Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.279
Filter
Add more filters

Publication year range
1.
Cell ; 187(3): 764-781.e14, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306985

ABSTRACT

Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.


Subject(s)
Metabolomics , Pregnancy , Animals , Female , Humans , Pregnancy/metabolism , Corticosterone/metabolism , Metabolome/physiology , Placenta/metabolism , Pre-Eclampsia , Primates/metabolism
2.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38569554

ABSTRACT

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , DEAD-box RNA Helicases , Exoribonucleases , Genomic Instability , Methyltransferases , R-Loop Structures , RNA Polymerase II , Transcription Termination, Genetic , Humans , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Adenosine/metabolism , Adenosine/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , HEK293 Cells , Chromatin/metabolism , Chromatin/genetics , DNA Damage , HeLa Cells , RNA/metabolism , RNA/genetics , Transcription, Genetic , RNA Methylation
3.
Proc Natl Acad Sci U S A ; 121(5): e2309981121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38252819

ABSTRACT

Direct use of metals as battery anodes could significantly boost the energy density, but suffers from limited cycling. To make the batteries more sustainable, one strategy is mitigating the propensity for metals to form random morphology during plating through orientation regulation, e.g., hexagonal Zn platelets locked horizontally by epitaxial electrodeposition or vertically aligned through Zn/electrolyte interface modulation. Current strategies center around obtaining (002) faceted deposition due to its minimum surface energy. Here, benefiting from the capability of preparing a library of faceted monocrystalline Zn anodes and controlling the orientation of Zn platelet deposits, we challenge this conventional belief. We show that while monocrystalline (002) faceted Zn electrode with horizontal epitaxy indeed promises the highest critical current density, the (100) faceted electrode with vertically aligned deposits is the most important one in suppressing Zn metal corrosion and promising the best reversibility. Such uniqueness results from the lowest electrochemical surface area of (100) faceted electrode, which intrinsically builds upon the surface atom diffusion barrier and the orientation of the pallets. These new findings based on monocrystalline anodes advance the fundamental understanding of electrodeposition process for sustainable metal batteries and provide a paradigm to explore the processing-structure-property relationships of metal electrodes.

4.
Proc Natl Acad Sci U S A ; 120(31): e2221522120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487085

ABSTRACT

Cataract is a leading ocular disease causing global blindness. The mechanism of cataractogenesis has not been well defined. Here, we demonstrate that the heat shock protein 90ß (HSP90ß) plays a fundamental role in suppressing cataractogenesis. HSP90ß is the most dominant HSP in normal lens, and its constitutive high level of expression is largely derived from regulation by Sp1 family transcription factors. More importantly, HSP90ß is significantly down-regulated in human cataract patients and in aging mouse lenses, whereas HSP90ß silencing in zebrafish causes cataractogenesis, which can only be rescued by itself but not other HSP90 genes. Mechanistically, HSP90ß can directly interact with CHMP4B, a newly-found client protein involved in control of cytokinesis. HSP90ß silencing causes upregulation of CHMP4B and another client protein, the tumor suppressor p53. CHMP4B upregulation or overexpression induces excessive division of lens epithelial cells without proper differentiation. As a result, these cells were triggered to undergo apoptosis due to activation of the p53/Bak-Bim pathway, leading to cataractogenesis and microphthalmia. Silence of both HSP90ß and CHMP4B restored normal phenotype of zebrafish eye. Together, our results reveal that HSP90ß is a critical inhibitor of cataractogenesis through negative regulation of CHMP4B and the p53-Bak/Bim pathway.


Subject(s)
Cataract , HSP90 Heat-Shock Proteins , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Aging/genetics , Cataract/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , HSP90 Heat-Shock Proteins/metabolism , Multivesicular Bodies/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Zebrafish/genetics , Zebrafish/metabolism
5.
Eur J Immunol ; 54(8): e2350756, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38778505

ABSTRACT

Decreased monocytic HLA-DR expression is the most studied biomarker of immune competency in critically ill and autoimmune disease patients. However, the underlying regulatory mechanisms remain largely unknown. One probable HLA-DR dysregulation is through microRNAs. The aim of this study was to investigate the effects of specific microRNAs on HLA-DR expression in human monocytic cells. Four up- and four down-HLA-DR-regulating microRNAs were identified, with hsa-miR-let-7f-2-3p showing the most significant upregulation and hsa-miR-567 and hsa-miR-3972 downregulation. Anti-inflammatory glucocorticoid medication Dexamethasone-decreased HLA-DR was significantly restored by hsa-miR-let-7f-2-3p and hsa-miR-5693. Contrarily, proinflammatory cytokines IFN-γ and TNF-α-increased HLA-DR were significantly reversed by hsa-miR-567. Clinically, paired plasma samples from patients before and one day after cardiac surgery revealed up-regulated expression of hsa-miR-5693, hsa-miR-567, and hsa-miR-3972, following the major surgical trauma. In silico approaches were applied for functional microRNA-mRNA interaction prediction and candidate target genes were confirmed by qPCR analysis. In conclusion, novel monocytic HLA-DR microRNA modulators were identified and validated in vitro. Moreover, both the interaction between the microRNAs and anti- and proinflammatory molecules and the up-regulated microRNAs identified in cardiac surgery highlight the potential clinical relevance of our findings.


Subject(s)
HLA-DR Antigens , MicroRNAs , Monocytes , Humans , MicroRNAs/genetics , Monocytes/immunology , Monocytes/metabolism , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , Gene Expression Regulation , Male , Tumor Necrosis Factor-alpha/metabolism , Female , Dexamethasone/pharmacology
6.
Nature ; 575(7784): 618-621, 2019 11.
Article in English | MEDLINE | ID: mdl-31776491

ABSTRACT

All stellar-mass black holes have hitherto been identified by X-rays emitted from gas that is accreting onto the black hole from a companion star. These systems are all binaries with a black-hole mass that is less than 30 times that of the Sun1-4. Theory predicts, however, that X-ray-emitting systems form a minority of the total population of star-black-hole binaries5,6. When the black hole is not accreting gas, it can be found through radial-velocity measurements of the motion of the companion star. Here we report radial-velocity measurements taken over two years of the Galactic B-type star, LB-1. We find that the motion of the B star and an accompanying Hα emission line require the presence of a dark companion with a mass of [Formula: see text] solar masses, which can only be a black hole. The long orbital period of 78.9 days shows that this is a wide binary system. Gravitational-wave experiments have detected black holes of similar mass, but the formation of such massive ones in a high-metallicity environment would be extremely challenging within current stellar evolution theories.

7.
Nano Lett ; 24(12): 3647-3653, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38488282

ABSTRACT

With exceptional quantum confinement, 2D monolayer semiconductors support a strong excitonic effect, making them an ideal platform for exploring light-matter interactions and as building blocks for novel optoelectronic devices. Different from the well-known in-plane excitons in transition metal dichalcogenides (TMD), the out-of-plane excitons in indium selenide (InSe) usually show weak emission, which limits their applications as light sources. Here, by embedding InSe in an anisotropic gap plasmon nanocavity, we have realized plasmon-enhanced linearly polarized photoluminescence with an anisotropic ratio up to ∼140, corresponding to degree of polarization (DoP) of ∼98.6%. Such polarization selectivity, originating from the polarization-dependent plasmonic enhancement supported by the "nanowire-on-mirror" nanocavity, can be well tuned by the InSe thickness. Moreover, we have also realized an InSe-based light-emitting diode with polarized electroluminescence. Our research highlights the role of excitonic dipole orientation in designing nanophotonic devices and paves the way for developing InSe-based optoelectronic devices with polarization control.

8.
J Biol Chem ; 299(12): 105444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949219

ABSTRACT

Peripheral glial Schwann cells switch to a repair state after nerve injury, proliferate to supply lost cell population, migrate to form regeneration tracks, and contribute to the generation of a permissive microenvironment for nerve regeneration. Exploring essential regulators of the repair responses of Schwann cells may benefit the clinical treatment for peripheral nerve injury. In the present study, we find that FOSL1, a AP-1 member that encodes transcription factor FOS Like 1, is highly expressed at the injured sites following peripheral nerve crush. Interfering FOSL1 decreases the proliferation rate and migration ability of Schwann cells, leading to impaired nerve regeneration. Mechanism investigations demonstrate that FOSL1 regulates Schwann cell proliferation and migration by directly binding to the promoter of EPH Receptor B2 (EPHB2) and promoting EPHB2 transcription. Collectively, our findings reveal the essential roles of FOSL1 in regulating the activation of Schwann cells and indicate that FOSL1 can be targeted as a novel therapeutic approach to orchestrate the regeneration and functional recovery of injured peripheral nerves.


Subject(s)
Peripheral Nerve Injuries , Schwann Cells , Nerve Regeneration/physiology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerves/metabolism , Schwann Cells/metabolism , Animals , Rats , Rats, Sprague-Dawley
9.
Int J Cancer ; 154(6): 1111-1123, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37842828

ABSTRACT

Effective screening and early detection are critical to improve the prognosis of gastric cancer (GC). Our study aims to explore noninvasive multianalytical biomarkers and construct integrative models for preliminary risk assessment and GC detection. Whole genomewide methylation marker discovery was conducted with CpG tandems target amplification (CTTA) in cfDNA from large asymptomatic screening participants in a high-risk area of GC. The methylation and mutation candidates were validated simultaneously using one plasma from patients at various gastric lesion stages by multiplex profiling with Mutation Capsule Plus (MCP). Helicobacter pylori specific antibodies were detected with a recomLine assay. Integrated models were constructed and validated by the combination of multianalytical biomarkers. A total of 146 and 120 novel methylation markers were found in CpG islands and promoter regions across the genome with CTTA. The methylation markers together with the candidate mutations were validated with MCP and used to establish a 133-methylation-marker panel for risk assessment of suspicious precancerous lesions and GC cases and a 49-methylation-marker panel as well as a 144-amplicon-mutation panel for GC detection. An integrated model comprising both methylation and specific antibody panels performed better for risk assessment than a traditional model (AUC, 0.83 and 0.63, P < .001). A second model for GC detection integrating methylation and mutation panels also outperformed the traditional model (AUC, 0.82 and 0.68, P = .005). Our study established methylation, mutation and H. pylori-specific antibody panels and constructed two integrated models for risk assessment and GC screening. Our findings provide new insights for a more precise GC screening strategy in the future.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , DNA Methylation , Early Detection of Cancer , Biomarkers , Risk Assessment , Helicobacter pylori/genetics , Biomarkers, Tumor/genetics , CpG Islands , Helicobacter Infections/diagnosis , Helicobacter Infections/genetics , Helicobacter Infections/pathology
10.
Cancer ; 130(10): 1884-1893, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38236717

ABSTRACT

BACKGROUND: The presence of circulating plasma cells (CPCs) is an important laboratory indicator for the diagnosis, staging, risk stratification, and progression monitoring of multiple myeloma (MM). Early detection of CPCs in the peripheral blood (PB) followed by timely interventions can significantly improve MM prognosis and delay its progression. Although the conventional cell morphology examination remains the predominant method for CPC detection because of accessibility, its sensitivity and reproducibility are limited by technician expertise and cell quantity constraints. This study aims to develop an artificial intelligence (AI)-based automated system for a more sensitive and efficient CPC morphology detection. METHODS: A total of 137 bone marrow smears and 72 PB smears from patients with at Zhongshan Hospital, Fudan University, were retrospectively reviewed. Using an AI-powered digital pathology platform, Morphogo, 305,019 cell images were collected for training. Morphogo's efficacy in CPC detection was evaluated with additional 184 PB smears (94 from patients with MM and 90 from those with other hematological malignancies) and compared with manual microscopy. RESULTS: Morphogo achieved 99.64% accuracy, 89.03% sensitivity, and 99.68% specificity in classifying CPCs. At a 0.60 threshold, Morphogo achieved a sensitivity of 96.15%, which was approximately twice that of manual microscopy, with a specificity of 78.03%. Patients with CPCs detected by AI scanning had a significantly shorter median progression-free survival compared with those without CPC detection (18 months vs. 34 months, p< .01). CONCLUSIONS: Morphogo is a highly sensitive system for the automated detection of CPCs, with potential applications in initial screening, prognosis prediction, and posttreatment monitoring for MM patients. PLAIN LANGUAGE SUMMARY: Diagnosing and monitoring multiple myeloma (MM), a type of blood cancer, requires identifying and quantifying specific cells called circulating plasma cells (CPCs) in the blood. The conventional method for detecting CPCs is manual microscopic examination, which is time-consuming and lacks sensitivity. This study introduces a highly sensitive CPC detection method using an artificial intelligence-based system, Morphogo. It demonstrated remarkable sensitivity and accuracy, surpassing conventional microscopy. This advanced approach suggests that early and accurate CPC detection is achievable by morphology examination, making efficient CPC screening more accessible for patients with MM. This innovative system has the potential to be used in the diagnosis and risk assessment of MM.


Subject(s)
Deep Learning , Multiple Myeloma , Plasma Cells , Humans , Multiple Myeloma/pathology , Multiple Myeloma/blood , Multiple Myeloma/diagnosis , Plasma Cells/pathology , Retrospective Studies , Female , Male , Middle Aged , Aged , Neoplastic Cells, Circulating/pathology , Prognosis , Adult
11.
Anal Chem ; 96(15): 5931-5939, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38573171

ABSTRACT

Cuproptosis is a novel copper-dependent form of programmed cell death, displaying important regulatory functions in many human diseases, including cancer. However, the relationship between the changes in mitochondrial viscosity, a key factor associated with cellular malfunction, and cuproptosis is still unclear. Herein, we prepared a phosphorescent iridium (Ir) complex probe for precisely monitoring the changes of mitochondrial viscosity during cuprotosis via phosphorescence lifetime imaging. The Ir complex probe possessed microsecond lifetimes (up to 1 µs), which could be easily distinguished from cellular autofluorescence to improve the imaging contrast and sensitivity. Benefiting from the long phosphorescence lifetime, excellent viscosity selectivity, and mitochondrial targeting abilities, the Ir complex probe could monitor the increase in the mitochondrial viscosity during cuproptosis (from 46.8 to 68.9 cP) in a quantitative manner. Moreover, through in situ fluorescence imaging, the Ir complex probe successfully monitored the increase in viscosity in zebrafish treated with lipopolysaccharides or elescolomol-Cu2+, which were well-known cuproptosis inducers. We anticipate that this new Ir complex probe will be a useful tool for in-depth understanding of the biological effects of mitochondrial viscosity during cuproptosis.


Subject(s)
Iridium , Zebrafish , Animals , Humans , Viscosity , Zebrafish/metabolism , Cell Line, Tumor , HeLa Cells
12.
Biochem Biophys Res Commun ; 709: 149853, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38555838

ABSTRACT

BACKGROUND: Tibial transverse transport (TTT) can promote the healing of chronic foot ulcers, but the specific cellular and molecular mechanisms by which TTT promotes wound healing remain unclear. METHODS: New Zealand White rabbits were selected to induce foot ulcer models. The treatment included unilateral TTT surgery and bilateral TTT surgery. Observation of tissue neovascularization structure by HE staining and CD31 immunofluorescence detection. Collagen fiber formation was detected through the Masson staining. The mobilization of endothelial progenitor cell (EPCs) were analyzed by VEGFR2 immunofluorescence detection and flow cytometry detection of the number of VEGFR2/Tie-2-positive cells in peripheral blood. ELISA and qPCR assay were performed to detect VEGFA and CXCL12 levels. RESULTS: The complete healing time of ulcer surfaces in sham, unilateral and bilateral TTT groups was about 22 days, 17 days and 13 days, respectively. TTT treatment significantly increased the deposition of granulation tissue and epithelialization of wounds. It also led to an increase in collagen fiber content and the level of the microvascular marker CD31. Furthermore, TTT treatment upregulated the levels of VEGFA and CXCL12 in peripheral blood and wound tissues, as well as increased the expression of VEGFR2 in wound tissues and the proportion of VEGFR2/Tie-2 in peripheral blood. Moreover, these effects of TTT treatment in the bilateral group was more significant than that in the unilateral group. CONCLUSIONS: TTT may facilitate wound fibroblasts to release VEGFA and CXCL12, causing EPC mobilization, thus promoting angiogenesis and ulcer wound healing.


Subject(s)
Angiogenesis , Endothelial Progenitor Cells , Ulcer , Wound Healing , Animals , Rabbits , Collagen
13.
Biochem Biophys Res Commun ; 709: 149842, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38554601

ABSTRACT

Oral squamous cell carcinoma (OSCC), a malignancy originating from mucosal epithelial cells. Currently, triggering apoptotic cell death with anticancer drugs is the main way to inhibit OSCC cells. However, the capability to trigger apoptosis in tumors is constrained by the intrinsic resistance of tumor cells to apoptosis, hampering its effectiveness. Thus, utilizing alternative modes of non-apoptotic cell death offers new therapeutic possibilities, such as using a drug combination strategy to simultaneously induce ferroptosis and autophagy has the potential to improve OSCC therapy. In this study, we found the ferroptosis inducer RSL3 has certain inhibitory effects on the proliferation and migration of OSCC cells. Interestingly, our studies showed that RSL3 is also associated with autophagy activation. Based on this finding, we tried to combine RSL3 with the autophagy inducer LYN-1604 to improve the therapeutic effect. The results demonstrated that simultaneous regulation of autophagy and ferroptosis significantly reduced the proliferation and migration of OSCC cells. Taken together, we demonstrated the therapeutic potential of RSL3 in OSCC cells and proposed that simultaneous activation of autophagy and ferroptosis have synergistic effects, which would provide valuable clues for further exploration of targeted therapy for OSCC.


Subject(s)
Carcinoma, Squamous Cell , Ferroptosis , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Cell Line, Tumor , Mouth Neoplasms/pathology , Apoptosis , Autophagy , Cell Proliferation
14.
Small ; 20(23): e2309126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38148313

ABSTRACT

Lithium-sulfur batteries (LSBs) with superior energy density are among the most promising candidates for next-generation energy storage techniques. Sulfurized polyacrylonitrile (SPAN) exhibits competitive advantages in terms of cycle stability, rate performance as well as cost. However, the preparation of high-loading SPAN electrodes is still challenging. Herein, inspired by mussel and cobweb, a high-loading SPAN electrode is enabled by the combination of polydopamine (PDA) coating and a bimodal distributed single-wall carbon nanotubes (SWCNT) slurry dispersed in polyvinylpyrrolidone (PVP), their synergistic effect not only constructs effective electron percolating networks within the electrode but also make high active material (AM) ratio possible. High areal capacity PDA@SPAN electrode (18.40 mAh cm-2 in the initial cycle) with negligible specific capacity attenuation as the mass loading increasement is realized through the facile slurry casting process. The dynamic N─H…O hydrogen bond is formed between PDA and PVP and the electrode integrity during charge/discharge is greatly strengthened. The battery with an areal AM loading of 7.16 mg cm-2 (5.16 mAh cm-2) retains 92.0% of capacity in 80 cycles and 87.18% in 160 cycles, and it also shows stable cycle performances even with a high loading of 19.79 mg cm-2 and lean electrolyte (3.28 µL mg-1).

15.
Small ; : e2402164, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881322

ABSTRACT

Thin and flexible solid-state electrolyte (SSE) films with high ionic conductivity and low interfacial resistance are urgently required for lithium metal batteries (LMBs). However, it's still challenging to reduce the film thickness to <20 µm, especially for those with high ceramic contents. Herein, a facile slurry casting method is developed to prepare the ultra-thin (14 µm) Li3Zr2Si2PO12 (LZSP) films with ceramic content up to 91% using a composite polymer binder, polyvinylidene fluoride (PVDF), and polyethylene oxide (PEO). It shows that PEO not only enhanced the film flexibility but also makes it be easily peeled off to form a freestanding membrane, PLN. To promote the interfacial ion transport, PEO/lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) is introduced to the film surface, and the resultant tri-layer film, PPLN, shows a satisfying room temperature ionic conductivity of 0.116 mS cm-1, high Li+ transference number of 0.79, and good compatibility with metal lithium. As a result, LMBs using LiFePO4 cathode and PPLN electrolyte exhibit excellent safety as well as electrochemical performances in the wide temperature range between room temperature (RT) and 100 °C.

16.
Small ; : e2402752, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822717

ABSTRACT

Surface modification of Cu current collectors (CCs) is proven to be an effective method for protecting lithium metal anodes. However, few studies have focused on the quality and efficiency of modification layers. Herein, a novel home-made filtered cathode vacuum arc (FCVA) co-deposition system with high modification efficiency, good repeatability and environmental friendliness is proposed to realize the wide range regulation of film composition, structure and performance. Through this system, ZnMgTiAl quaternary alloy films, which have good affinity with Li are successfully constructed on Cu CCs, and the fully enhanced electrochemical performances are achieved. Symmetrical cells constructed with modified CCs maintained a fairly low voltage hysteresis of only 13 mV after 2100 h at a current density of 1 mA cm-2. In addition, the capacity retention rate is as high as 75.0% after 100 cycles in the full cells. The influence of alloy films on the dynamic evolution process of constructing stable artificial solid electrolyte interphase (SEI) layer is revealed by in situ infrared (IR) spectroscopy. This work provides a promising route for designing various feasible modification films for LMBs, and it displays better industrial application prospects than the traditional chemical methods owing to the remarkable controllability and scale-up capacity.

17.
Small ; : e2403035, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030885

ABSTRACT

Organic single crystals possess distinct advantages due to their highly ordered molecular structures, resulting in improved stability, enhanced carrier mobility, and superior optical characteristics. However, their mechanical rigidity and brittleness impede the applications in flexible and wearable optoelectronic devices. Here, photoluminescence (PL) emission from 2,6-diphenylanthracene (DPA) single crystals is studied under tensile strain, which shows PL enhancement by more than two times with a strain of ≈1.42%. Such a tension induced PL enhancement is reversible, exhibiting no clear optical degradations during 100 cycles of bending and recovery processes. Theoretical calculations reveal that the deformation of molecular structure under strain induces a decrease of the dihedral between anthracene and benzene moieties in DPA molecules. Further, the increased molecular conjugation enhances the molecular oscillator strength, leading to the brightened PL emission. Meanwhile, with the decreased dihedral, the molecular vibrations in DPA crystals are suppressed, which can reduce the non-radiative decay rate. In contrast, no tension induced PL enhancement is observed in polycrystalline DPA thin films as the strain can be released via the grain boundaries. This study highlights the superior optical performance of DPA single crystals under strain field, which will provide new possibilities for DPA-based flexible devices.

18.
J Virol ; 97(1): e0190022, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36602367

ABSTRACT

Respiratory syncytial virus (RSV) is a serious human respiratory pathogen, but no RSV vaccine has been licensed. Many vaccine candidates are focused on the viral F protein since the F protein is more conserved than the viral G protein across RSV strains and serotypes; thus, the F protein is thought more likely to induce a broader range of protection from infection. However, it is the G protein that binds the likely receptor, CX3CR1, in lung ciliated epithelial cells, raising the question of the importance of the G protein in vaccine candidates. Using virus-like particle (VLP) vaccine candidates, we have directly compared VLPs containing only the prefusion F protein (pre-F), only the G protein, or both glycoproteins. We report that VLPs containing both glycoproteins bind to anti-F-protein-specific monoclonal antibodies differently than do VLPs containing only the prefusion F protein. In RSV-naive cotton rats, VLPs assembled with only the pre-F protein stimulated extremely weak neutralizing antibody (NAb) titers, as did VLPs assembled with G protein. However, VLPs assembled with both glycoproteins stimulated quite robust neutralizing antibody titers, induced improved protection of the animals from RSV challenge compared to pre-F VLPs, and induced significantly higher levels of antibodies specific for F protein antigenic site 0, site III, and the AM14 binding site than did VLPs containing only the pre-F protein. These results indicate that assembly of pre-F protein with G protein in VLPs further stabilized the prefusion conformation or otherwise altered the conformation of the F protein, increasing the induction of protective antibodies. IMPORTANCE Respiratory syncytial virus (RSV) results in significant disease in infants, young children, and the elderly. Thus, development of an effective vaccine for these populations is a priority. Most ongoing efforts in RSV vaccine development have focused on the viral fusion (F) protein; however, the importance of the inclusion of G in vaccine candidates is unclear. Here, using virus-like particles (VLPs) assembled with only the F protein, only the G protein, or both glycoproteins, we show that VLPs assembled with both glycoproteins are a far superior vaccine in a cotton rat model compared with VLPs containing only F protein or only G protein. The results show that the presence of G protein in the VLPs influences the conformation of the F protein and the immune responses to F protein, resulting in significantly higher neutralizing antibody titers and better protection from RSV challenge. These results suggest that inclusion of G protein in a vaccine candidate may improve its effectiveness.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Vaccines, Virus-Like Particle , Animals , Humans , Mice , Antibodies, Neutralizing , Antibodies, Viral , Glycoproteins/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Vaccines, Virus-Like Particle/immunology , Viral Proteins/immunology
19.
J Virol ; 97(12): e0105223, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38032197

ABSTRACT

IMPORTANCE: Human metapneumovirus (hMPV) is a common pathogen causing lower respiratory tract infections worldwide and can develop severe symptoms in high-risk populations such as infants, the elderly, and immunocompromised patients. There are no approved hMPV vaccines or neutralizing antibodies available for therapeutic or prophylactic use. The trimeric hMPV fusion F protein is the major target of neutralizing antibodies in human sera. Understanding the immune recognition of antibodies to hMPV-F antigen will provide critical insights into developing efficacious hMPV monoclonal antibodies and vaccines.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Aged , Humans , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Metapneumovirus/physiology , Paramyxoviridae Infections/immunology , Viral Fusion Proteins , Viral Vaccines/immunology
20.
Rev Cardiovasc Med ; 25(5): 151, 2024 May.
Article in English | MEDLINE | ID: mdl-39076495

ABSTRACT

Background: The coronary no-reflow (NR) phenomenon is an independent predictor of major adverse cardiac events (MACEs). This study aimed to establish a clinical and comprehensive nomogram for predicting NR in acute myocardial infarction (AMI) patients after primary percutaneous coronary intervention (pPCI). Methods: The multivariable logistic regression analysis was performed to determine the NR-related factors. A nomogram was established via several clinical and biochemical factors, and the performance was evaluated via discrimination, calibration, and clinical factors. Results: The study consisted of 3041 AMI patients after pPCI, including 2129 patients in the training set (70%) and 912 patients in the validation set (30%). The NR event was 238 in the training set and 87 in the validation set. The level of N-terminal prohormone B-type natriuretic peptide (NT-proBNP), basophil count (BASO), neutrophil count (NEUBC), D-dimer, hemoglobin (Hb), and red blood cell distribution width (RDW.CV) in NR patients showed statistically significant differences. In the training set, the C-index was 0.712, 95% CI 0.677 to 0.748. In the validation set, the C-index was 0.663, 95% CI 0.604 to 0.722. Conclusions: A nomogram that may predict NR in AMI patients undergoing pPCI was established and validated. We hope this nomogram can be used for NR risk assessment and clinical decision-making and significantly prevent potentially impaired reperfusion associated with NR.

SELECTION OF CITATIONS
SEARCH DETAIL