Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 387(3): 205-216, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35658024

ABSTRACT

BACKGROUND: Obesity is a chronic disease that results in substantial global morbidity and mortality. The efficacy and safety of tirzepatide, a novel glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist, in people with obesity are not known. METHODS: In this phase 3 double-blind, randomized, controlled trial, we assigned 2539 adults with a body-mass index (BMI; the weight in kilograms divided by the square of the height in meters) of 30 or more, or 27 or more and at least one weight-related complication, excluding diabetes, in a 1:1:1:1 ratio to receive once-weekly, subcutaneous tirzepatide (5 mg, 10 mg, or 15 mg) or placebo for 72 weeks, including a 20-week dose-escalation period. Coprimary end points were the percentage change in weight from baseline and a weight reduction of 5% or more. The treatment-regimen estimand assessed effects regardless of treatment discontinuation in the intention-to-treat population. RESULTS: At baseline, the mean body weight was 104.8 kg, the mean BMI was 38.0, and 94.5% of participants had a BMI of 30 or higher. The mean percentage change in weight at week 72 was -15.0% (95% confidence interval [CI], -15.9 to -14.2) with 5-mg weekly doses of tirzepatide, -19.5% (95% CI, -20.4 to -18.5) with 10-mg doses, and -20.9% (95% CI, -21.8 to -19.9) with 15-mg doses and -3.1% (95% CI, -4.3 to -1.9) with placebo (P<0.001 for all comparisons with placebo). The percentage of participants who had weight reduction of 5% or more was 85% (95% CI, 82 to 89), 89% (95% CI, 86 to 92), and 91% (95% CI, 88 to 94) with 5 mg, 10 mg, and 15 mg of tirzepatide, respectively, and 35% (95% CI, 30 to 39) with placebo; 50% (95% CI, 46 to 54) and 57% (95% CI, 53 to 61) of participants in the 10-mg and 15-mg groups had a reduction in body weight of 20% or more, as compared with 3% (95% CI, 1 to 5) in the placebo group (P<0.001 for all comparisons with placebo). Improvements in all prespecified cardiometabolic measures were observed with tirzepatide. The most common adverse events with tirzepatide were gastrointestinal, and most were mild to moderate in severity, occurring primarily during dose escalation. Adverse events caused treatment discontinuation in 4.3%, 7.1%, 6.2%, and 2.6% of participants receiving 5-mg, 10-mg, and 15-mg tirzepatide doses and placebo, respectively. CONCLUSIONS: In this 72-week trial in participants with obesity, 5 mg, 10 mg, or 15 mg of tirzepatide once weekly provided substantial and sustained reductions in body weight. (Supported by Eli Lilly; SURMOUNT-1 ClinicalTrials.gov number, NCT04184622.).


Subject(s)
Anti-Obesity Agents , Obesity , Weight Loss , Adult , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Dose-Response Relationship, Drug , Double-Blind Method , Gastric Inhibitory Polypeptide/administration & dosage , Gastric Inhibitory Polypeptide/therapeutic use , Glucagon-Like Peptides/administration & dosage , Glucagon-Like Peptides/agonists , Glucagon-Like Peptides/therapeutic use , Humans , Injections, Subcutaneous , Obesity/complications , Obesity/drug therapy , Treatment Outcome , Weight Loss/drug effects
2.
Chem Soc Rev ; 53(12): 6295-6321, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38722208

ABSTRACT

In the electrocatalytic CO2 reduction reaction (CO2RR), metal catalysts with an oxidation state generally demonstrate more favorable catalytic activity and selectivity than their corresponding metallic counterparts. However, the persistence of oxidative metal sites under reductive potentials is challenging since the transition to metallic states inevitably leads to catalytic degradation. Herein, a thorough review of research on oxidation-state stabilization in the CO2RR is presented, starting from fundamental concepts and highlighting the importance of oxidation state stabilization while revealing the relevance of dynamic oxidation states in product distribution. Subsequently, the functional mechanisms of various oxidation-state protection strategies are explained in detail, and in situ detection techniques are discussed. Finally, the prevailing and prospective challenges associated with oxidation-state protection research are discussed, identifying innovative opportunities for mechanistic insights, technology upgrades, and industrial platforms to enable the commercialization of the CO2RR.

3.
J Am Chem Soc ; 146(28): 18841-18847, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38975938

ABSTRACT

An asymmetric intramolecular spiro-amination to high steric hindering α-C-H bond of 1,3-dicarbonyl via nitrene transfer using inactive aryl azides has been carried out by developing a novel Cp*Ir(III)-SPDO (spiro-pyrrolidine oxazoline) catalyst, thereby enabling the first successful construction of structurally rigid spiro-quaternary indolinone cores with moderate to high yields and excellent enantioselectivities. DFT computations support the presence of double bridging H-F bonds between [SbF6]- and both the ligand and substrate, which favors the plane-differentiation of the enol π-bond for nitrenoid attacking. These findings open up numerous opportunities for the development of new asymmetric nitrene transfer systems.

4.
Lancet ; 402(10402): 613-626, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37385275

ABSTRACT

BACKGROUND: Weight reduction is essential for improving health outcomes in people with obesity and type 2 diabetes. We assessed the efficacy and safety of tirzepatide, a glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist, versus placebo, for weight management in people living with obesity and type 2 diabetes. METHODS: This phase 3, double-blind, randomised, placebo-controlled trial was conducted in seven countries. Adults (aged ≥18 years) with a body-mass index (BMI) of 27 kg/m2 or higher and glycated haemoglobin (HbA1c) of 7-10% (53-86 mmol/mol) were randomly assigned (1:1:1), using a computer-generated random sequence via a validated interactive web-response system, to receive either once-weekly, subcutaneous tirzepatide (10 mg or 15 mg) or placebo for 72 weeks. All participants, investigators, and the sponsor were masked to treatment assignment. Coprimary endpoints were the percent change in bodyweight from baseline and bodyweight reduction of 5% or higher. The treatment-regimen estimand assessed effects regardless of treatment discontinuation or initiation of antihyperglycaemic rescue therapy. Efficacy and safety endpoints were analysed with data from all randomly assigned participants (intention-to-treat population). This trial is registered with ClinicalTrials.gov, NCT04657003. FINDINGS: Between March 29, 2021, and April 10, 2023, of 1514 adults assessed for eligibility, 938 (mean age 54·2 years [SD 10·6], 476 [51%] were female, 710 [76%] were White, and 561 [60%] were Hispanic or Latino) were randomly assigned and received at least one dose of tirzepatide 10 mg (n=312), tirzepatide 15 mg (n=311), or placebo (n=315). Baseline mean bodyweight was 100·7 kg (SD 21·1), BMI 36·1 kg/m2 (SD 6·6), and HbA1c 8·02% (SD 0·89; 64·1 mmol/mol [SD 9·7]). Least-squares mean change in bodyweight at week 72 with tirzepatide 10 mg and 15 mg was -12·8% (SE 0·6) and -14·7% (0·5), respectively, and -3·2% (0·5) with placebo, resulting in estimated treatment differences versus placebo of -9·6% percentage points (95% CI -11·1 to -8·1) with tirzepatide 10 mg and -11·6% percentage points (-13·0 to -10·1) with tirzepatide 15 mg (all p<0·0001). More participants treated with tirzepatide versus placebo met bodyweight reduction thresholds of 5% or higher (79-83% vs 32%). The most frequent adverse events with tirzepatide were gastrointestinal-related, including nausea, diarrhoea, and vomiting and were mostly mild to moderate in severity, with few events leading to treatment discontinuation (<5%). Serious adverse events were reported by 68 (7%) participants overall and two deaths occurred in the tirzepatide 10 mg group, but deaths were not considered to be related to the study treatment by the investigator. INTERPRETATION: In this 72-week trial in adults living with obesity and type 2 diabetes, once-weekly tirzepatide 10 mg and 15 mg provided substantial and clinically meaningful reduction in bodyweight, with a safety profile that was similar to other incretin-based therapies for weight management. FUNDING: Eli Lilly and Company.


Subject(s)
Diabetes Mellitus, Type 2 , Adult , Humans , Female , Adolescent , Middle Aged , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Treatment Outcome , Glucagon-Like Peptides , Hypoglycemic Agents/adverse effects , Obesity/complications , Obesity/drug therapy , Body Weight , Double-Blind Method
5.
Neurochem Res ; 49(3): 785-799, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103103

ABSTRACT

Abundant investigations have shown that hypobaric hypoxia (HH) causes cognitive impairment, mostly attributed to oxidative stress, inflammation, and apoptosis. HPN (4'-hydroxyl-2-subsitiuted phenylnitronyl nitroxide) is an excellent free radical scavenger with anti-inflammatory and anti-apoptotic activities. Our previous study has found that HPN exhibited neuroprotective effect on HH induced brain injury. In the present study, we examined the protective effect and potential mechanism of HPN on HH-induced cognitive impairment. Male mice were exposed to HH at 8000 m for 3 days with and without HPN treatment. Cognitive performance was assessed by the eight-arm radical maze. The histological changes were assayed by Nissle staining. The hippocampus cell apoptosis was detected by Tunnel staining. The levels of inflammatory cytokines and oxidative stress markers were detected. The expression of oxidative stress, inflammation-related and apoptosis-related proteins was determined by western blot. HPN administration significantly and mitigated HH induced histological damages and spatial memory loss with the evidence of decreased working memory error (WME), reference memory error (RME), total errors (TE) and total time (TT). In addition, HPN treatment significantly decreased the content of H2O2 and MDA, increased the levels of SOD, CAT, GSH-Px and GSH, and inhibited the synthesis of TNF-α, IL-1ß and IL-6. Moreover, HPN administration could down-regulate the expression of NF-κB, TNF-α, Bax, and cleaved caspase-3 and up-regulate the expression of Nrf2, HO-1 and Bcl-2. The number of apoptotic cells was also significantly decreased in the hippocampus of mice in the HPN group. There results indicate that HPN improve HH-induced cognitive impairment by alleviating oxidative stress damage, suppressing inflammatory response and apoptosis and may be a powerful candidate compound for alleviating memory loss induced by HH.


Subject(s)
Cognitive Dysfunction , Nitrogen Oxides , Tumor Necrosis Factor-alpha , Mice , Male , Animals , Tumor Necrosis Factor-alpha/metabolism , Hydrogen Peroxide/pharmacology , Oxidative Stress , Hypoxia/metabolism , Apoptosis , Memory Disorders/drug therapy , Memory Disorders/etiology , Apoptosis Regulatory Proteins/metabolism , Inflammation/metabolism , Cognitive Dysfunction/drug therapy
6.
Inorg Chem ; 63(26): 12360-12369, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38870427

ABSTRACT

The structural transformation of metal-organic frameworks (MOFs) has attracted increasing interests, which has not only produced various new structures but also served as a fantastic platform for MOF-based kinetic analysis. Multiple reaction conditions have been documented to cause structural transformation; nevertheless, central metal-induced topological alteration of MOFs is rare. Herein, we reported a structural transformation of a 2D layered Cd-MOF driven by Cd(II) ions. After being submerged in the aqueous solution of cadmium nitrate, the twofold interpenetrated 2D network of [Cd(hsb-2)(bdc)·5H2O]n [HSB-W10; bdc: 1,4-benzenedicarboxylate; hsb-2:1,2-bis(4'-pyridylmethylamino)-ethane] was converted into a novel noninterpenetrated 2D network [Cd1.5(hsb-2)(bdc)1.5(H2O)2·H2O]n (HSB-W16). This partial dissolution-recrystallization process was investigated by integrating controlled experiments, 1H NMR spectra, and photographic tracking analysis. Furthermore, a novel strategy combining in situ multicomponent dye encapsulation and central metal-triggered structural transformation was developed for the fabrication of MOF materials with white-light emission. By adopting this strategy, different dye guest molecules were concurrently introduced into the HSB-W16 host matrix, leading to a range of white-light-emitting MOF composites. This work will enable detailed studies of solid-state transformations and demonstrate a promising application prospect for structural transformation.

7.
Macromol Rapid Commun ; : e2400245, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012277

ABSTRACT

Advancements in flexible electronic technology, especially the progress in foldable displays and under-display cameras (UDC), have created an urgent demand for high-performance colorless polyimide (CPI). However, current CPIs lack sufficient heat resistance for substrate applications. In this work, four kinds of rigid spirobifluorene diamines are designed, and the corresponding polyimides are prepared by their condensation with 5,5'-(perfluoropropane-2,2-diyl) bis(isobenzofuran-1,3-dione) (6FDA) or 9,9-bis(3,4-dicarboxyphenyl) fluorene dianhydride (BPAF). The rigid and conjugated spirobifluorene units endow the polyimides with higher glass transition temperature (Tg) ranging from 356 to 468 °C. Their optical properties are regulated by small side groups and spirobifluorene structure with a periodically twisted molecular conformation. Consequently, a series of CPIs with an average transmittance ranging from 75% to 88% and a yellowness index (YI) as low as 2.48 are obtained. Among these, 27SPFTFA-BPAF presents excellent comprehensive performance, with a Tg of 422 °C, a 5 wt.% loss temperature (Td5) of 562 °C, a YI of 3.53, and a tensile strength (δmax) of 140 MPa, respectively. The mechanism underlying the structure-property relationship is investigated by experimental comparison and theoretical calculation, and the proposed method provides a pathway for designing highly rigid conjugated CPIs with excellent thermal stability and transparency for photoelectric engineering.

8.
J Phycol ; 60(4): 942-955, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39016211

ABSTRACT

Neoporphyra haitanensis, a red alga harvested for food, thrives in the intertidal zone amid dynamic and harsh environments. High irradiance represents a major stressor in this habitat, posing a threat to the alga's photosynthetic apparatus. Interestingly, N. haitanensis has adapted to excessive light despite the absence of a crucial xanthophyll cycle-dependent photoprotection pathway. Thus, it is valuable to investigate the mechanisms by which N. haitanensis copes with excessive light and to understand the photoprotective roles of carotenoids. Under high light intensities and prolonged irradiation time, N. haitanensis displayed reduction in photosynthetic efficiency and phycobiliproteins levels, as well as different responses in carotenoids. The decreased carotene contents suggested their involvement in the synthesis of xanthophylls, as evidenced by the up-regulation of lycopene-ß-cyclase (lcyb) and zeaxanthin epoxidase (zep) genes. Downstream xanthophylls such as lutein, zeaxanthin, and antheraxanthin increased proportionally to light stress, potentially participating in scavenging reactive oxygen species (ROS). When accompanied by the enhanced activity of ascorbate peroxidase (APX), these factors resulted in a reduction in ROS production. The responses of intermediates α-cryptoxanthin and ß-cryptoxanthin were felt somewhere between carotenes and zeaxanthin/lutein. Furthermore, these changes were ameliorated when the organism was placed in darkness. In summary, down-regulation of the organism's photosynthetic capacity, coupled with heightened xanthophylls and APX activity, activates photoinhibition quenching (qI) and antioxidant activity, helping N. haitanensis to protect the organism from the damaging effects of excessive light exposure. These findings provide insights into how red algae adapt to intertidal lifestyles.


Subject(s)
Carotenoids , Light , Photosynthesis , Rhodophyta , Rhodophyta/physiology , Rhodophyta/metabolism , Carotenoids/metabolism , Xanthophylls/metabolism , Stress, Physiological
9.
Nucleic Acids Res ; 50(10): 5948-5960, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35640608

ABSTRACT

The cell-wall recycling process is important for bacterial survival in nutrient-limited conditions and, in certain cases, is directly involved in antibiotic resistance. In the sophisticated cell-wall recycling process in Escherichia coli, the transcriptional repressor MurR controls the expression of murP and murQ, which are involved in transporting and metabolizing N-acetylmuramic acid (MurNAc), generating N-acetylmuramic acid-6-phosphate (MurNAc-6-P) and N-acetylglucosamine-6-phosphate (GlcNAc-6-P). Here, we report that both MurNAc-6-P and GlcNAc-6-P can bind to MurR and weaken the DNA binding ability of MurR. Structural characterizations of MurR in complex with MurNAc-6-P or GlcNAc-6-P as well as in the apo form revealed the detailed ligand recognition chemistries. Further studies showed that only MurNAc-6-P, but not GlcNAc-6-P, is capable of derepressing the expression of murQP controlled by MurR in cells and clarified the substrate specificity through the identification of key residues responsible for ligand binding in the complex structures. In summary, this study deciphered the molecular mechanism of the cell wall recycling process regulated by MurR in E. coli.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli , Repressor Proteins/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Glycoside Hydrolases/genetics , Ligands , Phosphates/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
BMC Public Health ; 24(1): 2035, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075469

ABSTRACT

BACKGROUND: It remains unknown whether good neighbourhood perception can enhance the benefits of favourable built environment to physical activity. Moreover, the moderation pattern is less understood in developing countries. OBJECTIVES: This work aims to examine the moderation effects of perceived neighbourhood safety and aesthetics on the relationship between built environment and time for recreational walking. METHODS: We performed the examination using a sample of 760 residents in Fuzhou City, China. The Negative Binomial Regression Model was developed to examine the moderation roles of neighbourhood safety and aesthetics on the impact of built environment, adjusting for the effects of location, socioeconomic, personal preferences and social environment factors. Moreover, two sensitivity analyses were performed to test whether the moderators found are robust to the control of residential self-selection, and differential measures of conceptually-comparable aspects of built environment. RESULTS: We found stronger associations of time for recreational walking with road density and proportion of parks and squares POIs for residents with high perception of neighbourhood safety, compared to those with low perception of neighbourhood safety. There was a greater effect of the proportion of parks and squares POIs, when perceived aesthetics was high than when perceived aesthetics was low. The findings of neighbourhood safety and aesthetics as moderator, were robust in the two sensitivity analyses. No significant moderation effect was found for land use diversity. CONCLUSIONS: High perceived neighbourhood safety can magnify the positive effects of road connectivity and accessibility to parks and squares. Neighbourhood aesthetics positively moderates the association of time for recreational walking with accessibility to parks and squares. The findings emphasize the need to consider safety- and aesthetics-specific differences in estimates of built environment effects. Improvements in neighbourhood safety and aesthetics are key to effective interventions in built environment to better promote physical activity.


Subject(s)
Built Environment , Walking , Humans , China , Walking/statistics & numerical data , Walking/psychology , Male , Female , Adult , Middle Aged , Esthetics , Neighborhood Characteristics , Safety , Residence Characteristics/statistics & numerical data , Environment Design , Recreation , Perception , Young Adult
11.
BMC Public Health ; 24(1): 2251, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164681

ABSTRACT

The association between built environment and physical activity has been recognized. However, how and to what extent microscale streetscapes are related to running activity remains underexplored, partly due to the lack of running data in large urban areas. Moreover, few studies have examined the interactive effects of macroscale built environment and microscale streetscapes. This study examines the main and interactive effects of the two-level environments on running intensity, using 9.73 million fitness tracker data from Keep in Shanghai, China. Results of spatial error model showed that: 1) the explanatory power of microscale streetscapes was higher than that of macroscale built environment with R2 of 0.245 and 0.240, respectively, which is different from the prior finding that R2 is greater for macroscale built environment than for microscale streetscape; 2) sky and green view indexes were positively associated with running intensity, whereas visual crowdedness had a negative effect; 3) there were negative interactions of land use Herfindahl-Hirschman index with sky and green view indexes, while a positive interaction was observed for visual crowdedness. To conclude, greener, more open and less visually crowded streetscapes, can promote running behavior and enhance the benefits of land use mix as well. The findings highlight the importance of streetscapes in promoting running behavior, instead of a supplement to macroscale built environment.


Subject(s)
Built Environment , Cities , Running , Humans , China , Built Environment/statistics & numerical data , Running/statistics & numerical data , Male , Female , Adult , Environment Design , Middle Aged , Young Adult
12.
JAMA ; 331(1): 38-48, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38078870

ABSTRACT

Importance: The effect of continued treatment with tirzepatide on maintaining initial weight reduction is unknown. Objective: To assess the effect of tirzepatide, with diet and physical activity, on the maintenance of weight reduction. Design, Setting, and Participants: This phase 3, randomized withdrawal clinical trial conducted at 70 sites in 4 countries with a 36-week, open-label tirzepatide lead-in period followed by a 52-week, double-blind, placebo-controlled period included adults with a body mass index greater than or equal to 30 or greater than or equal to 27 and a weight-related complication, excluding diabetes. Interventions: Participants (n = 783) enrolled in an open-label lead-in period received once-weekly subcutaneous maximum tolerated dose (10 or 15 mg) of tirzepatide for 36 weeks. At week 36, a total of 670 participants were randomized (1:1) to continue receiving tirzepatide (n = 335) or switch to placebo (n = 335) for 52 weeks. Main Outcomes and Measures: The primary end point was the mean percent change in weight from week 36 (randomization) to week 88. Key secondary end points included the proportion of participants at week 88 who maintained at least 80% of the weight loss during the lead-in period. Results: Participants (n = 670; mean age, 48 years; 473 [71%] women; mean weight, 107.3 kg) who completed the 36-week lead-in period experienced a mean weight reduction of 20.9%. The mean percent weight change from week 36 to week 88 was -5.5% with tirzepatide vs 14.0% with placebo (difference, -19.4% [95% CI, -21.2% to -17.7%]; P < .001). Overall, 300 participants (89.5%) receiving tirzepatide at 88 weeks maintained at least 80% of the weight loss during the lead-in period compared with 16.6% receiving placebo (P < .001). The overall mean weight reduction from week 0 to 88 was 25.3% for tirzepatide and 9.9% for placebo. The most common adverse events were mostly mild to moderate gastrointestinal events, which occurred more commonly with tirzepatide vs placebo. Conclusions and Relevance: In participants with obesity or overweight, withdrawing tirzepatide led to substantial regain of lost weight, whereas continued treatment maintained and augmented initial weight reduction. Trial Registration: ClinicalTrials.gov Identifier: NCT04660643.


Subject(s)
Anti-Obesity Agents , Obesity , Weight Loss , Adult , Female , Humans , Male , Middle Aged , Double-Blind Method , Gastric Inhibitory Polypeptide/administration & dosage , Gastric Inhibitory Polypeptide/adverse effects , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/therapeutic use , Obesity/drug therapy , Obesity/complications , Overweight/complications , Overweight/drug therapy , Treatment Outcome , Weight Loss/drug effects , Glucagon-Like Peptide-2 Receptor/administration & dosage , Glucagon-Like Peptide-2 Receptor/agonists , Glucagon-Like Peptide-2 Receptor/therapeutic use , Incretins/administration & dosage , Incretins/adverse effects , Incretins/pharmacology , Incretins/therapeutic use , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/adverse effects , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Maintenance Chemotherapy , Injections, Subcutaneous , Withholding Treatment
13.
J Am Chem Soc ; 145(39): 21170-21175, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37605370

ABSTRACT

The first total syntheses of polycyclic diterpenes phomopsene (1), methyl phomopsenonate (2), and iso-phomopsene (3) have been accomplished through the unusual cascade reorganization of C-C single bonds. This approach features: (i) a synergistic Nazarov cyclization/double ring expansions in one-step, developed by authors, to rapid and stereospecific construction of the 5/5/5/5 tetraquinane scaffold bearing contiguous quaternary centers and (ii) a one-pot strategic ring expansion through Beckmann fragmentation/recombination to efficiently assemble the requisite 5/5/6/5 tetracyclic skeleton of the target molecules 1-3. This work enables us to determine that the correct structure of iso-phomopsene is, in fact, the C7 epimer of the originally assigned structure. Finally, the absolute configurations of three target molecules were confirmed through enantioselective synthesis.

14.
J Neuroinflammation ; 20(1): 125, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231449

ABSTRACT

The meninges, membranes surrounding the central nervous system (CNS) boundary, harbor a diverse array of immunocompetent immune cells, and therefore, serve as an immunologically active site. Meningeal immunity has emerged as a key factor in modulating proper brain function and social behavior, performing constant immune surveillance of the CNS, and participating in several neurological diseases. However, it remains to be determined how meningeal immunity contributes to CNS physiology and pathophysiology. With the advances in single-cell omics, new approaches, such as single-cell technologies, unveiled the details of cellular and molecular mechanisms underlying meningeal immunity in CNS homeostasis and dysfunction. These new findings contradict some previous dogmas and shed new light on new possible therapeutic targets. In this review, we focus on the complicated multi-components, powerful meningeal immunosurveillance capability, and its crucial involvement in physiological and neuropathological conditions, as recently revealed by single-cell technologies.


Subject(s)
Meninges , Nervous System Diseases , Humans , Central Nervous System
15.
Small ; 19(29): e2207295, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37029585

ABSTRACT

Tungsten oxide (WO3 ) is an appealing electrocatalyst for the hydrogen evolution reaction (HER) owing to its cost-effectiveness and structural adjustability. However, the WO3 electrocatalyst displays undesirable intrinsic activity for the HER, which originates from the strong hydrogen adsorption energy. Herein, for effective defect engineering, a hydrogen atom inserted into the interstitial lattice site of tungsten oxide (H0.23 WO3 ) is proposed to enhance the catalytic activity by adjusting the surface electronic structure and weakening the hydrogen adsorption energy. Experimentally, the H0.23 WO3 electrocatalyst is successfully prepared on reduced graphene oxide. It exhibits significantly improved electrocatalytic activity for HER, with a low overpotential of 33 mV to drive a current density of 10 mA cm-2 and ultra-long catalytic stability at high-throughput hydrogen output (200 000 s, 90 mA cm-2 ) in acidic media. Theoretically, density functional theory calculations indicate that strong interactions between interstitial hydrogen and lattice oxygen lower the electron density distributions of the d-orbitals of the active tungsten (W) centers to weaken the adsorption of hydrogen intermediates on W-sites, thereby sufficiently promoting fast desorption from the catalyst surface. This work enriches defect engineering to modulate the electron structure and provides a new pathway for the rational design of efficient catalysts for HER.

16.
J Transl Med ; 21(1): 708, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37814303

ABSTRACT

Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.


Subject(s)
Neoplasms , Radiation Fibrosis Syndrome , Humans , Fibrosis , Lung/pathology , Cytokines/metabolism , Extracellular Matrix/metabolism , Myofibroblasts/metabolism , Neoplasms/pathology
17.
J Exp Bot ; 74(8): 2692-2706, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36728590

ABSTRACT

Soybean mosaic virus (SMV) severely damages soybean [Glycine max (L.) Merr.] yield and seed quality. Moreover, the underlying genetic determinants of resistance to SMV remain largely unknown. Here, we performed a genome-wide association study (GWAS) of SMV resistance in a panel of 219 diverse soybean accessions across four environments and identified a new resistance-related gene, GmMLRK1, at the major resistance locus Rsv4 on chromosome 2. GmMLRK1 encodes a malectin-like receptor kinase (RK) that was induced earlier and to a greater degree in leaves of the SMV-resistant cultivar Kefeng No. 1 than in those of the susceptible cultivar Nannong 1138-2 after inoculation. We demonstrated that soybean plants overexpressing GmMLRK1 show broad-spectrum resistance to both strains SC7 and SC3 on the basis of reduced viral accumulation, increased reactive oxygen species production, and local cell death associated with the hypersensitive response. In contrast, GmMLRK1 knockout mutants were more susceptible to both pathotypes. Haplotype analysis revealed the presence of five haplotypes (H1-H5) within the soybean population, and only H1 provided SMV resistance, which was independent of its tightly linked SMV resistance gene RNase-H at the same locus. These results report a novel gene that adds new understanding of SMV resistance and can be used for breeding resistant soybean accessions.


Subject(s)
Glycine max , Potyvirus , Glycine max/genetics , Genome-Wide Association Study , Plant Breeding , Potyvirus/genetics , Plant Diseases/genetics
18.
Microb Pathog ; 175: 105983, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36641002

ABSTRACT

The H9N2 subtype of avian influenza virus (AIV) is common in poultry production. It causes mild clinical signs but rarely leads to poultry mortalities. However, higher mortality can occur in chickens with co-infections, especially avian pathogenic Escherichia coli (APEC), which results in huge economic losses for the poultry industry. Unfortunately, the mechanism of co-infection remains unknown. Our previous studies screened several proteins associated with bacterial adhesion, including transforming growth factor beta-1 (TGF-ß1), integrins, cortactin, E-cadherin, vinculin, and fibromodulin. Herein, we investigated the contribution of TGF-ß1 to APEC adhesion after H9N2 infection. We first infected H9N2 and APEC in chicken, chicken embryo and DF-1 cells, and demonstrated that H9N2 infection promotes APEC adhesion to hosts in vitro and in vivo by plate count method. Through real-time fluorescence quantification and enzyme-linked immunosorbent assay, it was demonstrated that H9N2 infection not only increases TGF-ß1 expression but also its activity in a time-dependent manner. Then, through exogenous addition of TGF-ß1 and overexpression, we further demonstrated that TGF-ß1 can increase the adhesion of endothelial cells to DF-1 cells. Furthermore, the capacity of APEC adhesion to DF-1 cells was significantly decreased either by adding a TGF-ß1 receptor inhibitor or using small interfering RNAs to interfere with the expression of TGF-ß1. To sum up, H9N2 infection can promote the upregulation of TGF-ß1 and then increase the adhesion ability of APEC. Targeting TGF-ß1 and its associated pathway will provide valuable insights into the clinical treatment of E. coli secondary infection induced by H9N2 infection.


Subject(s)
Coinfection , Escherichia coli Infections , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Chick Embryo , Animals , Chickens , Influenza A Virus, H9N2 Subtype/physiology , Coinfection/veterinary , Escherichia coli/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Endothelial Cells , Escherichia coli Infections/veterinary
19.
Microb Pathog ; 182: 106235, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37419219

ABSTRACT

Duck circovirus (DuCV) is one of the most prevalent viruses in the duck breeding industry, and causes persistent infection and severe immunosuppression. Currently, there is a serious lack of prevention and control measures and no commercial vaccine against DuCV. Therefore, effective antiviral drugs are important for treating DuCV infection. Interferon (IFN) is an important component of antiviral innate immunity, but it remains unclear whether duck IFN-α has a clinical effect against DuCV. Antibody therapy is an important way to treat viral infections. The DuCV structural protein (cap) is immunogenic, and it remains to be determined whether an anti-cap protein antibody can effectively block DuCV infection. In this study, the duck IFN-α gene and the DuCV structural protein cap gene were cloned, expressed and purified in Escherichia coli to prepare duck recombinant IFN-α and the cap protein. Then, rabbits were immunized with the recombinant cap protein to prepare a rabbit polyclonal antibody. This study investigated the antiviral effect of duck recombinant IFN-α and the anti-cap protein antibody and their combined effect on Cherry Valley ducks infected with DuCV. The results showed that the treatment significantly alleviated the clinical symptoms of immune organ atrophy and immunosuppression compared with the control. The histopathological damage of the target organs was alleviated, and replication of DuCV in the immune organs was significantly inhibited. The treatment also reduced the damage caused by DuCV to the liver and immune function, and increased the level of the DuCV antibody in the blood, thereby improving antiviral activity. Notably, the combination of duck IFN-α and the polyclonal antibody completely blocked DuCV infection after 13 days under the experimental conditions, showing a better inhibitory effect on DuCV infection than single treatments. These results showed that duck recombinant IFN-α and the anti-cap protein antibody can be used as antiviral drugs to clinically treat and control DuCV infection, particularly the vertical transmission of the virus in breeding ducks.


Subject(s)
Circoviridae Infections , Circovirus , Poultry Diseases , Animals , Rabbits , Interferon-alpha/genetics , Circovirus/genetics , Recombinant Proteins/genetics , Escherichia coli/genetics , Circoviridae Infections/prevention & control , Circoviridae Infections/veterinary , Antiviral Agents/pharmacology , Antibodies , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control
20.
Toxicol Appl Pharmacol ; 480: 116734, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37924851

ABSTRACT

Human skin is daily exposed to oxidative stresses in the environment such as physical stimulation, chemical pollutants and pathogenic microorganisms, which are likely to cause skin diseases. As important post-translational modifications, protein ubiquitination and deubiquitination play crucial roles in maintaining cellular homeostasis by the proteolytic removal of oxidized proteins. We have previously reported that the expression of ubiquitin-specific protease 47 (USP47), a kind of deubiquitinating enzymes (DUBs), was significantly elevated in response to oxidative stress. However, the role of USP47 in cutaneous oxidative injury remains unclear. Usp47 wild-type (Usp47+/+) mice and Usp47 knockout (Usp47-/-) mice were used to establish two animal models of oxidative skin damage: (1) radiation- and (2) imiquimod (IMQ)-induced skin injury. Loss of Usp47 consistently aggravated mouse skin damage in vivo. Subsequently, we screened 63 upregulated and 170 downregulated proteins between the skin tissues of wild-type and Usp47-/- mice after 35 Gy electron beam radiation using proteomic analysis. Among the dysregulated proteins, nicotinamide nucleotide transhydrogenase (NNT), which has been reported as a significant regulator of oxidative stress and redox homeostasis, was further investigated in detail. Results showed that NNT was regulated by USP47 through direct ubiquitination mediated degradation and involved in the pathogenesis of cutaneous oxidative injury. Knockdown of NNT expression dramatically limited the energy production ability, with elevated mitochondrial reactive oxygen species (ROS) accumulation and increased mitochondrial membrane potential in irradiated HaCaT cells. Taken together, our present findings illustrate the critical role of USP47 in oxidative skin damage by modulating NNT degradation and mitochondrial homeostasis.


Subject(s)
NADP Transhydrogenases , Animals , Humans , Mice , Mitochondria/metabolism , NADP Transhydrogenases/metabolism , Oxidative Stress/physiology , Proteomics , Ubiquitin-Specific Proteases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL