Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 609(7926): 369-374, 2022 09.
Article in English | MEDLINE | ID: mdl-36045296

ABSTRACT

Recently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies1-7. However, CAR-T cell therapy currently has several limitations8-12. Here we successfully developed a two-in-one approach to generate non-viral, gene-specific targeted CAR-T cells through CRISPR-Cas9. Using the optimized protocol, we demonstrated feasibility in a preclinical study by inserting an anti-CD19 CAR cassette into the AAVS1 safe-harbour locus. Furthermore, an innovative type of anti-CD19 CAR-T cell with PD1 integration was developed and showed superior ability to eradicate tumour cells in xenograft models. In adoptive therapy for relapsed/refractory aggressive B cell non-Hodgkin lymphoma (ClinicalTrials.gov, NCT04213469 ), we observed a high rate (87.5%) of complete remission and durable responses without serious adverse events in eight patients. Notably, these enhanced CAR-T cells were effective even at a low infusion dose and with a low percentage of CAR+ cells. Single-cell analysis showed that the electroporation method resulted in a high percentage of memory T cells in infusion products, and PD1 interference enhanced anti-tumour immune functions, further validating the advantages of non-viral, PD1-integrated CAR-T cells. Collectively, our results demonstrate the high safety and efficacy of non-viral, gene-specific integrated CAR-T cells, thus providing an innovative technology for CAR-T cell therapy.


Subject(s)
Immunotherapy, Adoptive , Lymphoma, B-Cell , Receptors, Chimeric Antigen , Animals , Antigens, CD19/immunology , Electroporation , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/therapy , Memory T Cells/immunology , Programmed Cell Death 1 Receptor/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/therapeutic use , Recurrence , Single-Cell Analysis , Xenograft Model Antitumor Assays
2.
J Cell Mol Med ; 28(9): e18318, 2024 May.
Article in English | MEDLINE | ID: mdl-38685674

ABSTRACT

Glioblastoma (GBM) represents a prevalent form of primary malignant tumours in the central nervous system, but the options for effective treatment are extremely limited. Ferroptosis, as the most enriched programmed cell death process in glioma, makes a critical difference in glioma progression. Consequently, inducing ferroptosis has become an appealing strategy for tackling gliomas. Through the utilization of multi-omics sequencing data analysis, flow cytometry, MDA detection and transmission electron microscopy, the impact of orexin-A on ferroptosis in GBM was assessed. In this report, we provide the first evidence that orexin-A exerts inhibitory effects on GBM proliferation via the induction of ferroptosis. This induction is achieved by instigating an unsustainable increase in iron levels and depletion of GPX4. Moreover, the regulation of TFRC, FTH1 and GPX4 expression through the targeting of NFE2L2 appears to be one of the potential mechanisms underlying orexin-A-induced ferroptosis.


Subject(s)
Cell Proliferation , Ferroptosis , Glioblastoma , Iron , Orexins , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Humans , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Iron/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Orexins/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
3.
J Neuroinflammation ; 21(1): 131, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760784

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS: A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1ß, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS: Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1ß and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION: This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.


Subject(s)
Mice, Inbred C57BL , Orexins , Sepsis-Associated Encephalopathy , Animals , Mice , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Orexins/metabolism , Male , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Disease Models, Animal , Administration, Intranasal
4.
J Transl Med ; 22(1): 10, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167131

ABSTRACT

BACKGROUND: Gut microbiota alterations have been implicated in sepsis and related infectious diseases, but the causal relationship and underlying mechanisms remain unclear. METHODS: We evaluated the association between gut microbiota composition and sepsis using two-sample Mendelian randomization (MR) analysis based on published genome-wide association study (GWAS) summary statistics. Sensitivity analyses were conducted to validate the robustness of the results. Reverse MR analysis and integration of GWAS and expression quantitative trait loci (eQTL) data were performed to identify potential genes and therapeutic targets. RESULTS: Our analysis identified 11 causal bacterial taxa associated with sepsis, with increased abundance of six taxa showing positive causal relationships. Ten taxa had causal effects on the 28-day survival outcome of septic patients, with increased abundance of six taxa showing positive associations. Sensitivity analyses confirmed the robustness of these associations. Reverse MR analysis did not provide evidence of reverse causality. Integration of GWAS and eQTL data revealed 76 genes passing the summary data-based Mendelian randomization (SMR) test. Differential expression of these genes was observed between sepsis patients and healthy individuals. These genes represent potential therapeutic targets for sepsis. Molecular docking analysis predicted potential drug-target interactions, further supporting their therapeutic potential. CONCLUSION: Our study provides insights for the development of personalized treatment strategies for sepsis and offers preliminary candidate targets and drugs for future drug development.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Humans , Gastrointestinal Microbiome/genetics , Network Pharmacology , Genome-Wide Association Study , Mendelian Randomization Analysis , Molecular Docking Simulation , Sepsis/genetics , Sequence Analysis, RNA
5.
Mol Ther ; 31(3): 744-759, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36457249

ABSTRACT

Editing efficiency is pivotal for the efficacies of CRISPR-based gene therapies. We found that fusing an HMG-D domain to the N terminus of SpCas9 (named efficiency-enhanced Cas9 [eeCas9]) significantly increased editing efficiency by 1.4-fold on average. The HMG-D domain also enhanced the activities of non-NGG PAM Cas9 variants, high-fidelity Cas9 variants, smaller Cas9 orthologs, Cas9-based epigenetic regulators, and base editors in cell lines. Furthermore, we discovered that eeCas9 exhibits comparable off-targeting effects with Cas9, and its specificity could be increased through ribonucleoprotein delivery or using hairpin single-guide RNAs and high-fidelity Cas9s. The entire eeCas9 could be packaged into an adeno-associated virus vector and exhibited a 1.7- to 2.6-fold increase in editing efficiency targeting the Pcsk9 gene in mice, leading to a greater reduction of serum cholesterol levels. Moreover, the efficiency of eeA3A-BE3 also surpasses that of A3A-BE3 in targeting the promoter region of γ-globin genes or BCL11A enhancer in human hematopoietic stem cells to reactivate γ-globin expression for the treatment of ß-hemoglobinopathy. Together, eeCas9 and its derivatives are promising editing tools that exhibit higher activity and therapeutic efficacy for both in vivo and ex vivo therapeutics.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Animals , Humans , Mice , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Gene Editing , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , gamma-Globins/genetics , Genetic Therapy
6.
BMC Oral Health ; 24(1): 815, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020311

ABSTRACT

BACKGROUND: Current research has been inconclusive regarding whether hepatitis B infection is associated with an increased risk of periodontitis. This study aims to test the null hypothesis that no association exists between hepatitis B infection and an increased risk of periodontitis using the National Health and Nutrition Examination Survey (2009-2014). METHODS: We performed a cross-sectional study using the National Health and Nutrition Examination Survey (NHANES) database (2009-2014) to assess the rate of the prevalence of periodontitis in patients with and without hepatitis B infection. Participants who had tested for hepatitis B and periodontitis were included. The included participants were divided into no/mild periodontitis and moderate/severe periodontitis groups according to their periodontal status. The association between hepatitis B infection and chronic periodontitis was evaluated by multivariable regression analyses adjusting for age, gender, race/ethnicity, education level, income-to-poverty ratio, smoking, alcohol, BMI, ALT, AST, creatinine, hypertension, and diabetes. RESULTS: A total of 5957 participants were included and divided into two groups: inactive periodontitis group (n = 3444) and active periodontitis group (n = 2513). The results showed that participants with hepatitis B had a higher risk of periodontitis. After adjusting for covariables, adults with hepatitis B infection were 38% more likely to have periodontitis compared to those without hepatitis B infection (95% Confidence Interval [CI]:1.085-1.754). CONCLUSIONS: In general, the results suggest that CHB is positively associated with the more severe periodontitis. These results suggest that people with hepatitis B infection should take good periodontal care measures to avoid the occurrence and development of periodontitis.


Subject(s)
Hepatitis B , Nutrition Surveys , Periodontitis , Humans , Female , Male , Cross-Sectional Studies , Adult , Hepatitis B/epidemiology , Hepatitis B/complications , Periodontitis/epidemiology , Periodontitis/complications , Middle Aged , United States/epidemiology , Risk Factors , Prevalence
7.
FASEB J ; 34(10): 13224-13238, 2020 10.
Article in English | MEDLINE | ID: mdl-32794622

ABSTRACT

Preeclampsia, especially early-onset severe preeclampsia is one of the leading causes of maternal and fetal morbidity and mortality. Although it has been well known that the pathophysiology of early-onset severe preeclampsia begins with abnormal placentation and aberrant activation of TGF-ß signaling inhibits trophoblast cell invasion, the mechanisms underlying dysregulation of TGF-ß signaling in early-onset severe preeclampsia remain elusive to date. Here, we revealed that induction of TGFBR1/TGF-ß signaling mediated by DNMT3A downregulation plays a critical role in early-onset severe preeclampsia. Our results show that DNMT3A downregulation elevates TGFBR1 expression in trophoblast cells. Moreover, inhibition of TGFBR1 and TGF-ß/Smad signaling can rescue the deficiencies of trophoblast cell migration and invasion caused by DNMT3A knockdown. Mechanistically, DNMT3A suppresses the transcription of TGFBR1 through recruiting EZH2 to its promoter but not changing DNA methylation of TGFBR1 promoter. In human samples, we detected lowly expressed DNMT3A, highly expressed TGFBR1 and hyperactivation of TGF-ß/Smad signaling in decidua-embedded extravillous trophoblasts in early-onset severe preeclampsia, which provides the clinical evidence for the correlation between DNMT3A and TGFBR1. Collectively, our findings demonstrate that DNA methylation-independent induction of TGFBR1 mediated by DNMT3A downregulation is relevant to the development of early-onset severe preeclampsia.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Down-Regulation , Pre-Eclampsia/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Adult , Cell Line , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA Methyltransferase 3A , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Humans , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Pregnancy , Promoter Regions, Genetic , Receptor, Transforming Growth Factor-beta Type I/metabolism , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Trophoblasts/metabolism
8.
Int J Cancer ; 147(8): 2239-2252, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32372448

ABSTRACT

Intestinal tumors mainly originate from transformed crypt stem cells supported by Wnt signaling, which functions through downstream critical factors enriched in the intestinal stem/progenitor compartment. Here, we show Uhrf2 is predominantly expressed in intestinal crypts and adenomas in mice and is transcriptionally regulated by Wnt signaling. Upregulated UHRF2 correlates with poor prognosis in colorectal cancer patients. Although loss of Uhrf2 did not affect intestinal homeostasis and regeneration, tumor initiation and progression were inhibited, leading to a markedly prolonged life span in Uhrf2 null mice on an ApcMin background. Uhrf2 deficiency also strongly reduced primary tumor organoid formation suggesting impairment of tumor stem cells. Moreover, ablation of Uhrf2 suppressed tumor cell proliferation through downregulation of the Wnt/ß-catenin pathway. Mechanistically, Uhrf2 directly interacts with and sumoylates Tcf4, a critical intranuclear effector of the Wnt pathway. Uhrf2 mediated SUMOylation stabilized Tcf4 and further sustained hyperactive Wnt signaling. Together, we demonstrate that Wnt-induced Uhrf2 expression promotes tumorigenesis through modulation of the stability of Tcf4 for maintaining oncogenic Wnt/ß-catenin signaling. This is a new reciprocal feedforward regulation between Uhrf2 and Wnt signaling in tumor initiation and progression.


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Transcription Factor 7-Like 2 Protein/genetics , Ubiquitin-Protein Ligases/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Adenoma/genetics , Adenoma/pathology , Animals , Carcinogenesis/pathology , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , HCT116 Cells , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplastic Stem Cells/pathology , Oncogenes/genetics , Transcription, Genetic/genetics , Up-Regulation/genetics
9.
J Biol Chem ; 293(18): 6883-6892, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29507093

ABSTRACT

Hereditary tyrosinemia type I (HTI) is a metabolic genetic disorder caused by mutation of fumarylacetoacetate hydrolase (FAH). Because of the accumulation of toxic metabolites, HTI causes severe liver cirrhosis, liver failure, and even hepatocellular carcinoma. HTI is an ideal model for gene therapy, and several strategies have been shown to ameliorate HTI symptoms in animal models. Although CRISPR/Cas9-mediated genome editing is able to correct the Fah mutation in mouse models, WT Cas9 induces numerous undesired mutations that have raised safety concerns for clinical applications. To develop a new method for gene correction with high fidelity, we generated a Fah mutant rat model to investigate whether Cas9 nickase (Cas9n)-mediated genome editing can efficiently correct the Fah First, we confirmed that Cas9n rarely induces indels in both on-target and off-target sites in cell lines. Using WT Cas9 as a positive control, we delivered Cas9n and the repair donor template/single guide (sg)RNA through adenoviral vectors into HTI rats. Analyses of the initial genome editing efficiency indicated that only WT Cas9 but not Cas9n causes indels at the on-target site in the liver tissue. After receiving either Cas9n or WT Cas9-mediated gene correction therapy, HTI rats gained weight steadily and survived. Fah-expressing hepatocytes occupied over 95% of the liver tissue 9 months after the treatment. Moreover, CRISPR/Cas9-mediated gene therapy prevented the progression of liver cirrhosis, a phenotype that could not be recapitulated in the HTI mouse model. These results strongly suggest that Cas9n-mediated genome editing is a valuable and safe gene therapy strategy for this genetic disease.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Deoxyribonuclease I/metabolism , Gene Editing , Genetic Therapy/methods , Tyrosinemias/genetics , Adenoviridae/genetics , Animals , Disease Models, Animal , Female , Genetic Vectors , HEK293 Cells , Hepatocytes/cytology , Humans , Hydrolases/genetics , INDEL Mutation , Liver Cirrhosis/etiology , Liver Cirrhosis/prevention & control , Male , Rats , Tyrosinemias/complications , Tyrosinemias/immunology , Tyrosinemias/therapy
10.
Mol Ther ; 25(10): 2270-2279, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28757080

ABSTRACT

The incorporation of an endogenous safety switch represents a rational strategy for the control of toxicities following the administration of adoptive T cell therapies. An ideal safety switch should be capable of depleting the transferred T cells with minimal injury to normal tissues. We generated a fusion receptor by engineering a cryptic 806 epitope of human epidermal growth factor receptor (EGFR) into the N terminus of the full-length human folate receptor 1 (FOLR1), designated as FR806. The expression of FR806 allows transduced T cells to be targeted with CH12, a monoclonal antibody recognizing the 806 epitope, but not wild-type EGFR in healthy tissues. FR806, therefore, constitutes a specific cell-surface marker for the elimination of transduced T cells. We demonstrate that the antibody-drug conjugate (ADC) CH12-MMAF is efficiently internalized by FR806-expressing T cells and has the potential to eliminate them. Transfected T cells could, furthermore, be efficiently detected and purified using CH12 antibodies. In immuno-compromised mice, CH12-MMAF eliminated the majority of transferred T cells expressing FR806 and anti-CD19 chimeric antigen receptor (CAR). The selectivity for the 806 epitope and internalization capacity of FOLR1 makes FR806 an efficient safety switch, which may additionally be used as a detection and purification biomarker for human T cell immunotherapies.


Subject(s)
Adoptive Transfer/methods , Biomarkers/blood , T-Lymphocytes/immunology , Animals , Cell Line , Humans , Interferon-gamma/metabolism , Interleukin-2/metabolism , Mice , Mice, SCID , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Mol Cancer ; 16(1): 127, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724430

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR), a well-known oncogenic driver, contributes to the initiation and progression of a wide range of cancer types. Aberrant lipid metabolism including highly produced monounsaturated fatty acids (MUFA) is recognized as a hallmark of cancer. However, how EGFR regulates MUFA synthesis in cancer remains elusive. This is the focus of our study. METHODS: The interaction between EGFR and stearoyl-CoA desaturase-1 (SCD1) was detected byco-immunoprecipitation. SCD1 protein expression, stability and phosphorylation were tested by western blot. The synthesis of MUFA was determined by liquid chromatography-mass spectrometry. The growth of lung cancer was detected by CCK-8 assay, Annexin V/PI staining, colony formation assay and subcutaneous xenograft assay. The expression of activated EGFR, phosphorylated and total SCD1 was tested by immunohistochemistry in 90 non-small cell lung cancersamples. The clinical correlations were analyzed by Chi-square test, Kaplan-Meier survival curve analysis and Cox regression. RESULTS: EGFR binds to and phosphorylates SCD1 at Y55. Phosphorylation of Y55 is required for maintaining SCD1 protein stability and thus increases MUFA level to facilitate lung cancer growth. Moreover, EGFR-stimulated cancer growth depends on SCD1 activity. Evaluation of non-small cell lung cancersamples reveals a positive correlation among EGFR activation, SCD1 Y55 phosphorylation and SCD1 protein expression. Furthermore, phospho-SCD1 Y55 can serve as an independent prognostic factor for poor patient survival. CONCLUSIONS: Ourstudy demonstrates that EGFR stabilizes SCD1 through Y55 phosphorylation, thereby up-regulating MUFA synthesis to promote lung cancer growth. Thus, we provide the first evidence that SCD1 can be subtly controlled by tyrosine phosphorylation and uncover a previously unknown direct linkage between oncogenic receptor tyrosine kinase and lipid metabolism in lung cancer. We also propose SCD1 Y55 phosphorylation as a potential diagnostic marker for lung cancer.


Subject(s)
ErbB Receptors/metabolism , Fatty Acids, Monounsaturated/metabolism , Lung Neoplasms/metabolism , Phosphorylation/physiology , Stearoyl-CoA Desaturase/metabolism , A549 Cells , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , HEK293 Cells , Humans , Kaplan-Meier Estimate
12.
Mediators Inflamm ; 2017: 4532409, 2017.
Article in English | MEDLINE | ID: mdl-29403161

ABSTRACT

The roles of pDC and IFN-α have not been well defined in IgA nephropathy (IgAN). In this study, we investigated the abundance of pDCs and IFN-α in IgAN patients and the response of peripheral blood mononuclear cells (PBMCs) after stimulation of the pDC-preferred TLR9 ligand CpG2216. The effects of IFN-α on plasma cell differentiation and leukocyte migration were also investigated. Here, we found that the percentages of pDCs were increased in PBMCs of IgAN patients, than in those of healthy controls. Plasma levels of IFN-α proteins and abundance of plasma cells were higher in IgAN patients than in healthy donors. Plasma IFN-α levels were positively associated with proteinuria, renal IgM deposition, and renal tubular atrophy/interstitial fibrosis grade in IgAN patients. Ex vivo activation of TLR9 on pDCs resulted in increased IFN-α production and enhanced plasma cell differentiation in IgAN patients as compared with healthy donors. IFN-α treatment led to increased plasma cell differentiation in vitro. IFN-α also significantly promoted expression of chemokines IP-10 and MCP-1 in human mesangial cells, which subsequently facilitated the transendothelial migration of human CD4+ and CD14+ cells. In conclusion, pDC and its secreted cytokine IFN-α may play important roles in pathological changes of IgA nephropathy.


Subject(s)
Dendritic Cells/physiology , Glomerulonephritis, IGA/pathology , Interferon-alpha/physiology , Plasma Cells/cytology , Adult , CD4-Positive T-Lymphocytes/physiology , Cell Differentiation , Cell Movement , Female , Glomerulonephritis, IGA/immunology , Humans , Male , Toll-Like Receptor 9/physiology
14.
Curr Atheroscler Rep ; 17(5): 503, 2015 May.
Article in English | MEDLINE | ID: mdl-25732743

ABSTRACT

AIP1 (ASK1-interacting protein-1; encoded by the DAB2IP gene), a signaling scaffolding protein, is abundantly expressed in vascular endothelial cells (EC). While it was initially discovered as an apoptosis signal-regulating kinase 1 (ASK1)-interacting protein, AIP1 broadly suppresses inflammatory responses triggered by cytokines and stresses such as TNF, LPS, VEGF, and endoplasmic reticulum (ER) stress in EC (therefore, AIP1 is an anti-inflammatory protein). Human genome-wide association study (GWAS) has identified DAB2IP gene variants conferring susceptibility to cardiovascular diseases. Consistently, a global or vascular EC-specific deletion of DAB2IP in mice strongly enhances inflammatory responses and exacerbates atherosclerosis and graft arteriosclerosis progression in mouse models. Mechanisms for AIP1 function and regulation associated with human cardiovascular diseases need further investigations.


Subject(s)
Arteriosclerosis/genetics , Carrier Proteins/genetics , Genome-Wide Association Study , Oxidative Stress/genetics , Adaptor Proteins, Signal Transducing , Animals , Arteriosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Guanylate Kinases , Humans , Signal Transduction
15.
Parasitol Res ; 113(6): 2387-90, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24770718

ABSTRACT

Usnic acid, a major active compound in lichens, was first isolated in 1884. Since then, usnic acid and its sodium salt (sodium usnic acid) have been used in medicine, perfumery, cosmetics, and other industries due to its extensive biological activities. However, its acaricidal activity has not been studied. In this paper, we investigated the acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro. After evaluating the acaricidal activity and toxicity of usnic acid and sodium usnic acid in vitro, the results showed that at doses of 250, 125, and 62.5 mg/ml, usnic acid and sodium usnic acid can kill mites with 91.67, 85.00, and 55.00% and 100, 100, and 60.00% mortality after treatment 24 h. The LT50 values were 4.208, 8.249, and 16.950 h and 3.712, 7.339, and 15.773 h for usnic acid and sodium usnic acid, respectively. Sodium usnic acid has a higher acaricidal activity than usnic acid, which may be related to the difference in their structures.


Subject(s)
Acaricides/pharmacology , Benzofurans/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Psoroptidae/drug effects , Acaricides/administration & dosage , Animals , Benzofurans/administration & dosage , Benzofurans/chemistry , Dose-Response Relationship, Drug , Heterocyclic Compounds, 3-Ring/administration & dosage , Molecular Structure
16.
Heliyon ; 10(1): e23511, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38230242

ABSTRACT

The disheveled-associated antagonist of ß-catenin homolog 3 (DACT3) has been recognized as a tumor suppressor in various cancers. However, the function of DACT3 on glioma malignant progression along with potential molecular mechanisms is poorly clarified. This research aimed to investigate how DACT3 contributes to suppressing the progression of glioma. In our investigation, a pronounced decrease in DACT3 expression was observed in glioma tissues. Through the overexpression of DACT3, we noted a significant suppression in the proliferation, invasion, and migration of glioma cells, while concurrently observing an increase in cell adhesion. Our exploration into the molecular mechanisms revealed that DACT3 executes its tumor-suppressive role by impeding the expression of notch 1 intracellular domain (NICD) and translocating into the nucleus by downregulating the expression of ß-catenin. Consequently, this process leads to the suppression of Notch1 signaling. To summarize, our findings reveal the function of DACT3 to inhibit glioma progression via the Notch1 signaling pathway in ß-catenin dependent manner. This study stands as the pioneer in examining the role of DACT3 in glioma progression and comprehensively elucidating its molecular mechanisms in glioma development. Therefore, our results suggest that DACT3 holds promise as both a prognostic factor and a potential biomarker for guiding treatment strategies in glioma patients (Graphical Abstract).

17.
Heliyon ; 10(3): e24849, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317990

ABSTRACT

Whether receptor activity-modifying proteins (RAMPs) play a key role in human cancer prognosis and immunity remains unknown. We used data from the public databases, The Cancer Genome Atlas, Therapeutically Applicable Research to Generate Effective Treatments, and the Genotype-Tissue Expression project. We utilized bioinformatics methods, R software, and a variety of online databases to analyze RAMPs. In general, RAMPs were significantly and differentially expressed in multiple tumors, and RAMP expression was closely associated with prognosis, immune checkpoints, RNA-editing genes, tumor mutational burden, microsatellite instability, ploidy, and stemness indices. In addition, the expression of RAMPs is strongly correlated with tumor-infiltrating lymphocytes in human cancers. Moreover, the RAMP co-expression network is largely involved in many immune-related biological processes. Quantitative reverse transcription polymerase chain reaction and Western blot proved that RAMP3 was highly expressed in glioma, and RAMP3 promoted tumor proliferation and migration. RAMPs exhibit potential as prognostic and immune-related biomarkers in human cancers. Moreover, RAMPs can be potentially developed as therapeutic targets or used to enhance the efficacy of immunotherapy.

18.
Int Immunopharmacol ; 137: 112420, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38851159

ABSTRACT

OBJECTIVES: This study aimed to explore the underlying mechanisms of sepsis and acute kidney injury (AKI), including sepsis-associated AKI (SA-AKI), a frequent complication in critically ill sepsis patients. METHODS: GWAS data was analyzed for genetic association between AKI and sepsis. Then, we systematically applied three distinct machine learning algorithms (LASSO, SVM-RFE, RF) to rigorously identify and validate signature genes of SA-AKI, assessing their diagnostic and prognostic value through ROC curves and survival analysis. The study also examined the functional and immunological aspects of these genes, potential drug targets, and ceRNA networks. A mouse model of sepsis was created to test the reliability of these signature genes. RESULTS: LDSC confirmed a positive genetic correlation between AKI and sepsis, although no significant shared loci were found. Bidirectional MR analysis indicated mutual increased risks of AKI and sepsis. Then, 311 key genes common to sepsis and AKI were identified, with 42 significantly linked to sepsis prognosis. Six genes, selected through LASSO, SVM-RFE, and RF algorithms, showed excellent predictive performance for sepsis, AKI, and SA-AKI. The models demonstrated near-perfect AUCs in both training and testing datasets, and a perfect AUC in a sepsis mouse model. Significant differences in immune cells, immune-related pathways, HLA, and checkpoint genes were found between high- and low-risk groups. The study identified 62 potential drug treatments for sepsis and AKI and constructed a ceRNA network. CONCLUSIONS: The identified signature genes hold potential clinical applications, including prognostic evaluation and targeted therapeutic strategies for sepsis and AKI. However, further research is needed to confirm these findings.


Subject(s)
Acute Kidney Injury , Genome-Wide Association Study , Machine Learning , Sepsis , Acute Kidney Injury/genetics , Acute Kidney Injury/immunology , Acute Kidney Injury/diagnosis , Sepsis/genetics , Sepsis/immunology , Animals , Humans , Mice , Disease Models, Animal , Mice, Inbred C57BL , Prognosis , Male , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
19.
iScience ; 27(4): 109317, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38500821

ABSTRACT

In glioma molecular subtyping, existing biomarkers are limited, prompting the development of new ones. We present a multicenter study-derived consensus immune-related and prognostic gene signature (CIPS) using an optimal risk score model and 101 algorithms. CIPS, an independent risk factor, showed stable and powerful predictive performance for overall and progression-free survival, surpassing traditional clinical variables. The risk score correlated significantly with the immune microenvironment, indicating potential sensitivity to immunotherapy. High-risk groups exhibited distinct chemotherapy drug sensitivity. Seven signature genes, including IGFBP2 and TNFRSF12A, were validated by qRT-PCR, with higher expression in tumors and prognostic relevance. TNFRSF12A, upregulated in GBM, demonstrated inhibitory effects on glioma cell proliferation, migration, and invasion. CIPS emerges as a robust tool for enhancing individual glioma patient outcomes, while IGFBP2 and TNFRSF12A pose as promising tumor markers and therapeutic targets.

20.
Synth Syst Biotechnol ; 8(4): 606-609, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37753197

ABSTRACT

Adoptive transfer of T cells engineered with chimeric antigen receptor (CAR) has been proved to have robust anti-tumor effects against hematological malignancies. However, problems about safety and efficacy, such as cytokine release syndrome (CRS), T cell exhaustion and antigen escape are still raised when patients are treated with CAR-T cells. Moreover, CAR-T therapy has limited applications in treating solid tumors, owing to inefficient infiltration and poor functional persistence of CAR-T cells and diverse immunosuppression in tumor microenvironment. In order to overcome these limitations and broad its applications, multiple controllable CAR-T technologies were exploited. In this article, we review the designs of intelligent controlled CAR-T technologies and the innovations that they bring about in recent years.

SELECTION OF CITATIONS
SEARCH DETAIL