Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 498
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 110(4): 648-662, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36977412

ABSTRACT

Several breast cancer susceptibility genes have been discovered, but more are likely to exist. To identify additional breast cancer susceptibility genes, we used the founder population of Poland and performed whole-exome sequencing on 510 women with familial breast cancer and 308 control subjects. We identified a rare mutation in ATRIP (GenBank: NM_130384.3: c.1152_1155del [p.Gly385Ter]) in two women with breast cancer. At the validation phase, we found this variant in 42/16,085 unselected Polish breast cancer-affected individuals and in 11/9,285 control subjects (OR = 2.14, 95% CI = 1.13-4.28, p = 0.02). By analyzing the sequence data of the UK Biobank study participants (450,000 individuals), we identified ATRIP loss-of-function variants among 13/15,643 breast cancer-affected individuals versus 40/157,943 control subjects (OR = 3.28, 95% CI = 1.76-6.14, p < 0.001). Immunohistochemistry and functional studies showed the ATRIP c.1152_1155del variant allele is weakly expressed compared to the wild-type allele, and truncated ATRIP fails to perform its normal function to prevent replicative stress. We showed that tumors of women with breast cancer who have a germline ATRIP mutation have loss of heterozygosity at the site of ATRIP mutation and genomic homologous recombination deficiency. ATRIP is a critical partner of ATR that binds to RPA coating single-stranded DNA at sites of stalled DNA replication forks. Proper activation of ATR-ATRIP elicits a DNA damage checkpoint crucial in regulating cellular responses to DNA replication stress. Based on our observations, we conclude ATRIP is a breast cancer susceptibility gene candidate linking DNA replication stress to breast cancer.


Subject(s)
Adaptor Proteins, Signal Transducing , Breast Neoplasms , DNA-Binding Proteins , Female , Humans , Adaptor Proteins, Signal Transducing/genetics , Biological Specimen Banks , Breast Neoplasms/genetics , Cell Cycle Proteins/genetics , DNA Damage , DNA-Binding Proteins/genetics , Poland/epidemiology , Replication Protein A/genetics , Replication Protein A/metabolism , United Kingdom/epidemiology
2.
Nucleic Acids Res ; 52(D1): D1478-D1489, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37956311

ABSTRACT

VarCards, an online database, combines comprehensive variant- and gene-level annotation data to streamline genetic counselling for coding variants. Recognising the increasing clinical relevance of non-coding variations, there has been an accelerated development of bioinformatics tools dedicated to interpreting non-coding variations, including single-nucleotide variants and copy number variations. Regrettably, most tools remain as either locally installed databases or command-line tools dispersed across diverse online platforms. Such a landscape poses inconveniences and challenges for genetic counsellors seeking to utilise these resources without advanced bioinformatics expertise. Consequently, we developed VarCards2, which incorporates nearly nine billion artificially generated single-nucleotide variants (including those from mitochondrial DNA) and compiles vital annotation information for genetic counselling based on ACMG-AMP variant-interpretation guidelines. These annotations include (I) functional effects; (II) minor allele frequencies; (III) comprehensive function and pathogenicity predictions covering all potential variants, such as non-synonymous substitutions, non-canonical splicing variants, and non-coding variations and (IV) gene-level information. Furthermore, VarCards2 incorporates 368 820 266 documented short insertions and deletions and 2 773 555 documented copy number variations, complemented by their corresponding annotation and prediction tools. In conclusion, VarCards2, by integrating over 150 variant- and gene-level annotation sources, significantly enhances the efficiency of genetic counselling and can be freely accessed at http://www.genemed.tech/varcards2/.


Subject(s)
Databases, Factual , Genetic Variation , Genome, Human , Software , Humans , Databases, Genetic , DNA Copy Number Variations , Nucleotides , Genome-Wide Association Study
3.
Proc Natl Acad Sci U S A ; 120(39): e2308435120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37733739

ABSTRACT

GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and Gi protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365). Design of fusion proteins allowed successful determination of the challenging cryo-EM structure of the inactive GPR34 complexed with YL-365, which revealed the competitive binding of YL-365 in a portion of the orthosteric binding pocket of GPR34 and the antagonist-binding-induced allostery in the receptor, implicating the inhibition mechanism of YL-365. Moreover, YL-365 displayed excellent activity in a neuropathic pain model without obvious toxicity. Collectively, this study offers mechanistic insights into the endogenous agonist recognition and antagonist inhibition of GPR34, and provides proof of concept that targeting GPR34 represents a promising strategy for disease treatment.


Subject(s)
Inhibition, Psychological , Neuralgia , Humans , Cryoelectron Microscopy , Binding, Competitive
4.
J Am Chem Soc ; 146(22): 15036-15044, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38770819

ABSTRACT

Multicopper oxidases (MCOs) utilize a tricopper active site to reduce dioxygen to water through 4H+ 4e- proton-coupled electron transfer (PCET). Understanding the thermodynamics of PCET at a tricopper cluster is essential for elucidating how MCOs harness the oxidative power of O2 while mitigating oxidative damage. In this study, we determined the O-H bond dissociation free energies (BDFEs) and pKa values of a series of tricopper hydroxo and tricopper aqua complexes as synthetic models of the tricopper site in MCOs. Tricopper intermediates on the path of alternating electron and proton transfer (ET-PT-ET-PT-ET) have modest BDFE(O-H) values in the range of 53.0-57.1 kcal/mol. In contrast, those not on the path of ET-PT-ET-PT-ET display much higher (78.1 kcal/mol) or lower (44.7 kcal/mol) BDFE(O-H) values. Additionally, the pKa of bridging OH and OH2 motifs increase by 8-16 pKa units per oxidation state. The same oxidation state changes have a lesser impact on the pKa of N-H motif in the secondary coordination sphere, with an increase of ca. 5 pKa units per oxidation state. The steeper pKa increase of the tricopper center promotes proton transfer from the secondary coordination sphere. Overall, our study shed light on the PCET pathway least prone to decomposition, elucidating why tricopper centers are an optimal choice for promoting efficient oxygen reduction reaction.

5.
J Am Chem Soc ; 146(22): 15176-15185, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38770641

ABSTRACT

Stepwise oxidative addition of copper(I) complexes to form copper(III) species via single electron transfer (SET) events has been widely proposed in copper catalysis. However, direct observation and detailed investigation of these fundamental steps remain elusive owing largely to the typically slow oxidative addition rate of copper(I) complexes and the instability of the copper(III) species. We report herein a novel aryl-radical-enabled stepwise oxidative addition pathway that allows for the formation of well-defined alkyl-CuIII species from CuI complexes. The process is enabled by the SET from a CuI species to an aryl diazonium salt to form a CuII species and an aryl radical. Subsequent iodine abstraction from an alkyl iodide by the aryl radical affords an alkyl radical, which then reacts with the CuII species to form the alkyl-CuIII complex. The structure of resultant [(bpy)CuIII(CF3)2(alkyl)] complexes has been characterized by NMR spectroscopy and X-ray crystallography. Competition experiments have revealed that the rate at which different alkyl iodides undergo oxidative addition is consistent with the rate of iodine abstraction by carbon-centered radicals. The CuII intermediate formed during the SET process has been identified as a four-coordinate complex, [CuII(CH3CN)2(CF3)2], through electronic paramagnetic resonance (EPR) studies. The catalytic relevance of the high-valent organo-CuIII has been demonstrated by the C-C bond-forming reductive elimination reactivity. Finally, localized orbital bonding analysis of these formal CuIII complexes indicates inverted ligand fields in σ(Cu-CH2) bonds. These results demonstrate the stepwise oxidative addition in copper catalysis and provide a general strategy to investigate the elusive formal CuIII complexes.

6.
Mol Cancer ; 23(1): 157, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095854

ABSTRACT

BACKGROUND: Tumor heterogeneity presents a formidable challenge in understanding the mechanisms driving tumor progression and metastasis. The heterogeneity of hepatocellular carcinoma (HCC) in cellular level is not clear. METHODS: Integration analysis of single-cell RNA sequencing data and spatial transcriptomics data was performed. Multiple methods were applied to investigate the subtype of HCC tumor cells. The functional characteristics, translation factors, clinical implications and microenvironment associations of different subtypes of tumor cells were analyzed. The interaction of subtype and fibroblasts were analyzed. RESULTS: We established a heterogeneity landscape of HCC malignant cells by integrated 52 single-cell RNA sequencing data and 5 spatial transcriptomics data. We identified three subtypes in tumor cells, including ARG1+ metabolism subtype (Metab-subtype), TOP2A+ proliferation phenotype (Prol-phenotype), and S100A6+ pro-metastatic subtype (EMT-subtype). Enrichment analysis found that the three subtypes harbored different features, that is metabolism, proliferating, and epithelial-mesenchymal transition. Trajectory analysis revealed that both Metab-subtype and EMT-subtype originated from the Prol-phenotype. Translation factor analysis found that EMT-subtype showed exclusive activation of SMAD3 and TGF-ß signaling pathway. HCC dominated by EMT-subtype cells harbored an unfavorable prognosis and a deserted microenvironment. We uncovered a positive loop between tumor cells and fibroblasts mediated by SPP1-CD44 and CCN2/TGF-ß-TGFBR1 interaction pairs. Inhibiting CCN2 disrupted the loop, mitigated the transformation to EMT-subtype, and suppressed metastasis. CONCLUSION: By establishing a heterogeneity landscape of malignant cells, we identified a three-subtype classification in HCC. Among them, S100A6+ tumor cells play a crucial role in metastasis. Targeting the feedback loop between tumor cells and fibroblasts is a promising anti-metastatic strategy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Animals , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Genetic Heterogeneity , Mice , Cell Line, Tumor , Prognosis , Gene Expression Profiling , Transcriptome , Computational Biology/methods , Neoplasm Metastasis
7.
Small ; : e2401796, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966879

ABSTRACT

As a novel type of catalytic material, hollow nanoreactors are expected to bring new development opportunities in the field of persulfate-based advanced oxidation processes due to their peculiar void-confinement, spatial compartmentation, and size-sieving effects. For such materials, however, further clarification on basic concepts and construction strategies, as well as a discussion of the inherent correlation between structure and catalytic activity are still required. In this context, this review aims to provide a state-of-the-art overview of hollow nanoreactors for activating persulfate. Initially, hollow nanoreactors are classified according to the constituent components of the shell structure and their dimensionality. Subsequently, the different construction strategies of hollow nanoreactors are described in detail, while common synthesis methods for these construction strategies are outlined. Furthermore, the most representative advantages of hollow nanoreactors are summarized, and their intrinsic connections to the nanoreactor structure are elucidated. Finally, the challenges and future prospects of hollow nanoreactors are presented.

8.
Small ; : e2400357, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778724

ABSTRACT

The Fenton reaction, induced by the H2O2 formed during the oxygen reduction reaction (ORR) process leads to significant dissolution of Fe, resulting in unsatisfactory stability of the iron-nitrogen-doped carbon catalysts (Fe-NC). In this study, a strategy is proposed to improve the ORR catalytic activity while eliminating the effect of H2O2 by introducing CeO2 nanoparticles. Transmission electron microscopy and subsequent characterizations reveal that CeO2 nanoparticles are uniformly distributed on the carbon substrate, with atomically dispersed Fe single-atom catalysts (SACs) adjacent to them. CeO2@Fe-NC achieves a half-wave potential of 0.89 V and a limiting current density of 6.2 mA cm-2, which significantly outperforms Fe-NC and commercial Pt/C. CeO2@Fe-NC also shows a half-wave potential loss of only 1% after 10 000 CV cycles, which is better than that of Fe-NC (7%). Further, H2O2 elimination experiments show that the introduction of CeO2 significantly accelerate the decomposition of H2O2. In situ Raman spectroscopy results suggest that CeO2@Fe-NC significantly facilitates the formation of ORR intermediates compared with Fe-NC. The Zn-air batteries utilizing CeO2@Fe-NC cathodes exhibit satisfactory peak power density and open-circuit voltage. Furthermore, theoretical calculations show that the introduction of CeO2 enhances the ORR activity of Fe-NC SAC. This study provides insights for optimizing SAC-based electrocatalysts with high activity and stability.

9.
Small ; 20(29): e2400087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38377283

ABSTRACT

Increasing the charging cutoff voltage of LiCoO2 to 4.6 V is significant for enhancing battery density. However, the practical application of Li‖LiCoO2 batteries with a 4.6 V cutoff voltage faces significant impediments due to the detrimental changes under high voltage. This study presents a novel bifunctional electrolyte additive, 2-(trifluoromethyl)benzamide (2-TFMBA), which is employed to establish a stable and dense cathode-electrolyte interface (CEI). Characterization results reveal that an optimized CEI is achieved through the synergistic effects of the amide groups and trifluoromethyl groups within 2-TFMBA. The resulting CEI not only enhances the structural stability of LiCoO2 but also serves as a high-speed lithium-ion conduction channel, which expedites the insertion and extraction of lithium ions. The Li‖LiCoO2 batteries with 0.5 wt% 2-TFMBA achieves an 84.7% capacity retention rate after enduring 300 cycles at a current rate of 1 C, under a cut-off voltage of 4.6 V. This study provides valuable strategic insights into the stabilization of cathode materials in high-voltage batteries.

10.
Clin Proteomics ; 21(1): 53, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138419

ABSTRACT

BACKGROUND: Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma. As the early clinical manifestations of MF are non-specific (e.g., erythema or plaques), it is often misdiagnosed as inflammatory skin conditions (e.g., atopic dermatitis, psoriasis, and pityriasis rosea), resulting in delayed treatment. As there are no effective biological markers for the early detection and management of MF, the aim of the present study was to perform a proteomic analysis of urine samples (as a non-invasive protein source) to identify reliable MF biomarkers. METHODS: Thirteen patients with early-stage MF were administered a subcutaneous injection of interferon α-2a in combination with phototherapy for 6 months. The urine proteome of patients with early-stage MF before and after treatment was compared against that of healthy controls by liquid chromatography-tandem mass spectrometry. The differentially expressed proteins were subjected to Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups analyses. For validation, the levels of the selected proteins were evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS: We identified 41 differentially expressed proteins (11 overexpressed and 30 underexpressed) between untreated MF patients and healthy control subjects. The proteins were mainly enriched in focal adhesion, endocytosis, and the PI3K-Akt, phospholipase D, MAPK, and calcium signaling pathways. The ELISA results confirmed that the urine levels of Serpin B5, epidermal growth factor (EGF), and Ras homologous gene family member A (RhoA) of untreated MF patients were significantly lower than those of healthy controls. After 6 months of treatment, however, there was no significant difference in the urine levels of Serpin B5, EGF, and RhoA between MF patients and healthy control subjects. The area under the receiver operating characteristic curve values for Serpin B5, EGF, and RhoA were 0.817, 0.900, and 0.933, respectively. CONCLUSIONS: This study showed that urine proteomics represents a valuable tool for the study of MF, as well as identified potential new biomarkers (Serpin B5, EGF, and RhoA), which could be used in its diagnosis and management.

11.
Langmuir ; 40(4): 2278-2287, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38237057

ABSTRACT

The sweeping effect of merged droplets plays a key role in enhancing application performance due to the continuing coalescence caused by the horizontal jumping velocity. Most studies focused on static droplet coalescence jumping, while moving droplet coalescence is poorly understood. In this work, we experimentally and numerically study the coalescence of a rolling droplet and a static one. When the droplet radius ratio is larger than 0.8, as the dimensionless initial velocity increases and the vertical jumping velocity first decreases and then increases. The critical dimensionless initial velocity Vc* corresponding to the minimum vertical jumping velocity could be estimated as 0.9(rs2rm2). When the droplet radius ratio is smaller than 0.8, the dimensionless initial velocity has a positive effect on the vertical jumping velocity. The mechanism of the vertical jumping velocity can be attributed to two parts: liquid bridge impact and retraction of the merged droplet. The squeezing effect generated by the initial velocity between the two droplets promotes the growth of the liquid bridge and enhances the impact effect of the liquid bridge but weakens the upward velocity accumulation caused by the retraction of the merged droplets. However, different from the vertical jumping velocity, the horizontal jumping velocity is approximately proportional to the dimensionless initial velocity. The outcome of our work elucidates a fundamental understanding of a rolling droplet coalescing with a static one.

12.
Langmuir ; 40(19): 9873-9891, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695884

ABSTRACT

Inspired by nature, superhydrophobic surfaces have been widely studied. Usually the wettability of a superhydrophobic surface is quantified by the macroscopic contact angle. However, this method has various limitations, especially for precision micro devices with superhydrophobic surfaces, such as biomimetic artificial compound eyes and biomimetic water strider robots. These precision micro devices with superhydrophobic surfaces proposed a higher demand for the quantification of contact angles, requiring contact angle quantification technology to have micrometer-scale measurement capabilities. In this review, it is proposed to achieve micrometer-scale quantification of superhydrophobic surface contact angles through droplet adhesion characteristics (adhesion force and contact radius). Existing contact angle quantification techniques and droplet characteristics' measurement methods were described in detail. The advancement of micrometer-scale quantification technology for the contact angle of superhydrophobic surfaces will enhance our understanding of superhydrophobic surfaces.

13.
Bioorg Med Chem Lett ; 97: 129548, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37949379

ABSTRACT

GPR34 is a rhodopsin-like class G protein-coupled receptor (GPCR) that is involved in the development and progression of several diseases. Despite its importance, effective targeting strategies are lacking. We herein report a series of (S)-3-(4-(benzyloxy)phenyl)-2-(2-phenoxyacetamido)propanoic acid derivatives as a new class of GPR34 antagonists. Structure-activity relationship (SAR) studies led to the identification of the most potent compound, 5e, which displayed an IC50 value of 0.680 µM in the GloSensor cAMP assay and 0.059 µM in the Tango assay. 5e demonstrated low cytotoxicity and high selectivity in vitro, and it was able to dose-dependently inhibit Lysophosphatidylserine-induced ERK1/2 phosphorylation in CHO cells expressing GPR34. Furthermore, 5e displayed excellent efficacy in a mouse model of neuropathic pain without any apparent signs of toxicity. Collectively, this study has identified a promising compound, which shows great potential in the development of potent antagonists with a new chemical scaffold targeting GPR34.


Subject(s)
Propionates , Receptors, Lysophospholipid , Animals , Cricetinae , Mice , CHO Cells , Cricetulus , Receptors, Lysophospholipid/antagonists & inhibitors , Receptors, Lysophospholipid/chemistry , Structure-Activity Relationship
14.
Environ Sci Technol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39163524

ABSTRACT

The utilization of biochar-catalyzed peroxymonosulfate in advanced oxidation processes (BC-PMS AOPs) is widely acknowledged as an effective and economical method for mitigating emerging contaminants (ECs). Especially, state-of-the-art machine learning (ML) technology has been employed to accurately predict the reaction rate constants of EC degradation in BC-PMS AOPs, primarily focusing on three aspects: performance prediction, operating condition optimization, and mechanism interpretation. However, its real application in specific degradation optimization targeting different ECs is seldom considered, hindering the realization of contaminant-oriented BC-PMS AOPs. Herein, we propose a hierarchical ML pipeline to achieve an end-to-end (E2E) pattern for addressing this issue. First, the overall XGB model, trained with the comprehensive data set, can perform well in predicting the reaction constants of EC degradation in BC-PMS AOPs, additionally providing the basis for further analysis of various ECs. Then, the submodels trained with different EC clusters can offer specific strategies for the selection of the optimum option for BC-PMS AOPs of specific ECs with different HOMO-LUMO gaps, thus forming an E2E operating pattern for BC-PMS AOPs. This study not only increases our understanding of contaminant-oriented optimization of AOPs but also successfully bridges the gap between ML model development and its environmental application.

15.
Environ Sci Technol ; 58(4): 1921-1933, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38233045

ABSTRACT

Aeration accounts for 35-51% of the overall energy consumption in wastewater treatment processes and results in an annual energy consumption of 5-7.5 billion kWh. Herein, a solar-powered continuous-flow device was designed for aeration-free in situ Fenton-like reactions to treat wastewater. This system is based on the combination of TiO2-x/W18O49 featuring heterophase oxygen vacancy interactions with floating reduced graphene/polyurethane foam, which produces hydrogen peroxide in situ at the rates of up to 4.2 ppm h-1 with degradation rates of more than 90% for various antibiotics. The heterophase oxygen vacancies play an important role in the stretching of the O-O bond by regulating the d-band center of TiO2-x/W18O49, promoting the hydrogenation of *·O2- or *OOH by H+ enrichment, and accelerating the production of reactive oxygen species by spontaneous adsorption of hydrogen peroxide. Furthermore, the degradation mechanisms of antibiotics and the treatment of actual wastewater were thoroughly investigated. In short, the study provides a meaningful reference for potentially undertaking the "aeration-free" in situ Fenton reaction, which can help reduce or even completely eradicate the aeration costs and energy requirements during the treatment of wastewater.


Subject(s)
Iron , Oxygen , Iron/chemistry , Wastewater , Hydrogen Peroxide/chemistry , Adsorption , Anti-Bacterial Agents , Oxidation-Reduction
16.
J Immunol ; 209(1): 118-127, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35750334

ABSTRACT

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have demonstrated strong immunogenicity and protection against severe disease, concerns about the duration and breadth of these responses remain. In this study, we show that codelivery of plasmid-encoded adenosine deaminase-1 (pADA) with SARS-CoV-2 spike glycoprotein DNA enhances immune memory and durability in vivo. Coimmunized mice displayed increased spike-specific IgG of higher affinity and neutralizing capacity as compared with plasmid-encoded spike-only-immunized animals. Importantly, pADA significantly improved the longevity of these enhanced responses in vivo. This coincided with durable increases in frequencies of plasmablasts, receptor-binding domain-specific memory B cells, and SARS-CoV-2-specific T follicular helper cells. Increased spike-specific T cell polyfunctionality was also observed. Notably, animals coimmunized with pADA had significantly reduced viral loads compared with their nonadjuvanted counterparts in a SARS-CoV-2 infection model. These data suggest that pADA enhances immune memory and durability and supports further translational studies.


Subject(s)
COVID-19 , Viral Vaccines , Adenosine Deaminase/genetics , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2
17.
J Fluoresc ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141276

ABSTRACT

Afterglow materials possess the remarkable capability to harness the energy and subsequently emit light after irradiation is turned off. Owing to their extraordinary ultralong lifetime, afterglow materials have garnered significant interest across various domains such as sensing, optoelectronics, bioimaging, and information encryption. However, these materials typically exhibit temperature sensitivity, rendering their afterglow emission susceptible to efficient quenching at room temperature. Consequently, this study presents herein a straightforward, simple, and universal approach for synthesizing metal-free carbon dots (CDs) endowed with thermally activated delayed fluorescence (TADF) characteristics at room temperature. In this study, TADF-CDs were simply synthesized by pyrolyzing boronic acid (BA) and urea at 500 ℃ for 3 h. Benefiting from the multi-confined effects facilitated by the robust structure of BA matrix, in conjunction with the co-doped heteroatoms of nitrogen and boron, the resultant TADF-CDs manifest remarkably prolonged afterglow TADF emission, characterized by a calculated lifetime of 184.64 ms; moreover, the blue afterglow emission remains perceptible to the naked eye for more than 6 s. The attributes of TADF-CDs were comprehensively elucidated through rigorous characterization, and the universality of the approach was corroborated through experimentation involving fourteen control CDs. Leveraging their distinctive TADF attributes, the prepared TADF-CDs were subsequently employed in advanced applications such as anti-counterfeiting and information encryption.

18.
Neuroradiology ; 66(7): 1141-1152, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38592454

ABSTRACT

PURPOSE: Posterior circulation ischemic stroke (PCIS) possesses unique features. However, previous studies have primarily or exclusively relied on anterior circulation stroke cases to build machine learning (ML) models for predicting onset time. To date, there is no research reporting the effectiveness and stability of ML in identifying PCIS onset time. We aimed to build diffusion-weighted imaging-based ML models to identify the onset time of PCIS patients. METHODS: Consecutive PCIS patients within 24 h of definite symptom onset were included (112 in the training set and 49 in the independent test set). Images were processed as follows: volume of interest segmentation, image feature extraction, and feature selection. Five ML models, naïve Bayes, logistic regression, tree ensemble, k-nearest neighbor, and random forest, were built based on the training set to estimate the stroke onset time (binary classification: ≤ 4.5 h or > 4.5 h). Relative standard deviations (RSD), receiver operating characteristic (ROC) curves, and the calibration plot was performed to evaluate the stability and performance of the five models. RESULTS: The random forest model had the best performance in the test set, with the highest area under the curve (AUC, 0.840; 95% CI: 0.706, 0.974). This model also achieved the highest accuracy, sensitivity, specificity, positive predictive value, and negative predictive value (83.7%, 64.3%, 91.4%, 75.0%, and 86.5%, respectively). Furthermore, the model had high stability (RSD = 0.0094). CONCLUSION: The PCIS case-based ML model was effective for estimating the symptom onset time and achieved considerably high specificity and stability.


Subject(s)
Ischemic Stroke , Machine Learning , Humans , Ischemic Stroke/diagnostic imaging , Female , Male , Aged , Middle Aged , Diffusion Magnetic Resonance Imaging/methods , Time Factors , Image Interpretation, Computer-Assisted/methods , Bayes Theorem , Radiomics
19.
Environ Res ; 258: 119495, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38936500

ABSTRACT

OBJECTIVE: Emerging evidence supports that brain dysfunction may be attributable to environmental factors. This study aims to examine associations of ambient temperature and temperature variability (TV) with seizure incidence in children, which has not been explored. MATERIAL AND METHODS: Data on 2718 outpatient visits due to seizure were collected in Shanghai, China, from 2018 to 2023. Exposure to ambient temperature was estimated at children's residential addresses using spatial-temporal models. A time-stratified case-crossover design with a distributed lag non-linear model (DLNM) was conducted to assess the association between seizure incidence and daily average of ambient temperature over a period of 21 days prior to a case date of disease onset. For a given case date, we selected all dates falling on the same day of the week within the same month as control dates. We calculated a composite index of intra-day and inter-day TV, which was the standard deviation of the daily minimum and maximum temperatures, respectively, over 7 days preceding a case date. We then assessed the association between TV and seizure incidence. Stratified analyses were conducted by age (73.51% < 5 years old and 26.49 % ≥ 5 years old), sex (41.83% female), presence of fever (69.72%), and diagnosis of epilepsy (27.63%). RESULTS: We observed inversed J-shaped temperature-response curves. Lower temperatures had a significant and prolonged effect than higher temperatures. Using 20 °C (with the minimum effect) as the reference, the cumulative odds ratios (ORs) for over 0-21 days preceding the onset at the 5th percentile of the temperature (3 °C) and at the 95th percentile (29 °C) were 3.17 (95% CI: 1.77, 5.68) and 1.54 (95% CI: 0.97, 2.44), respectively. In addition, per 1 °C increases in TV0-7 was associated with OR of 1.08 (95% CI: 1.01, 1.15). Older children and those experiencing seizure with fever exhibited a higher risk of seizure onset at both lower and higher ambient temperatures. CONCLUSION: Both low and high temperatures can contribute to the morbidity related to pediatric seizure. Lower temperatures, however, exerted a longer period of effect prior to seizure onset than higher temperatures. An increased risk for incident seizure was significantly associated with temperature variability during preceding 7 days.


Subject(s)
Cross-Over Studies , Seizures , Temperature , Humans , Seizures/epidemiology , Female , Male , Child, Preschool , China/epidemiology , Child , Incidence , Nonlinear Dynamics , Infant , Environmental Exposure/adverse effects
20.
Environ Res ; 247: 118255, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266890

ABSTRACT

Lewis acids of solid catalysts have been featured for a pivotal role in promoting various reactions. Regarding the oxidation protocol to remove formaldehyde, the inherent drawback of the best-studied MnO2 materials in acidic sites has eventually caused deficiency of active hydroxyls to sustain low-temperature activity. Herein, the cryptomelane-type MnO2 was targeted and it was tuned via incorporation of Zr metal, exhibiting great advances in not only the complete HCHO-to-CO2 degradation but also cycling performance. Zr species were existent in doping state in the MnO2 lattice, rendering lower crystallinity and breaking the regular growth of MnO2 crystallites, which thereby tripled surface area and created larger volume of smaller mesopores. Meantime, the local electronic properties of Mn atoms were also changed by Zr doping, i.e., more low-valence Mn species were formed due to the electron transfer from Zr to Mn. The results of infrared studies demonstrate the higher possession of Lewis acid sites on ZrMn, and this high degree of electrophilic agents favored the production of hydroxyl species. Furthermore, the reactivity of surface hydroxyls, as investigated by CO temperature programmed reduction and temperature programmed desorption of adsorbed O2, was obviously improved as well after Zr modification. It is speculated jointly with the characterizations of the post-reaction catalysts that the accelerated production of active hydroxyls helped rapidly convert formaldehyde into key intermediate-formate, which was then degraded into CO2, avoiding the side reaction path with undesired intermediate-hydrocarbonate-over the pristine MnO2, where active sites were blocked and formaldehyde oxidation was inhibited. Additionally, Zr decoration could stabilize Lewis acidity to be more resistant to heat degeneration, and this merit brought about advantageous thermal recyclability for cycled application.


Subject(s)
Lewis Acids , Oxides , Oxides/chemistry , Manganese Compounds/chemistry , Carbon Dioxide , Formaldehyde/chemistry , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL