Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.840
Filter
Add more filters

Publication year range
1.
Cell ; 182(5): 1271-1283.e16, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32795413

ABSTRACT

There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.


Subject(s)
RNA, Messenger/genetics , RNA, Viral/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Female , HEK293 Cells , HeLa Cells , Humans , Immunogenicity, Vaccine , Injections, Intramuscular , Macaca fascicularis , Male , Mice , Mice, Inbred ICR , Nanoparticles/chemistry , RNA, Messenger/metabolism , RNA, Viral/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Th1 Cells/immunology , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vero Cells , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
2.
Nature ; 625(7993): 148-156, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37993710

ABSTRACT

The continuing emergence of SARS-CoV-2 variants highlights the need to update COVID-19 vaccine compositions. However, immune imprinting induced by vaccination based on the ancestral (hereafter referred to as WT) strain would compromise the antibody response to Omicron-based boosters1-5. Vaccination strategies to counter immune imprinting are critically needed. Here we investigated the degree and dynamics of immune imprinting in mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation. In mice, the efficacy of single Omicron boosting is heavily limited when using variants that are antigenically distinct from WT-such as the XBB variant-and this concerning situation could be mitigated by a second Omicron booster. Similarly, in humans, repeated Omicron infections could alleviate WT vaccination-induced immune imprinting and generate broad neutralization responses in both plasma and nasal mucosa. Notably, deep mutational scanning-based epitope characterization of 781 receptor-binding domain (RBD)-targeting monoclonal antibodies isolated from repeated Omicron infection revealed that double Omicron exposure could induce a large proportion of matured Omicron-specific antibodies that have distinct RBD epitopes to WT-induced antibodies. Consequently, immune imprinting was largely mitigated, and the bias towards non-neutralizing epitopes observed in single Omicron exposures was restored. On the basis of the deep mutational scanning profiles, we identified evolution hotspots of XBB.1.5 RBD and demonstrated that these mutations could further boost the immune-evasion capability of XBB.1.5 while maintaining high ACE2-binding affinity. Our findings suggest that the WT component should be abandoned when updating COVID-19 vaccines, and individuals without prior Omicron exposure should receive two updated vaccine boosters.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunologic Memory , SARS-CoV-2 , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Immunologic Memory/immunology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Mutation
3.
Nature ; 614(7948): 521-529, 2023 02.
Article in English | MEDLINE | ID: mdl-36535326

ABSTRACT

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Evolution, Molecular , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Breakthrough Infections/immunology , Breakthrough Infections/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Serotherapy , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Protein Domains/genetics , Protein Domains/immunology , Antigenic Drift and Shift/immunology , Mutation
4.
Nat Immunol ; 17(3): 304-14, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26829766

ABSTRACT

The role of anergy, an acquired state of T cell functional unresponsiveness, in natural peripheral tolerance remains unclear. In this study, we found that anergy was selectively induced in fetal antigen-specific maternal CD4(+) T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4(+) T cells, enriched for self antigen-specific T cell antigen receptors, was also present in healthy hosts. Neuropilin-1 expression in anergic conventional CD4(+) T cells was associated with hypomethylation of genes related to thymic regulatory T cells (Treg cells), and this correlated with their ability to differentiate into Foxp3(+) Treg cells that suppressed immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity but also it generates the precursors for peripheral Treg cell differentiation.


Subject(s)
Autoimmunity/immunology , Cell Differentiation/immunology , Clonal Anergy/immunology , Histocompatibility, Maternal-Fetal/immunology , Peripheral Tolerance/immunology , Precursor Cells, T-Lymphoid/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Arthritis, Experimental/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Forkhead Transcription Factors/immunology , Genes, T-Cell Receptor alpha , Immunoblotting , Male , Mice , Mice, Knockout , Neuropilin-1/metabolism , Pregnancy , Receptors, Antigen, T-Cell/immunology , Reverse Transcriptase Polymerase Chain Reaction , Self Tolerance , Thymocytes/immunology
5.
Nature ; 608(7923): 593-602, 2022 08.
Article in English | MEDLINE | ID: mdl-35714668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Epitopes, B-Lymphocyte , Immune Tolerance , Mutation , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/genetics , Antigenic Drift and Shift/immunology , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
6.
EMBO J ; 42(1): e110937, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36382717

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a lethal premature aging disorder without an effective therapeutic regimen. Because of their targetability and influence on gene expression, microRNAs (miRNAs) are attractive therapeutic tools to treat diseases. Here we identified that hsa-miR-59 (miR-59) was markedly upregulated in HGPS patient cells and in multiple tissues of an HGPS mouse model (LmnaG609G/G609G ), which disturbed the interaction between RNAPII and TFIIH, resulting in abnormal expression of cell cycle genes by targeting high-mobility group A family HMGA1 and HMGA2. Functional inhibition of miR-59 alleviated the cellular senescence phenotype of HGPS cells. Treatment with AAV9-mediated anti-miR-59 reduced fibrosis in the quadriceps muscle, heart, and aorta, suppressed epidermal thinning and dermal fat loss, and yielded a 25.5% increase in longevity of LmnaG609G/G609G mice. These results identify a new strategy for the treatment of HGPS and provide insight into the etiology of HGPS disease.


Subject(s)
MicroRNAs , Progeria , Mice , Animals , Progeria/genetics , Antagomirs/therapeutic use , Cellular Senescence/genetics , MicroRNAs/genetics , Phenotype
7.
Genome Res ; 34(1): 134-144, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38191205

ABSTRACT

Large-scale genetic mutant libraries are powerful approaches to interrogating genotype-phenotype correlations and identifying genes responsible for certain environmental stimuli, both of which are the central goal of life science study. We produced the first large-scale CRISPR-Cas9-induced library in a nonmodel multicellular organism, Bombyx mori We developed a piggyBac-delivered binary genome editing strategy, which can simultaneously meet the requirements of mixed microinjection, efficient multipurpose genetic operation, and preservation of growth-defect lines. We constructed a single-guide RNA (sgRNA) plasmid library containing 92,917 sgRNAs targeting promoters and exons of 14,645 protein-coding genes, established 1726 transgenic sgRNA lines following microinjection of 66,650 embryos, and generated 300 mutant lines with diverse phenotypic changes. Phenomic characterization of mutant lines identified a large set of genes responsible for visual phenotypic or economically valuable trait changes. Next, we performed pooled context-specific positive screens for tolerance to environmental pollutant cadmium exposure, and identified KWMTBOMO12902 as a strong candidate gene for breeding applications in sericulture industry. Collectively, our results provide a novel and versatile approach for functional B. mori genomics, as well as a powerful resource for identifying the potential of key candidate genes for improving various economic traits. This study also shows the effectiveness, practicality, and convenience of large-scale mutant libraries in other nonmodel organisms.


Subject(s)
Bombyx , Animals , Bombyx/genetics , RNA, Guide, CRISPR-Cas Systems , Mutagenesis , Gene Editing/methods , Animals, Genetically Modified/genetics , CRISPR-Cas Systems
8.
Development ; 150(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36971700

ABSTRACT

Plants respond to environmental stresses through controlled stem cell maintenance and meristem activity. One level of gene regulation is RNA alternative splicing. However, the mechanistic link between stress, meristem function and RNA splicing is poorly understood. The MERISTEM-DEFECTIVE (MDF) Arabidopsis gene encodes an SR-related family protein, required for meristem function and leaf vascularization, and is the likely orthologue of the human SART1 and yeast Snu66 splicing factors. MDF is required for the correct splicing and expression of key transcripts associated with root meristem function. We identified RSZ33 and ACC1, both known to regulate cell patterning, as splicing targets required for MDF function in the meristem. MDF expression is modulated by osmotic and cold stress, associated with differential splicing and specific isoform accumulation and shuttling between nucleus and cytosol, and acts in part via a splicing target SR34. We propose a model in which MDF controls splicing in the root meristem to promote stemness and to repress stress response, cell differentiation and cell death pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Meristem/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , RNA Splicing/genetics , Cell Differentiation/genetics , Gene Expression Regulation, Plant/genetics , Plant Roots/genetics , Plant Roots/metabolism
9.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38436562

ABSTRACT

BACKGROUND: Depression has been linked to an increased risk of cardiovascular and respiratory diseases; however, its impact on cardiac and lung function remains unclear, especially when accounting for potential gene-environment interactions. METHODS: We developed a novel polygenic and gene-environment interaction risk score (PGIRS) integrating the major genetic effect and gene-environment interaction effect of depression-associated loci. The single nucleotide polymorphisms (SNPs) demonstrating major genetic effect or environmental interaction effect were obtained from genome-wide SNP association and SNP-environment interaction analyses of depression. We then calculated the depression PGIRS for non-depressed individuals, using smoking and alcohol consumption as environmental factors. Using linear regression analysis, we assessed the associations of PGIRS and conventional polygenic risk score (PRS) with lung function (N = 42 886) and cardiac function (N = 1791) in the subjects with or without exposing to smoking and alcohol drinking. RESULTS: We detected significant associations of depression PGIRS with cardiac and lung function, contrary to conventional depression PRS. Among smokers, forced vital capacity exhibited a negative association with PGIRS (ß = -0.037, FDR = 1.00 × 10-8), contrasting with no significant association with PRS (ß = -0.002, FDR = 0.943). In drinkers, we observed a positive association between cardiac index with PGIRS (ß = 0.088, FDR = 0.010), whereas no such association was found with PRS (ß = 0.040, FDR = 0.265). Notably, in individuals who both smoked and drank, forced expiratory volume in 1-second demonstrated a negative association with PGIRS (ß = -0.042, FDR = 6.30 × 10-9), but not with PRS (ß = -0.003, FDR = 0.857). CONCLUSIONS: Our findings underscore the profound impact of depression on cardiac and lung function, highlighting the enhanced efficacy of considering gene-environment interactions in PRS-based studies.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/complications , Depressive Disorder, Major/genetics , Gene-Environment Interaction , Genetic Risk Score , Smoking/adverse effects , Lung
10.
Immunity ; 46(3): 446-456, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28314593

ABSTRACT

Zika virus (ZIKV) has become a public health threat due to its global transmission and link to severe congenital disorders. The host immune responses to ZIKV infection have not been fully elucidated, and effective therapeutics are not currently available. Herein, we demonstrated that cholesterol-25-hydroxylase (CH25H) was induced in response to ZIKV infection and that its enzymatic product, 25-hydroxycholesterol (25HC), was a critical mediator of host protection against ZIKV. Synthetic 25HC addition inhibited ZIKV infection in vitro by blocking viral entry, and treatment with 25HC reduced viremia and conferred protection against ZIKV in mice and rhesus macaques. 25HC suppressed ZIKV infection and reduced tissue damage in human cortical organoids and the embryonic brain of the ZIKV-induced mouse microcephaly model. Our findings highlight the protective role of CH25H during ZIKV infection and the potential use of 25HC as a natural antiviral agent to combat ZIKV infection and prevent ZIKV-associated outcomes, such as microcephaly.


Subject(s)
Antiviral Agents/pharmacology , Hydroxycholesterols/pharmacology , Microcephaly/virology , Zika Virus Infection/complications , Animals , Brain/drug effects , Disease Models, Animal , Fluorescent Antibody Technique , Humans , Macaca mulatta , Mice , Microscopy, Confocal , Virus Internalization/drug effects , Zika Virus/drug effects , Zika Virus/physiology
11.
Nature ; 586(7827): 145-150, 2020 10.
Article in English | MEDLINE | ID: mdl-32968273

ABSTRACT

Natural products serve as chemical blueprints for most antibiotics in clinical use. The evolutionary process by which these molecules arise is inherently accompanied by the co-evolution of resistance mechanisms that shorten the clinical lifetime of any given class of antibiotics1. Virginiamycin acetyltransferase (Vat) enzymes are resistance proteins that provide protection against streptogramins2, potent antibiotics against Gram-positive bacteria that inhibit the bacterial ribosome3. Owing to the challenge of selectively modifying the chemically complex, 23-membered macrocyclic scaffold of group A streptogramins, analogues that overcome the resistance conferred by Vat enzymes have not been previously developed2. Here we report the design, synthesis, and antibacterial evaluation of group A streptogramin antibiotics with extensive structural variability. Using cryo-electron microscopy and forcefield-based refinement, we characterize the binding of eight analogues to the bacterial ribosome at high resolution, revealing binding interactions that extend into the peptidyl tRNA-binding site and towards synergistic binders that occupy the nascent peptide exit tunnel. One of these analogues has excellent activity against several streptogramin-resistant strains of Staphylococcus aureus, exhibits decreased rates of acetylation in vitro, and is effective at lowering bacterial load in a mouse model of infection. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Drug Design , Drug Resistance, Bacterial/drug effects , Streptogramin Group A/chemical synthesis , Streptogramin Group A/pharmacology , Acetylation/drug effects , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Anti-Bacterial Agents/classification , Bacterial Load/drug effects , Binding Sites , Cryoelectron Microscopy , Female , In Vitro Techniques , Mice , Microbial Sensitivity Tests , Models, Molecular , RNA, Transfer/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Streptogramin Group A/chemistry , Streptogramin Group A/classification , Virginiamycin/analogs & derivatives , Virginiamycin/chemistry , Virginiamycin/metabolism
12.
Nucleic Acids Res ; 52(1): 288-299, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37897365

ABSTRACT

Liquid-liquid phase separation (LLPS) of G-quadruplex (GQ) is involved in many crucial cellular processes, while the quadruplex-folding and their functions are typically modulated by specific DNA-binding proteins. However, the regulatory mechanism of binding proteins, particularly the well-folded proteins, on the LLPS of GQs is largely unknown. Here, we investigated the effect of HMGB1 on the condensation of a G-quadruplex of KRAS promoter (GQKRAS). The results show that these two rigid macro-biomolecules undergo co-condensation through a mutual promotion manner, while neither of them can form LLPS alone. Fluidity measurements confirm that the liquid-like droplets are highly dynamic. HMGB1 facilitates and stabilizes the quadruplex folding of GQKRAS, and this process enhances their co-condensation. The KRAS promoter DNA retains quadruplex folding in the droplets; interference with the GQ-folding disrupts the co-condensation of GQKRAS/HMGB1. Mechanistic studies reveal that electrostatic interaction is a key driving force of the interaction and co-condensation of GQKRAS/HMGB1; meanwhile, the recognition of two macro-biomolecules plays a crucial role in this process. This result indicates that the phase separation of GQs can be modulated by DNA binding proteins, and this process could also be an efficient way to recruit specific DNA binding proteins.


Subject(s)
G-Quadruplexes , HMGB1 Protein , Promoter Regions, Genetic , Proto-Oncogene Proteins p21(ras) , DNA/genetics , DNA/chemistry , HMGB1 Protein/chemistry , HMGB1 Protein/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Humans , Phase Separation
13.
Plant J ; 118(6): 1872-1888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38481350

ABSTRACT

As a plant-specific transcription factor, lateral organ boundaries domain (LBD) protein was reported to regulate plant growth and stress response, but the functional research of subfamily II genes is limited. SlMYC2, a master regulator of Jasmonic acid response, has been found to exhibit high expression levels in fruit and has been implicated in the regulation of fruit ripening and resistance to Botrytis. However, its role in fruit expansion remains unknown. In this study, we present evidence that a subfamily II member of LBD, namely SlLBD40, collaborates with SlMYC2 in the regulation of fruit expansion. Overexpression of SlLBD40 significantly promoted fruit growth by promoting mesocarp cell expansion, while knockout of SlLBD40 showed the opposite result. Similarly, SlMYC2 knockout resulted in a significant decrease in cell expansion within the fruit. Genetic analysis indicated that SlLBD40-mediated cell expansion depends on the expression of SlMYC2. SlLBD40 bound to the promoter of SlEXPA5, an expansin gene, but did not activate its expression directly. While, the co-expression of SlMYC2 and SlLBD40 significantly stimulated the activation of SlEXPA5, leading to an increase in fruit size. SlLBD40 interacted with SlMYC2 and enhanced the stability and abundance of SlMYC2. Furthermore, SlMYC2 directly targeted and activated the expression of SlLBD40, which is essential for SlLBD40-mediated fruit expansion. In summary, our research elucidates the role of the interaction between SlLBD40 and SlMYC2 in promoting cell expansion in tomato fruits, thus providing novel insights into the molecular genetics underlying fruit growth.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Plant Proteins , Solanum lycopersicum , Transcription Factors , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Fruit/genetics , Fruit/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics
15.
Chem Rev ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36728153

ABSTRACT

Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.

16.
J Pathol ; 263(1): 8-21, 2024 05.
Article in English | MEDLINE | ID: mdl-38332735

ABSTRACT

Pompe disease is a lysosomal storage disorder that preferentially affects muscles, and it is caused by GAA mutation coding acid alpha-glucosidase in lysosome and glycophagy deficiency. While the initial pathology of Pompe disease is glycogen accumulation in lysosomes, the special role of the lysosomal pathway in glycogen degradation is not fully understood. Hence, we investigated the characteristics of accumulated glycogen and the mechanism underlying glycophagy disturbance in Pompe disease. Skeletal muscle specimens were obtained from the affected sites of patients and mouse models with Pompe disease. Histological analysis, immunoblot analysis, immunofluorescence assay, and lysosome isolation were utilized to analyze the characteristics of accumulated glycogen. Cell culture, lentiviral infection, and the CRISPR/Cas9 approach were utilized to investigate the regulation of glycophagy accumulation. We demonstrated residual glycogen, which was distinguishable from mature glycogen by exposed glycogenin and more α-amylase resistance, accumulated in the skeletal muscle of Pompe disease. Lysosome isolation revealed glycogen-free glycogenin in wild type mouse lysosomes and variously sized glycogenin in Gaa-/- mouse lysosomes. Our study identified that a defect in the degradation of glycogenin-exposed residual glycogen in lysosomes was the fundamental pathological mechanism of Pompe disease. Meanwhile, glycogenin-exposed residual glycogen was absent in other glycogen storage diseases caused by cytoplasmic glycogenolysis deficiencies. In vitro, the generation of residual glycogen resulted from cytoplasmic glycogenolysis. Notably, the inhibition of glycogen phosphorylase led to a reduction in glycogenin-exposed residual glycogen and glycophagy accumulations in cellular models of Pompe disease. Therefore, the lysosomal hydrolysis pathway played a crucial role in the degradation of residual glycogen into glycogenin, which took place in tandem with cytoplasmic glycogenolysis. These findings may offer a novel substrate reduction therapeutic strategy for Pompe disease. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Glycogen Storage Disease Type II , Glycoproteins , Humans , Mice , Animals , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/pathology , Glycogen Storage Disease Type II/therapy , Glycogen/analysis , Glycogen/metabolism , Glucosyltransferases/metabolism , Muscle, Skeletal/pathology , Lysosomes/metabolism
17.
Exp Cell Res ; 435(1): 113910, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38185251

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is an aggressive malignant disease with a poor prognosis. We previously found that p62 presented a marked nuclear-cytoplasmic translocation in ESCC cells as compared that in normal esophageal epithelial cells, but its effects on ESCC cells remain unclear. This study aims to clarify the impacts of different cellular localization of p62 on the function of ESCC cells and the underlying molecular mechanisms. We here demonstrated that cytoplasmic p62 enhances the migration and invasion abilities of esophageal cancer cells, whereas nuclear p62 has no effect. We further explored the interaction protein of p62 by using GST pull-down experiment and identified EPLIN as a potential protein interacting with p62. In addition, reducing EPLIN expression significantly inhibited the migration and invasion of ESCC cells, which were rescued when EPLIN expression was restored after the p62 knockdown. At a molecular level, p62 in cytoplasm positively regulated the expression of EPLIN via enhancing its protein stability. Data from the TCGA and GEO database displayed a significant up-regulation of EPLIN mRNA expression in ESCC tissues compared with corresponding paired esophageal epithelial samples. Our findings present evidence that the nuclear-cytoplasmic translocation of p62 protein contributes to an aggressive malignancy phenotype, providing candidate molecular biomarkers and potential molecular targets for the diagnosis and treatment of ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Cytoplasm/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic/genetics , Neoplasm Invasiveness/genetics , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism
18.
Cell Mol Life Sci ; 81(1): 298, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992327

ABSTRACT

In spite of its essential role in culture media, the precise influence of lactate on early mouse embryonic development remains elusive. Previous studies have implicated lactate accumulation in medium affecting histone acetylation. Recent research has underscored lactate-derived histone lactylation as a novel epigenetic modification in diverse cellular processes and diseases. Our investigation demonstrated that the absence of sodium lactate in the medium resulted in a pronounced 2-cell arrest at the late G2 phase in embryos. RNA-seq analysis revealed that the absence of sodium lactate significantly impaired the maternal-to-zygotic transition (MZT), particularly in zygotic gene activation (ZGA). Investigations were conducted employing Cut&Tag assays targeting the well-studied histone acetylation and lactylation sites, H3K18la and H3K27ac, respectively. The findings revealed a noticeable reduction in H3K18la modification under lactate deficiency, and this alteration showed a significant correlation with changes in gene expression. In contrast, H3K27ac exhibited minimal correlation. These results suggest that lactate may preferentially influence early embryonic development through H3K18la rather than H3K27ac modifications.


Subject(s)
Histones , Lactic Acid , Zygote , Histones/metabolism , Histones/genetics , Animals , Acetylation , Zygote/metabolism , Mice , Lactic Acid/metabolism , Embryonic Development/genetics , Female , Gene Expression Regulation, Developmental , Epigenesis, Genetic , Genome , Protein Processing, Post-Translational
19.
Proc Natl Acad Sci U S A ; 119(23): e2118836119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35653572

ABSTRACT

Rapid identification of newly emerging or circulating viruses is an important first step toward managing the public health response to potential outbreaks. A portable virus capture device, coupled with label-free Raman spectroscopy, holds the promise of fast detection by rapidly obtaining the Raman signature of a virus followed by a machine learning (ML) approach applied to recognize the virus based on its Raman spectrum, which is used as a fingerprint. We present such an ML approach for analyzing Raman spectra of human and avian viruses. A convolutional neural network (CNN) classifier specifically designed for spectral data achieves very high accuracy for a variety of virus type or subtype identification tasks. In particular, it achieves 99% accuracy for classifying influenza virus type A versus type B, 96% accuracy for classifying four subtypes of influenza A, 95% accuracy for differentiating enveloped and nonenveloped viruses, and 99% accuracy for differentiating avian coronavirus (infectious bronchitis virus [IBV]) from other avian viruses. Furthermore, interpretation of neural net responses in the trained CNN model using a full-gradient algorithm highlights Raman spectral ranges that are most important to virus identification. By correlating ML-selected salient Raman ranges with the signature ranges of known biomolecules and chemical functional groups­for example, amide, amino acid, and carboxylic acid­we verify that our ML model effectively recognizes the Raman signatures of proteins, lipids, and other vital functional groups present in different viruses and uses a weighted combination of these signatures to identify viruses.


Subject(s)
Machine Learning , Neural Networks, Computer , Viruses , Disease Outbreaks , Pandemics , Serogroup , Viruses/classification
20.
Nano Lett ; 24(2): 724-732, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166126

ABSTRACT

Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.

SELECTION OF CITATIONS
SEARCH DETAIL