1.249 W m-1 K-1).

5.
Small ; : e2401384, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940385

ABSTRACT

Understanding the reconstruction mechanism to rationally design cost-effective electrocatalysts for oxygen evolution reaction (OER) is still challenging. Herein, a defect-rich NiMoO4 precatalyst is used to explore its OER activity and reconstruction mechanism. In situ generated oxygen vacancies, distorted lattices, and edge dislocations expedite the deep reconstruction of NiMoO4 to form polycrystalline Ni (oxy)hydroxides for alkaline oxygen evolution. It only needs ≈230 and ≈285 mV to reach 10 and 100 mA cm-2, respectively. The reconstruction boosted by the redox of Ni is confirmed experimentally by sectionalized cyclic voltammetry activations at different specified potential ranges combined with ex situ characterization techniques. Subsequently, the reconstruction route is presented based on the acid-base electronic theory. Accordingly, the dominant contribution of the adsorbate evolution mechanism to reconstruction during oxygen evolution is revealed. This work develops a novel route to synthesize defect-rich materials and provides new tactics to investigate the reconstruction.

6.
Opt Express ; 32(3): 3316-3328, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297556

ABSTRACT

Structured illumination microscopy (SIM) is a powerful technique for super-resolution (SR) image reconstruction. However, conventional SIM methods require high-contrast illumination patterns, which necessitate precision optics and highly stable light sources. To overcome these challenges, we propose a new method called contrast-robust structured illumination microscopy (CR-SIM). CR-SIM employs a deep residual neural network to enhance the quality of SIM imaging, particularly in scenarios involving low-contrast illumination stripes. The key contribution of this study is the achievement of reliable SR image reconstruction even in suboptimal illumination contrast conditions. The results of our study will benefit various scientific disciplines.

7.
Opt Express ; 32(2): 1635-1649, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297711

ABSTRACT

High throughput has become an important research direction in the field of super-resolution (SR) microscopy, especially in improving the capability of dynamic observations. In this study, we present a hexagonal lattice structured illumination microscopy (hexSIM) system characterized by a large field of view (FOV), rapid imaging speed, and high power efficiency. Our approach employs spatial light interference to generate a two-dimensional hexagonal SIM pattern, and utilizes electro-optical modulators for high-speed phase shifting. This design enables the achievement of a 210-µm diameter SIM illumination FOV when using a 100×/1.49 objective lens, capturing 2048 × 2048 pixel images at an impressive 98 frames per second (fps) single frame rate. Notably, this method attains a near 100% full field-of-view and power efficiency, with the speed limited only by the camera's capabilities. Our hexSIM demonstrates a substantial 1.73-fold improvement in spatial resolution and necessitates only seven phase-shift images, thus enhancing the imaging speed compared to conventional 2D-SIM.

8.
Langmuir ; 40(24): 12512-12525, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38833532

ABSTRACT

g-C3N4/Ag-ZnO (CAZ) composite photocatalysts were synthesized successfully by the hydrothermal method. The photocatalytic performance of photocatalysts was assessed through experiments measuring both hydrogen (H2) production and the degradation of methylene blue (MB). The H2 production rate of 60% CAZ reached 2.450 mmol·g-1·h-1, which was 8.5 times that of g-C3N4. 25% CAZ degraded 99.14% of MB dye within 40 min, and its degradation rate constant was 12.4 times that of g-C3N4. CAZ composite photocatalysts have good synergistic properties in degradation and hydrogen production and exhibit better photocatalytic performance. A Z-scheme photocatalytic system mechanism of CAZ has been proposed for the enhanced H2 production and photocatalytic degradation rate.

9.
Langmuir ; 40(22): 11684-11694, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38781129

ABSTRACT

The exceptional hydrophobicity and antifouling properties of polydimethylsiloxane (PDMS) composites have attracted extensive interest as a result of low surface energy. However, PDMS composites are hardly bound by common primers, greatly limiting their practical applications. To address this issue, an EPMS/VTMS (EV) primer synthesized by hydrolytic polycondensation of 3-[(2,3)-epoxypropoxypropyl]methyldiethoxysilane (EPMS) and vinyltrimethoxysilane (VTMS) in acidic conditions is proposed. Interestingly, the EV primer exhibits exceptional reactivity, self-healing capabilities, and strong adhesion to various substrates, including metals, plastics, and glass. The bonding aluminum plates are easily debonded by immersion in water without any residue left. Subsequently, the EV primer has been applied to the interface between silicone leather and the PDMS composite. Results show that the bonding strength for the silicone leather coated with the EV/PDMS composite is 16 times higher than that of the silicone leather modified with the PDMS composite. Meanwhile, the modified silicone leather exhibits impressive antifouling performance, including aqueous and oily stains, appreciable breathability, and excellent wear resistance, even if suffering from 20 000 cycles of abrasion. These excellent advantages for the modified silicone leather should be attributable to the synergistic effect of the EV primer and the PDMS composite. These findings pave the way to develop an ecofriendly debonding primer for PDMS composites, greatly facilitating applications of silicone leather.

10.
Anticancer Drugs ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38958648

ABSTRACT

The aim of this study was to observe the therapeutic effect of sintilimab combined with a modified docetaxel + cisplatin + fluorouracil (DCF) regimen on advanced gastric cancer and its effect on Th1/Th2 immune balance. Ninety-eight cases of advanced gastric cancer patients who visited our hospital from April 2020 to May 2022 were selected and divided into 48 cases each in the conventional group and the research group by random number table method; the DCF regimen was adopted in the conventional group, and sintilimab combined with modified DCF regimen was adopted in the research group, and the therapeutic effects of the patients in the two groups and the changes of Th1/Th2 immune indexes were compared. CEA, CA199, CA242, CD168 AQ3, and IL-4 in the study group were lower than those in the conventional group at the end of three cycles of treatment, and the difference was statistically significant (P < 0.001). The levels of IFN-γ and IL-4 in the study group at the end of three cycles of treatment were higher than those in the conventional group (P < 0.001). The incidence of adverse reactions during treatment in the study group was lower than that in the conventional group (P < 0.001), and the grading of adverse reactions in the study group was milder than that in the conventional group. Sintilimab combined with a modified DCF regimen in the treatment of advanced gastric cancer not only improves the therapeutic effect but also positively affects the Th1/Th2 immune balance, which provides better immune regulation for patients with advanced gastric cancer.

11.
Nanotechnology ; 35(19)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38330450

ABSTRACT

Photocatalytic reduction of carbon dioxide is a technology that effectively utilizes CO2and solar energy. Sodium niobate (NaNbO3) has received much attention in the field of photocatalysis due to its excellent photocatalytic properties. However, the application of NaNbO3in the field of photocatalysis is still limited by poor reaction to visible light and easy recombination of photo-generated carriers. Heterojunction with g-C3N4to construct core-shell structure can effectively improve the above problems. Combining the two can design a core-shell composite material that is beneficial for photocatalytic reduction of CO2. Herein, we prepared a core-shell heterojunction g-C3N4/NaNbO3by uniformly impregnating urea on the surface of NaNbO3chromium nanofibers with NaNbO3nanofibers prepared by electrospinning as a catalyst carrier, and urea as a precursor of g-C3N4. The core-shell structure of g-C3N4/NaNbO3was verified by a series of characterization methods such as XPS, XRD, and TEM. It was found that under the same conditions, the methanol yield of core-shell g-C3N4/NaNbO3was 12.86µmol·g-1·h-1, which is twice that of pure NaNbO3(6.67µmol·g-1·h-1). This article highlights an impregnation method to build core-shell structures for improved photocatalytic reduction of CO2.

12.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961333

ABSTRACT

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Subject(s)
Antioxidants , Apoptosis , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ginsenosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Male , Oxidative Stress/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/drug effects , Ginsenosides/pharmacology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/etiology , Apoptosis/drug effects , Antioxidants/pharmacology , Phosphorylation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocardium/pathology , Myocardium/metabolism , Insulin , Malondialdehyde/metabolism
13.
PLoS Genet ; 17(8): e1009689, 2021 08.
Article in English | MEDLINE | ID: mdl-34383745

ABSTRACT

Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas.


Subject(s)
DNA Footprinting/methods , Promoter Regions, Genetic , Transcription Factors/metabolism , Zea mays/genetics , Binding Sites , Chromatin Immunoprecipitation Sequencing , High-Throughput Nucleotide Sequencing , Plant Proteins/genetics , Plant Proteins/metabolism , Regulatory Elements, Transcriptional , Whole Genome Sequencing
14.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894145

ABSTRACT

Advanced glycation end-products (AGEs) are complex compounds closely associated with several chronic diseases, especially diabetes mellitus (DM). Current methods for detecting AGEs are not suitable for screening large populations, or for long-term monitoring. This paper introduces a portable autofluorescence detection system that measures the concentration of AGEs in the skin based on the fluorescence characteristics of AGEs in biological tissues. The system employs a 395 nm laser LED to excite the fluorescence of AGEs, and uses a photodetector to capture the fluorescence intensity. A model correlating fluorescence intensity with AGEs concentration facilitates the detection of AGEs levels. To account for the variation in optical properties of different individuals' skin, the system includes a 520 nm light source for calibration. The system features a compact design, measuring only 60 mm × 50 mm × 20 mm, and is equipped with a miniature STM32 module for control and a battery for extended operation, making it easy for subjects to wear. To validate the system's effectiveness, it was tested on 14 volunteers to examine the correlation between AGEs and glycated hemoglobin, revealing a correlation coefficient of 0.49. Additionally, long-term monitoring of AGEs' fluorescence and blood sugar levels showed a correlation trend exceeding 0.95, indicating that AGEs reflect changes in blood sugar levels to some extent. Further, by constructing a multivariate predictive model, the study also found that AGEs levels are correlated with age, BMI, gender, and a physical activity index, providing new insights for predicting AGEs content and blood sugar levels. This research supports the early diagnosis and treatment of chronic diseases such as diabetes, and offers a potentially useful tool for future clinical applications.


Subject(s)
Glycation End Products, Advanced , Humans , Glycation End Products, Advanced/analysis , Female , Male , Adult , Glycated Hemoglobin/analysis , Middle Aged , Blood Glucose/analysis , Skin/chemistry , Diabetes Mellitus/diagnosis , Diabetes Mellitus/blood , Fluorescence , Optical Imaging/methods , Optical Imaging/instrumentation , Spectrometry, Fluorescence/methods
15.
Angew Chem Int Ed Engl ; 63(9): e202316640, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38146810

ABSTRACT

The catalyst-reconstruction makes it challenging to clarify the practical active sites and unveil the actual reaction mechanism during the CO2 electroreduction reaction (CO2 RR). However, currently the impact of the electrolyte microenvironment in which the electrolyte is in contact with the catalyst is overlooked and might induce a chemical evolution, thus confusing the reconstruction process and mechanism. In this work, the carbonate adsorption properties of metal oxides were investigated, and the mechanism of how the electrolyte carbonate affect the chemical evolution of catalysts were discussed. Notably, Bi2 O3 with weak carbonate adsorption underwent a chemical reconstruction to form the Bi2 O2 CO3 /Bi2 O3 heterostructure. Furthermore, in situ and ex situ characterizations unveiled the formation mechanism of the heterostructure. The in situ formed Bi2 O2 CO3 /Bi2 O3 heterostructure with strong electron interaction served as the highly active structure for CO2 RR, achieving a formate Faradaic efficiency of 98.1 % at -0.8 Vvs RHE . Theoretical calculations demonstrate that the significantly tuned p-orbit electrons of the Bi sites in Bi2 O2 CO3 /Bi2 O3 optimized the adsorption of the intermediate and lowered the energy barrier for the formation of *OCHO. This work elucidates the mechanism of electrolyte microenvironment for affecting catalyst reconstruction, which contributes to the understanding of reconstruction process and clarification of the actual catalytic structure.

16.
J Am Chem Soc ; 145(28): 15061-15064, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37276462

ABSTRACT

The binding affinity of G protein-coupled receptor (GPCR) ligands is customarily measured by radio-ligand competition experiments. As an alternative approach, 19F nuclear magnetic resonance spectroscopy (19F-NMR) is used for the screening of small-molecule lead compounds in drug discovery; the two methods are complementary in that the measurements are performed with widely different experimental conditions. Here, we used the structure of the A2A adenosine receptor (A2AAR) complex with V-2006 (3-(4-amino-3-methylbenzyl)-7-(furan-2-yl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine) as the basis for the design of a fluorine-containing probe molecule, FPPA (4-(furan-2-yl)-7-(4-(trifluoromethyl)benzyl)-7H-pyrrolo[2,3-d]pyramidin-2-amine), for binding studies with A2AAR. A protocol of experimental conditions for drug screening and measurements of drug binding affinities using 1D 19F-NMR observation of FPPA is validated with studies of known A2AAR ligands. 19F-NMR with FPPA is thus found to be a robust approach for the discovery of ligands with new core structures, which will expand the libraries of A2AAR-targeting drug candidates.


Subject(s)
Adenosine , Receptor, Adenosine A2A , Ligands , Receptor, Adenosine A2A/chemistry , Magnetic Resonance Spectroscopy , Amines
17.
J Am Chem Soc ; 145(3): 1924-1935, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36571792

ABSTRACT

High-entropy compounds with extraordinary properties due to the synergistic effect of multiple components have exhibited great potential and attracted extensive attention in various fields, including physics, mechanical property analysis, and energy storage. Achieving universal stability and synthesis of high-entropy compounds with a wide range of components and structures continues to be difficult due to the high complexity of multicomponent mixing. Here, we propose a design strategy with high generality for realizing the stability and synthesis of high-entropy compounds that one metal site like the framework in the compound structures with bimetallic sites stabilizes another site to accommodate different elements. Several typical metal compounds with bimetallic sites, including perovskite hydroxides, layered double hydroxide, spinel sulfide, perovskite fluoride, and spinel oxides, have been synthesized into high-entropy compounds. High-entropy perovskite hydroxides (HEPHs) as representative compounds have been synthesized with a highly wide range of components even a septenary component and exhibit great oxygen evolution activity. Our work provides a design platform to develop more high-entropy compound systems with promising development potential for electrocatalysts.

18.
Cancer Immunol Immunother ; 72(6): 1619-1631, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36583750

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) through programmed cell death 1 blockade improve the survival outcomes of patients with advanced esophageal squamous cell carcinoma (ESCC). Recently, the use of neoadjuvant immunotherapy for the treatment of ESCC has been gradually increasing. We aimed to evaluate the efficacy of neoadjuvant treatment of ICIs with chemotherapy and explore tumor microenvironment (TME) immune profiles of ESCC samples during neoadjuvant therapy. METHODS: Patients with previously untreated, resectable, locally advanced ESCC (stage II or III) in Harbin Medical University Cancer Hospital were enrolled. Each patient received two to four cycles of neoadjuvant ICIs combined with chemotherapy before surgical resection. The TME immune profiles of formalin-fixed paraffin-embedded tumor samples at baseline and after surgery were evaluated by multiplex staining and multispectral imaging. RESULTS: In all, 18 patients were enrolled, and all patients received surgery with R0 resection. The postoperative pathological evaluation indicated that 7 (38.9%) patients had a pathological complete response (pCR) and 11 (61.1%) patients had a partial response. The neoadjuvant therapeutic regimens had acceptable side effect profiles. The TME immune profiles at baseline observed higher densities of stroma CD3 + , PD-1 + , and PD-1 + CD3 + cells in pCR patients than in non-pCR patients. Comparing TME immune profiles before and after neoadjuvant treatment, an increase in CD8 + T cells and a decrease in CD163 + CD68 + M2-like macrophage cells were observed after neoadjuvant treatment. CONCLUSIONS: Neoadjuvant ICIs combined with chemotherapy produced a satisfactory treatment response, demonstrating its anti-tumor efficacy in locally advanced ESCC. Further large-scale studies are required to understand the role of tumor immunities and ICIs underlying ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Neoadjuvant Therapy/methods , Esophageal Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment , Programmed Cell Death 1 Receptor/therapeutic use , East Asian People
19.
Appl Environ Microbiol ; 89(2): e0203622, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36744963

ABSTRACT

The oomycete Pythium oligandrum is a soil-inhabiting parasite and predator of both fungi and oomycetes, and uses hydrolytic enzymes extensively to penetrate and hydrolyze its host or prey. Other mechanisms have been studied less, and we investigated the contribution of P. oligandrum-produced volatile organic compounds (VOCs) to parasitism. The growth-inhibiting activity of P. oligandrum VOCs was tested on Pythium myriotylum-a host or prey of P. oligandrum-coupled with electron microscopy, and biochemical and transcriptomic analyses. The P. oligandrum-produced VOCs reduced P. myriotylum growth by 80% and zoospore levels by 60%. Gas chromatography-mass spectrometry (GC-MS) identified 23 VOCs, and methyl heptenone, d-limonene, 2-undecanone, and 1-octanal were potent inhibitors of P. myriotylum growth and led to increased production of reactive oxygen species at a concentration that did not inhibit P. oligandrum growth. Exposure to the P. oligandrum VOCs led to shrinkage of P. myriotylum hyphae and lysis of the cellular membranes and organelles. Transcriptomics of P. myriotylum exposed to the P. oligandrum VOCs at increasing levels of growth inhibition initially showed a strong upregulation of putative detoxification-related genes that was not maintained later. The inhibition of P. myriotylum growth continued immediately after the exposure to the VOCs was discontinued and led to the reduced infection of its plant hosts. The VOCs produced by P. oligandrum could be another factor alongside hydrolytic enzymes contributing to its ecological role as a microbial parasite in particular ecological niches such as in soil, and may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations. IMPORTANCE Microbe-microbe interactions in nature are multifaceted, with multiple mechanisms of action, and are crucial to how plants interact with microbes. Volatile organic compounds (VOCs) have diverse functions, including contributing to parasitism in ecological interactions and potential applications in biocontrol. The microbial parasite P. oligandrum is well known for using hydrolytic enzymes as part of its parasitism. We found that P. oligandrum VOCs reduced the growth of, and caused major damage to, the hyphae of P. myriotylum (a host or prey of P. oligandrum). Transcriptomic analyses of P. myriotylum exposed to the VOCs revealed the upregulation of genes potentially involved in an attempt to detoxify the VOCs. The inhibitory effects of the VOCs had a knock-on effect by reducing the virulence of P. myriotylum toward its plant hosts. The P. oligandrum VOCs could contribute to its ecological role as a microbial parasite. The VOCs analyzed here may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations.


Subject(s)
Pythium , Volatile Organic Compounds , Pythium/genetics , Volatile Organic Compounds/pharmacology , Fungi , Microbial Interactions , Soil
20.
Opt Express ; 31(6): 10720-10731, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157613

ABSTRACT

To satisfy the demand for broadband and high-sensitivity terahertz detectors, we designed and verified a broadband terahertz detector built with antenna-coupled AlGaN/GaN high-electron-mobility transistors (HEMTs). Eighteen pairs of dipole antennas with different center frequency from 0.24 to 7.4 THz are arrayed into a bow-tie pattern. The corresponding eighteen transistors have common a source and a drain but different gated channels coupled by the corresponding antennas. The photocurrents generated by each gated channel are combined in the drain as the output port. With incoherent terahertz radiation from a hot blackbody in a Fourier-transform spectrometer (FTS), the detector exhibits a continuous response spectrum from 0.2 to 2.0 THz at 298 K and from 0.2 to 4.0 THz at 77 K, respectively. The results agree well with simulations taking into account the silicon lens, antenna and blackbody radiation law. The sensitivity is characterized under coherent terahertz irradiation, the average noise-equivalent power (NEP) is about 188 p W/H z at 298 K and 19 p W/H z at 77 K from 0.2 to 1.1 THz, respectively. A maximum optical responsivity of 0.56 A/W and a minimum NEP of 7.0 p W/H z at 0.74 THz are achieved at 77 K. The blackbody response spectrum is divided by the blackbody radiation intensity to obtain a performance spectrum, which is calibrated by measuring coherence performance from 0.2 to 1.1 THz to evaluate detector performance at frequencies above 1.1 THz. At 298 K, the NEP is about 1.7 n W/H z at 2.0 THz. At 77 K, the NEP is about 3 n W/H z at 4.0 THz. For further improvements in sensitivity and bandwidth, high-bandwidth coupling components, smaller series resistance, smaller gate lengths and high-mobility materials need to be considered.

SELECTION OF CITATIONS
SEARCH DETAIL