Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Anal Chem ; 95(48): 17808-17817, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37972997

ABSTRACT

The timely detection of diseases and the accurate identification of pathogens require the development of efficient and reliable diagnostic methods. In this study, we have developed a novel specific multivariate probe termed MRTFP (multivariate real-time fluorescent probe) by assembling strand exchange three-way-junction (3WJ) structures. The 3WJ structures were incorporated into a four-angle probe (FP) and a hexagonal probe (HP), to target the multivariate genes of Salmonella. The FP and HP enable single-step and multiplexed detection in RT-LAMP (real-time loop-mediated isothermal amplification) with exceptional sensitivity and specificity. Encouragingly, real food samples contaminated with Salmonella (Salmonella enteritidis and Salmonella typhimurium) can be readily identified and distinguished with a minimum detectable concentration (MDC) of 103 CFU/mL without the need for further culture. The introduction of MRTFP allows for simultaneous detection of dual or three targets in a single tube for LAMP, thereby improving detection efficiency. The MRTFP simplifies the design of robust multivariate probes, exhibits excellent stability, and avoids interference from multiple probe units, offering significant potential for the development of specific probes for efficient and accurate disease detection and pathogen identification.


Subject(s)
Nucleic Acid Amplification Techniques , Salmonella typhimurium , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , Salmonella typhimurium/genetics , Salmonella enteritidis/genetics
2.
PLoS Biol ; 18(3): e3000618, 2020 03.
Article in English | MEDLINE | ID: mdl-32182233

ABSTRACT

Botulinum neurotoxins (BoNTs) are a family of bacterial toxins with seven major serotypes (BoNT/A-G). The ability of these toxins to target and bind to motor nerve terminals is a key factor determining their potency and efficacy. Among these toxins, BoNT/B is one of the two types approved for medical and cosmetic uses. Besides binding to well-established receptors, an extended loop in the C-terminal receptor-binding domain (HC) of BoNT/B (HC/B) has been proposed to also contribute to toxin binding to neurons by interacting with lipid membranes (termed lipid-binding loop [LBL]). Analogous loops exist in the HCs of BoNT/C, D, G, and a chimeric toxin DC. However, it has been challenging to detect and characterize binding of LBLs to lipid membranes. Here, using the nanodisc system and biolayer interferometry assays, we find that HC/DC, C, and G, but not HC/B and HC/D, are capable of binding to receptor-free lipids directly, with HC/DC having the highest level of binding. Mutagenesis studies demonstrate the critical role of consecutive aromatic residues at the tip of the LBL for binding of HC/DC to lipid membranes. Taking advantage of this insight, we then create a "gain-of-function" mutant HC/B by replacing two nonaromatic residues at the tip of its LBL with tryptophan. Cocrystallization studies confirm that these two tryptophan residues do not alter the structure of HC/B or the interactions with its receptors. Such a mutated HC/B gains the ability to bind receptor-free lipid membranes and shows enhanced binding to cultured neurons. Finally, full-length BoNT/B containing two tryptophan mutations in its LBL, together with two additional mutations (E1191M/S1199Y) that increase binding to human receptors, is produced and evaluated in mice in vivo using Digit Abduction Score assays. This mutant toxin shows enhanced efficacy in paralyzing local muscles at the injection site and lower systemic diffusion, thus extending both safety range and duration of paralysis compared with the control BoNT/B. These findings establish a mechanistic understanding of LBL-lipid interactions and create a modified BoNT/B with improved therapeutic efficacy.


Subject(s)
Botulinum Toxins, Type A/metabolism , Botulinum Toxins, Type A/pharmacology , Cell Membrane/metabolism , Animals , Binding Sites , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/genetics , Cells, Cultured , Crystallography, X-Ray , Female , Gangliosides/metabolism , Membrane Lipids/metabolism , Mice , Muscle, Skeletal/drug effects , Mutation , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Paralysis/chemically induced , Protein Engineering , Rats, Transgenic , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Synaptotagmins/metabolism , Tryptophan/chemistry , Tryptophan/metabolism
3.
Anal Chem ; 93(35): 11956-11964, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34424659

ABSTRACT

Coronavirus diseases such as the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose serious threats. Portable and accurate nucleic acid detection is still an urgent need to achieve on-site virus screening and timely infection control. Herein, we have developed an on-site, semiautomatic detection system, aiming at simultaneously overcoming the shortcomings suffered by various commercially available assays, such as low accuracy, poor portability, instrument dependency, and labor intensity. Ultrasensitive isothermal amplification [i.e., reverse transcription loop-mediated isothermal amplification (RT-LAMP)] was applied to generate intensified SARS-CoV-2 RNA signals, which were then transduced to portable commercial pregnancy test strips (PTSs) via ultraspecific human chorionic gonadotropin (hCG)-conjugated toehold-mediated strand exchange (TMSE) probes (hCG-P). The entire detection was integrated into a four-channel, palm-size microfluidic device, named the microfluidic point-of-care (POC) diagnosis system based on the PTS (MPSP) detection system. It provides rapid, cost-effective, and sensitive detection, of which the lowest concentration of detection was 0.5 copy/µL of SARS-CoV-2 RNA, regardless of the presence of other similar viruses, even highly similar severe acute respiratory syndrome coronavirus (SARS-CoV). The successful detection of the authentic samples from different resources evaluated the practical application. The commercial PTS provides a colorimetric visible signal, which is instrument- and optimization-free. Therefore, this MPSP system can be immediately used for SARS-CoV-2 emergency detection, and it is worthy of further optimization to achieve full automation and detection for other infectious diseases.


Subject(s)
COVID-19 , Pregnancy Tests , Female , Humans , Lab-On-A-Chip Devices , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Point-of-Care Systems , Pregnancy , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
4.
Curr Opin Urol ; 31(2): 140-146, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33394765

ABSTRACT

PURPOSE OF REVIEW: Botulinum neurotoxin A (BoNT/A), or Botox, is a popular option for overactive bladder (OAB) and neurogenic bladder (NGB) with or without incontinence. This review aims to discuss the clinical outcomes of BoNT in adult and pediatric bladder conditions, and introduces the potential benefit of novel, engineered neurotoxins beyond BoNT/A. RECENT FINDINGS: A large volume of evidence supports the use of Botox for OAB (to reduce urgency, frequency and incontinence episodes), and for NGB (to decrease incontinence and improve bladder capacity and detrusor pressures). Botox is now also Food & Drug Administration (FDA)-approved for pediatric neurogenic detrusor overactivity. However, urinary retention, diminished response over time and treatment failures are prevalent issues with Botox. Modifying natural BoNTs or forming chimeric toxins are alternatives to BoNT/A that may have higher efficacy and lower side-effect profile. One example is BoNT/BMY-WW. This novel engineered toxin binds to a more commonly expressed synaptotagmin receptor, with potentially more potent paralytic effect and less capacity for systemic diffusion. SUMMARY: Novel engineered neurotoxins may be the next frontier in OAB and NGB therapy.


Subject(s)
Botulinum Toxins, Type A , Nerve Block , Neuromuscular Agents , Urinary Bladder, Neurogenic , Urinary Bladder, Overactive , Adult , Botulinum Toxins, Type A/adverse effects , Botulinum Toxins, Type A/therapeutic use , Child , Humans , Nerve Block/methods , Neuromuscular Agents/adverse effects , Neuromuscular Agents/therapeutic use , Treatment Outcome , Urinary Bladder, Neurogenic/drug therapy , Urinary Bladder, Overactive/drug therapy
5.
Int J Mol Sci ; 22(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34830380

ABSTRACT

Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.


Subject(s)
Prenylation/drug effects , rac1 GTP-Binding Protein/chemistry , rho GTP-Binding Proteins/chemistry , rho-Specific Guanine Nucleotide Dissociation Inhibitors/chemistry , Amino Acid Sequence/genetics , Guanine Nucleotide Dissociation Inhibitors/chemistry , Guanine Nucleotide Dissociation Inhibitors/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions/drug effects , Kinetics , Static Electricity , rac1 GTP-Binding Protein/genetics , rho GTP-Binding Proteins/genetics , rho-Specific Guanine Nucleotide Dissociation Inhibitors/genetics
6.
Angew Chem Int Ed Engl ; 60(47): 24823-24827, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34432346

ABSTRACT

There is a constant drive for affordable point-of-care testing (POCT) technologies for the detection of infectious human diseases. Herein, we report a simple platform for DNA detection that takes advantage of four techniques: commercially available pregnancy test strips (PTS), amplicon generation via loop-mediated isothermal amplification (LAMP), toehold-mediated strand displacement, and noncovalent immobilization of DNA on paper surface with DNA nanoflowers. This simple, separation-free platform is highly specific, as demonstrated with the detection of rtL180M, a single-nucleotide polymorphism observed in hepatitis B virus (HBV) associated with antiviral drug resistance. It is very sensitive, capable of detecting the targeted mutation at 2 copies µL-1 . It is able to correctly identify the unmutated and rtL180M genome types of HBV in clinical samples. Given its wide adaptability, we expect this platform can be easily modified for the detection of genetic variations associated with various pathogens and human diseases.


Subject(s)
DNA/analysis , Nanoparticles/chemistry , Female , Humans , Pregnancy , Pregnancy Tests , Sensitivity and Specificity
7.
Hum Mol Genet ; 23(16): 4315-27, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24705357

ABSTRACT

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.


Subject(s)
Carcinogenesis/genetics , Mutation/physiology , Phenotype , ras Proteins/genetics , Animals , Caenorhabditis elegans , Cohort Studies , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myelomonocytic, Juvenile/genetics , MAP Kinase Kinase Kinases/metabolism , Noonan Syndrome/genetics , Oncogene Protein v-akt/metabolism , Signal Transduction/genetics , ras Proteins/chemistry , ras Proteins/metabolism
8.
J Biol Chem ; 289(10): 6839-6849, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24443565

ABSTRACT

The three deleted in liver cancer genes (DLC1-3) encode Rho-specific GTPase-activating proteins (RhoGAPs). Their expression is frequently silenced in a variety of cancers. The RhoGAP activity, which is required for full DLC-dependent tumor suppressor activity, can be inhibited by the Src homology 3 (SH3) domain of a Ras-specific GAP (p120RasGAP). Here, we comprehensively investigated the molecular mechanism underlying cross-talk between two distinct regulators of small GTP-binding proteins using structural and biochemical methods. We demonstrate that only the SH3 domain of p120 selectively inhibits the RhoGAP activity of all three DLC isoforms as compared with a large set of other representative SH3 or RhoGAP proteins. Structural and mutational analyses provide new insights into a putative interaction mode of the p120 SH3 domain with the DLC1 RhoGAP domain that is atypical and does not follow the classical PXXP-directed interaction. Hence, p120 associates with the DLC1 RhoGAP domain by targeting the catalytic arginine finger and thus by competitively and very potently inhibiting RhoGAP activity. The novel findings of this study shed light on the molecular mechanisms underlying the DLC inhibitory effects of p120 and suggest a functional cross-talk between Ras and Rho proteins at the level of regulatory proteins.


Subject(s)
Catalytic Domain , GTPase-Activating Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/antagonists & inhibitors , p120 GTPase Activating Protein/chemistry , Alanine/chemistry , DNA Mutational Analysis , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , Humans , Metabolic Networks and Pathways , Protein Binding , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , p120 GTPase Activating Protein/genetics
9.
Hum Mol Genet ; 22(2): 262-70, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23059812

ABSTRACT

Activating somatic and germline mutations of closely related RAS genes (H, K, N) have been found in various types of cancer and in patients with developmental disorders, respectively. The involvement of the RAS signalling pathways in developmental disorders has recently emerged as one of the most important drivers in RAS research. In the present study, we investigated the biochemical and cell biological properties of two novel missense KRAS mutations (Y71H and K147E). Both mutations affect residues that are highly conserved within the RAS family. KRAS(Y71H) showed no clear differences to KRAS(wt), except for an increased binding affinity for its major effector, the RAF1 kinase. Consistent with this finding, even though we detected similar levels of active KRAS(Y71H) when compared with wild-type protein, we observed an increased activation of MEK1/2, irrespective of the stimulation conditions. In contrast, KRAS(K147E) exhibited a tremendous increase in nucleotide dissociation generating a self-activating RAS protein that can act independently of upstream signals. As a consequence, levels of active KRAS(K147E) were strongly increased regardless of serum stimulation and similar to the oncogenic KRAS(G12V). In spite of this, KRAS(K147E) downstream signalling did not reach the level triggered by oncogenic KRAS(G12V), especially because KRAS(K147E) was downregulated by RASGAP and moreover exhibited a 2-fold lower affinity for RAF kinase. Here, our findings clearly emphasize that individual RAS mutations, despite being associated with comparable phenotypes of developmental disorders in patients, can cause remarkably diverse biochemical effects with a common outcome, namely a rather moderate gain-of-function.


Subject(s)
Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/metabolism , Failure to Thrive/genetics , Failure to Thrive/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Mutation , Noonan Syndrome/genetics , Noonan Syndrome/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Cell Line , Facies , Humans , Protein Binding , Protein Conformation , Protein Stability , Signal Transduction , ras Proteins/chemistry
10.
FEBS J ; 291(4): 676-689, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37746829

ABSTRACT

The botulinum neurotoxin-like toxin from Weissella oryzae (BoNT/Wo) is one of the BoNT-like toxins recently identified outside of the Clostridium genus. We show that, like the canonical BoNTs, BoNT/Wo forms a complex with its non-toxic non-hemagglutinin (NTNH) partner, which in traditional BoNT serotypes protects the toxin from proteases and the acidic environment of the hosts' guts. We here report the cryo-EM structure of the 300 kDa BoNT/Wo-NTNH/Wo complex together with pH stability studies of the complex. The structure reveals molecular details of the toxin's interactions with its protective partner. The overall structural arrangement is similar to other reported BoNT-NTNH complexes, but NTNH/Wo uniquely contains two extra bacterial immunoglobulin-like (Big) domains on the C-terminus. Although the function of these Big domains is unknown, they are structurally most similar to bacterial proteins involved in adhesion to host cells. In addition, the BoNT/Wo protease domain contains an internal disulfide bond not seen in other BoNTs. Mass photometry analysis revealed that the BoNT/Wo-NTNH/Wo complex is stable under acidic conditions and may dissociate at neutral to basic pH. These findings established that BoNT/Wo-NTNH/Wo shares the general fold of canonical BoNT-NTNH complexes. The presence of unique structural features suggests that it may have an alternative mode of activation, translocation and recognition of host cells, raising interesting questions about the activity and the mechanism of action of BoNT/Wo as well as about its target environment, receptors and substrates.


Subject(s)
Botulinum Toxins , Clostridium botulinum , Weissella , Botulinum Toxins/chemistry , Neurotoxins/metabolism , Clostridium botulinum/chemistry , Clostridium botulinum/metabolism , Hemagglutinins/metabolism , Cryoelectron Microscopy , Immunoglobulin Domains
11.
Biochem Biophys Res Commun ; 434(4): 785-90, 2013 May 17.
Article in English | MEDLINE | ID: mdl-23603360

ABSTRACT

Plexin-B1 regulates various cellular processes interacting directly with several Rho proteins. Molecular details of these interactions are, however, not well understood. In this study, we examined in vitro and in silico the interaction of the Rho binding domain (B1RBD) of human Plexin-B1 with 11 different Rho proteins. We show that B1RBD binds in a GTP-dependent manner to Rac1, Rac2, Rac3, Rnd1, Rnd2, Rnd3, and RhoD, but not to RhoA, Cdc42, RhoG, or Rif. Interestingly, Rnd1 competitively displaces the Rac1 from B1RBD but not vice versa. Structure-function analysis revealed a negatively charged loop region, called B1L(31), which may facilitate a selective B1RBD interaction with Rho proteins.


Subject(s)
Nerve Tissue Proteins/chemistry , Receptors, Cell Surface/chemistry , rho GTP-Binding Proteins/chemistry , Amino Acid Sequence , Binding Sites/genetics , Binding, Competitive , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Sequence Homology, Amino Acid , rac1 GTP-Binding Protein/chemistry , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
12.
Biol Chem ; 394(11): 1399-410, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23950574

ABSTRACT

In a variety of normal and pathological cell types, Rho-kinases I and II (ROCKI/II) play a pivotal role in the organization of the nonmuscle and smooth muscle cytoskeleton and adhesion plaques as well as in the regulation of transcription factors. Thus, ROCKI/II activity regulates cellular contraction, motility, morphology, polarity, cell division, and gene expression. Emerging evidence suggests that dysregulation of the Rho-ROCK pathways at different stages is linked to cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. This review focuses on the current status of understanding the multiple functions of Rho-ROCK signaling pathways and various modes of regulation of Rho-ROCK activity, thereby orchestrating a concerted functional response.


Subject(s)
rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Cell Proliferation , Down-Regulation/genetics , Down-Regulation/physiology , Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Enzymologic/physiology , Humans , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Protein Stability , Signal Transduction/genetics , Signal Transduction/physiology , rho GTP-Binding Proteins/physiology , rho-Associated Kinases/physiology , rhoA GTP-Binding Protein/physiology , rhoB GTP-Binding Protein/physiology , rhoC GTP-Binding Protein
13.
Biosens Bioelectron ; 236: 115438, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37263053

ABSTRACT

Efficient detection of pathogenic bacteria is paramount for ensuring food safety and safeguarding public health. Herein, we developed a label-free and signal-on dual-target recognition electrochemical DNA sensing platform based on the conformational formation of split G-quadruplex. This platform focused on achieving sensitive and low-cost detection of Salmonella and its most human-infecting S. typhimurium serotype. In simple terms, the dual-target recognition probe (DTR-6P) was ingeniously designed for the loop sequence on the loop-mediated isothermal amplification (LAMP) amplicons. It could recognize two different genes and release their corresponding G-rich sequences. The exfoliated G-rich sequences could be captured by the capture probes on the electrode, and then the bimolecular G-quadruplex or the tetramolecular G-quadruplex would be formed to capture hemin, thereby enabling dual-signal reporting. The minimum detection amount of target genes can be as low as 2 copies/µL. Encouragingly, the real food samples contaminated by Salmonella and the S. typhimurium serotype can be readily identified. The sensing platform with ingenious design paves a new way for label-free, multi-target simultaneous detection, whose advantage of rapidity, sensitivity, cost-effectiveness, and specificity also lay a solid foundation for practical applications.


Subject(s)
Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , Humans , Hemin/chemistry , Serogroup , DNA/chemistry , Salmonella/genetics , DNA, Catalytic/chemistry , Electrochemical Techniques , Limit of Detection
14.
Nat Commun ; 14(1): 2338, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095076

ABSTRACT

Botulinum neurotoxin E (BoNT/E) is one of the major causes of human botulism and paradoxically also a promising therapeutic agent. Here we determined the co-crystal structures of the receptor-binding domain of BoNT/E (HCE) in complex with its neuronal receptor synaptic vesicle glycoprotein 2A (SV2A) and a nanobody that serves as a ganglioside surrogate. These structures reveal that the protein-protein interactions between HCE and SV2 provide the crucial location and specificity information for HCE to recognize SV2A and SV2B, but not the closely related SV2C. At the same time, HCE exploits a separated sialic acid-binding pocket to mediate recognition of an N-glycan of SV2. Structure-based mutagenesis and functional studies demonstrate that both the protein-protein and protein-glycan associations are essential for SV2A-mediated cell entry of BoNT/E and for its potent neurotoxicity. Our studies establish the structural basis to understand the receptor-specificity of BoNT/E and to engineer BoNT/E variants for new clinical applications.


Subject(s)
Botulinum Toxins, Type A , Synaptic Vesicles , Humans , Synaptic Vesicles/metabolism , Botulinum Toxins, Type A/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Protein Binding
15.
Case Rep Oncol ; 15(2): 700-704, 2022.
Article in English | MEDLINE | ID: mdl-36157687

ABSTRACT

ROS1 comprises a small molecular subset of NSCLC, and several fusion partners have been discovered. Concomitant mutations of EGFR and ROS1 in NSCLC have been occasionally reported, while no clear standard of treatment has been revealed. Here we report a case with metastatic lung adenocarcinoma detected to have EGFR 21 exon L858R mutation at diagnosis, who responded to first-line gefitinib and second-line osimertinib treatment. Next-generation sequencing during the treatment course revealed multiple alterations, including an OPRM1-ROS1 Ointergenic: R36 fusion. We reviewed the related literatures but found no report of this fusion type previously. The application of ctDNA detection results in the finding of new alterations, which need further confirmation.

16.
Front Immunol ; 13: 1014377, 2022.
Article in English | MEDLINE | ID: mdl-36248787

ABSTRACT

Increasing antibiotic resistance to bacterial infections causes a serious threat to human health. Efficient detection and treatment strategies are the keys to preventing and reducing bacterial infections. Due to the high affinity and antigen specificity, antibodies have become an important tool for diagnosis and treatment of various human diseases. In addition to conventional antibodies, a unique class of "heavy-chain-only" antibodies (HCAbs) were found in the serum of camelids and sharks. HCAbs binds to the antigen through only one variable domain Referred to as VHH (variable domain of the heavy chain of HCAbs). The recombinant format of the VHH is also called single domain antibody (sdAb) or nanobody (Nb). Sharks might also have an ancestor HCAb from where SdAbs or V-NAR might be engineered. Compared with traditional Abs, Nbs have several outstanding properties such as small size, high stability, strong antigen-binding affinity, high solubility and low immunogenicity. Furthermore, they are expressed at low cost in microorganisms and amenable to engineering. These superior properties make Nbs a highly desired alternative to conventional antibodies, which are extensively employed in structural biology, unravelling biochemical mechanisms, molecular imaging, diagnosis and treatment of diseases. In this review, we summarized recent progress of nanobody-based approaches in diagnosis and neutralization of bacterial infection and further discussed the challenges of Nbs in these fields.


Subject(s)
Bacterial Infections , Camelids, New World , Single-Domain Antibodies , Animals , Antibodies , Bacterial Infections/diagnosis , Humans , Immunoglobulin Heavy Chains
17.
Sci Transl Med ; 13(575)2021 01 06.
Article in English | MEDLINE | ID: mdl-33408184

ABSTRACT

Efficient penetration of cell membranes and specific targeting of a cell type represent major challenges for developing therapeutics toward intracellular targets. One example facing these hurdles is to develop post-exposure treatment for botulinum neurotoxins (BoNTs), a group of bacterial toxins (BoNT/A to BoNT/G) that are major potential bioterrorism agents. BoNTs enter motor neurons, block neurotransmitter release, and cause a paralytic disease botulism. Members of BoNTs such as BoNT/A exhibit extremely long half-life within neurons, resulting in persistent paralysis for months, yet there are no therapeutics that can inhibit BoNTs once they enter neurons. Here, we developed a chimeric toxin-based delivery platform by fusing the receptor-binding domain of a BoNT, which targets neurons, with the membrane translocation domain and inactivated protease domain of the recently discovered BoNT-like toxin BoNT/X, which can deliver cargoes across endosomal membranes into the cytosol. A therapeutic protein was then created by fusing a single-domain antibody (nanobody) against BoNT/A with the delivery platform. In vitro characterization demonstrated that nanobodies were delivered into cultured neurons and neutralized BoNT/A in neurons. Administration of this protein in mice shortened duration of local muscle paralysis, restoring muscle function within hours, and rescued mice from systemic toxicity of lethal doses of BoNT/A. Fusion of two nanobodies, one against BoNT/A and the other against BoNT/B, created a multivalent therapeutic protein able to neutralize both BoNT/A and BoNT/B in mice. These studies provide an effective post-exposure treatment for botulism and establish a platform for intracellular delivery of therapeutics targeting cytosolic proteins and processes.


Subject(s)
Botulism , Immunotoxins , Single-Domain Antibodies , Animals , Botulism/drug therapy , Disease Models, Animal , Mice , Synaptic Transmission
18.
Cell Death Discov ; 7(1): 357, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34785642

ABSTRACT

Ubiquitination displays a crucial role in various biological functions, such as protein degradation, signal transduction, and cellular homeostasis. Accumulating evidence has indicated that ubiquitination is essential in cancer progression. Ubiquitin-conjugating enzyme E2S (UBE2S) is a member of ubiquitin-conjugating enzyme family of the ubiquitin system and its role in hepatocellular cancer (HCC) is largely unknown. We investigated the role of UBE2S in HCC and found UBE2S upregulation is relevant with large tumor size, recurrence, and advanced TNM stage, serving as an independent risk factor of overall survival (OS) and disease-free survival (DFS) for HCC patients. We conducted in vitro experiments and found that in HCC cells, UBE2S overexpression increases the resistance to 5-FU and oxaliplatin, while UBE2S knockdown achieves an opposite effect. UBE2S is transcriptionally activated by the binding of FOXM1 to UBE2S promoter, which induces its upregulation and reduces PTEN protein level by promoting PTEN ubiquitination at Lys60 and Lys327 and facilitating AKT phosphorylation. The promotional effect of FOXM1-UBE2S axis on HCC cell chemoresistance is attenuated by allosteric AKT inhibitor, MK2206. In conclusion, our results reveal that UBE2S is a prognostic biomarker for HCC patients, and the FOXM1-UBE2S-PTEN-p-AKT signaling axis might be a promising target for the treatment of HCC.

19.
Sci Adv ; 7(43): eabi4582, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34678063

ABSTRACT

Toxin B (TcdB) is a primary cause of Clostridioides difficile infection (CDI). This toxin acts by glucosylating small GTPases in the Rho/Ras families, but the structural basis for TcdB recognition and selectivity of specific GTPase substrates remain unsolved. Here, we report the cocrystal structures of the glucosyltransferase domain (GTD) of two distinct TcdB variants in complex with human Cdc42 and R-Ras, respectively. These structures reveal a common structural mechanism by which TcdB recognizes Rho and R-Ras. Furthermore, we find selective clustering of adaptive residue changes in GTDs that determine their substrate preferences, which helps partition all known TcdB variants into two groups that display distinct specificities toward Rho or R-Ras. Mutations that selectively disrupt GTPases binding reduce the glucosyltransferase activity of the GTD and the toxicity of TcdB holotoxin. These findings establish the structural basis for TcdB recognition of small GTPases and reveal strategies for therapeutic interventions for CDI.

20.
Science ; 371(6531): 803-810, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33602850

ABSTRACT

Although bespoke, sequence-specific proteases have the potential to advance biotechnology and medicine, generation of proteases with tailor-made cleavage specificities remains a major challenge. We developed a phage-assisted protease evolution system with simultaneous positive and negative selection and applied it to three botulinum neurotoxin (BoNT) light-chain proteases. We evolved BoNT/X protease into separate variants that preferentially cleave vesicle-associated membrane protein 4 (VAMP4) and Ykt6, evolved BoNT/F protease to selectively cleave the non-native substrate VAMP7, and evolved BoNT/E protease to cleave phosphatase and tensin homolog (PTEN) but not any natural BoNT protease substrate in neurons. The evolved proteases display large changes in specificity (218- to >11,000,000-fold) and can retain their ability to form holotoxins that self-deliver into primary neurons. These findings establish a versatile platform for reprogramming proteases to selectively cleave new targets of therapeutic interest.


Subject(s)
Botulinum Toxins/metabolism , Directed Molecular Evolution , Protein Engineering , Animals , Bacteriophage M13/genetics , Botulinum Toxins/chemistry , Botulinum Toxins/genetics , Catalytic Domain , Cell Line , Cells, Cultured , Humans , Mutation , Neurons/metabolism , PTEN Phosphohydrolase/metabolism , Peptide Library , Protein Domains , R-SNARE Proteins/metabolism , Rats , Selection, Genetic , Substrate Specificity , Vesicle-Associated Membrane Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL