Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Analyst ; 149(3): 665-688, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38205593

ABSTRACT

Carbon dots@noble metal nanoparticle composites are formed by combining carbon dots and metal nanoparticles using various strategies. Carbon dots exhibit a reducing ability and function as stabilisers; consequently, metal-ion solutions can be directly reduced by them to synthesise gold, silver, and gold-silver alloy particles. Carbon dots@gold/silver/gold-silver particle composites have demonstrated the potential for several practical applications owing to their superior properties and simple preparation process. Until now, several review articles have been published to summarise fluorescent carbon dots or noble metal nanomaterials. Compared with metal-free carbon dots, carbon dots@noble metal nanoparticles have a unique morphology and structure, resulting in new physicochemical properties, which allow for sensing, bioimaging, and bacteriostasis applications. Therefore, to promote the effective development of carbon dots@noble metal nanoparticle composites, this paper primarily reviews carbon dots@gold/silver/gold-silver alloy nanoparticle composites for the first time in terms of the following aspects. (1) The synthesis strategies of carbon dots@noble metal nanoparticle composites are outlined. The principle and function of carbon dots in the synthesis strategies are examined. The advantages and disadvantages of these methods and composites are analysed. (2) The characteristics and properties of such composites are described. (3) The applications of these composite materials are summarised. Finally, the potentials and limitations of carbon dots@noble metal nanoparticle composites are discussed, thus laying the foundation for their further development.

2.
Arch Virol ; 169(5): 94, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594417

ABSTRACT

Considering that avian leukosis virus (ALV) infection has inflicted massive economic losses on the poultry breeding industry in most countries, its early diagnosis remains an important measure for timely treatment and control of the disease, for which a rapid and sensitive point-of-care test is required. We established a user-friendly, economical, and rapid visualization method for ALV amplification products based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with an immunochromatographic strip in a lateral flow device (LFD). Using the ALVp27 gene as the target, five RT-LAMP primers and one fluorescein-isothiocyanate-labeled probe were designed. After 60 min of RT-LAMP amplification at 64 °C, the products could be visualized directly using the LFD. The detection limit of this assay for ALV detection was 102 RNA copies/µL, and the sensitivity was 100 times that of reverse transcription polymerase chain reaction (RT-PCR), showing high specificity and sensitivity. To verify the clinical practicality of this assay for detecting ALV, the gold standard RT-PCR method was used for comparison, and consistent results were obtained with both assays. Thus, the assay described here can be used for rapid detection of ALV in resource-limited environments.


Subject(s)
Avian Leukosis Virus , Molecular Diagnostic Techniques , Reverse Transcription , Animals , Avian Leukosis Virus/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods
3.
World J Microbiol Biotechnol ; 39(1): 23, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36422675

ABSTRACT

Brucellosis is a chronic infectious disease caused by Brucella, which is characterized by inflammation of reproductive organs and fetal membranes, abortion, infertility, and local inflammatory lesions of various tissues. Due to the widespread prevalence and spread of brucellosis, it has not only caused huge losses to animal husbandry, but also brought serious impacts on human health and safety. Therefore, rapid and accurate diagnosis is of great significance for the effective control of brucellosis. Therefore, we have developed a rapid vertical flow technique (RVFT) using Prussian blue nanoparticles (PBNPs) as a marker material for the detection of brucellosis antibodies. Lipopolysaccharide (LPS) was purified and used to detect brucellosis antibodies to improve the sensitivity of this technique. To enhance the sensitivity of serum antibody detection, a single multifunctional compound buffer was created using whole blood as a biological sample while retaining the advantages of typical lateral flow immunoassays. After signal amplification, standard Brucella-positive serum (containing Brucella antibody at 4000 IU mL-1) could be detected in this system even at a dilution factor of 1 × 10-2. The detection limit was 40 IU mL-1, which is ten times that before signal amplification. This RVFT displayed good specificity and no cross-reactivity. This RVFT effectively avoided the false negative phenomenon of lateral flow immunoassays, was easy to operate, had a short reaction time, has good repeatability, and could elicit results that were visible to the naked eye for 2 ~ 3 min without any equipment. Since this method is very important for controlling the prevalence of brucellosis, it holds great promise for application in primary medical units and veterinary brucellosis detection.


Subject(s)
Brucella , Brucellosis , Nanoparticles , Animals , Humans , Brucellosis/diagnosis , Brucellosis/veterinary , Antibodies, Bacterial , Catalysis
4.
Analyst ; 146(17): 5362-5368, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34337622

ABSTRACT

To prevent the transmission of brucellosis, rapid vertical flow technology (RVFT) was developed to detect brucellosis antibodies. To improve the sensitivity of the technique, lipopolysaccharides (LPS) were purified and used to detect brucellosis antibodies. To improve the sensitivity of serum antibody detection, a single multifunctional buffer was established in whole blood and other biological samples, and the advantages of the lateral flow immunoassay were retained. Flower-like gold nanoparticles were applied to RVFT for the first time. In this study, silver ions were catalyzed by flower-like gold nanoparticles into metal silver deposited on the surface of gold nanoparticles for the first time, which not only increased the particle size of gold nanoparticles, but also showed a more distinguishable black color on the test zone, further improving the sensitivity of RVFT. Standard Brucella-positive serum (containing Brucella antibody at 4000 IU mL-1) could be detected in this system even for a dilution factor of 2 × 10-3. The detection limit was 2 IU mL-1. RVFT can effectively avoid the false negative phenomenon in lateral flow immunoassay. RVFT is simple to operate, with a short reaction time, 2-3 minutes visible to the naked eye, without any equipment. Because it is very important to control the brucellosis epidemic, this approach has great application prospects in basic medical units and for veterinarians.


Subject(s)
Brucella , Metal Nanoparticles , Gold , Immunoassay , Sensitivity and Specificity , Silver , Technology
5.
BMC Gastroenterol ; 21(1): 395, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686147

ABSTRACT

BACKGROUND: Patients with primary biliary cholangitis (PBC) often have comorbid dyslipidemia, and determining the degree of hepatic steatosis can help predict the risk of cardiovascular events in PBC patients. The aim of our study was to analyze the characteristics of lipid distribution and the degree of hepatic steatosis in PBC. METHODS: We retrospectively analyzed 479 cases of PBC, chronic hepatitis B (CHB), chronic hepatitis C (CHC), non-alcoholic fatty liver disease (NAFLD), and healthy subjects (Normal) diagnosed by liver biopsy or definitive clinical diagnosis. Controlled attenuation parameter (CAP) values were applied to assess the degree of steatosis of the liver, and lipid levels were also compared in the five cohorts. RESULTS: We found that among the five groups of subjects, the PBC group had the lowest CAP values (P < 0.001), and the high-density lipoprotein cholesterol (HDL-C) level in the PBC group was higher than normal, CHC and CHB group (P = 0.004, P = 0.033, P < 0.001, respectively).In the multivariate linear analysis, only BMI (ß = 1.280, P = 0.028), ALP (ß = - 0.064, P = 0.012), TBA (ß = - 0.126, P = 0.020), TG (ß = 12.520, P = 0.000), HDL-C (ß = - 11.338, P = 0.001) and LDL-C (ß = 7.012, P = 0.002) were independent predictors of CAP. CONCLUSIONS: Among PBC, CHB, CHC, NAFLD and healthy subjects, PBC had the lowest degree of hepatic steatosis and higher HDL-C levels, all of which were found to be protective factors against atherosclerosis and cardiovascular risk and would provide a valuable reference for the risk of developing cardiovascular events in PBC patients.


Subject(s)
Liver Cirrhosis, Biliary , Non-alcoholic Fatty Liver Disease , Cholesterol, HDL , Humans , Liver Cirrhosis, Biliary/complications , Liver Cirrhosis, Biliary/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Retrospective Studies
6.
J Clin Lab Anal ; 35(12): e23991, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34664737

ABSTRACT

OBJECTIVE: Hepatocellular carcinoma (HCC) is one of the most common malignant tumours and a leading cause of cancer death. Circular RNA (circRNA) has been demonstrated to play an important role in regulating tumour development. The current study aims to explore the specific role of hsa_circ_0001806 during HCC progression. METHODS: The expression of hsa_circ_0001806 in HCC tissues and cells was measured through qRT-PCR. Cell proliferation, apoptosis and migration were measured using CCK-8 and Annexin V/PI staining kits, and Transwell assay. Bioinformatics prediction and dual-luciferase reporter assay were adopted to explore the mechanism underlying the cell function of hsa_circ_0001806 in HCC cells. In addition, glycolysis was assessed by measuring the glucose uptake, lactate production and ATP level using a glucose assay kit, fluorometric lactate assay kit and ATP detection assay kit. RESULTS: Hsa_circ_0001806 was up-regulated in HCC tissues and cells and positively associated with the advanced TNM stage, metastasis and poor overall survival. The overexpression of hsa_circ_0001806 promoted HCC cell proliferation, migration and glycolysis and inhibited cell apoptosis, while the silence of hsa_circ_0001806 showed an opposite effect. Furthermore, hsa_circ_0001806 acted as a sponge of miR-125b to up-regulate hexokinase II (HK2) expression. In addition, the inhibition of miR-125b and HK2 overexpression partly reversed the inhibitory effect of hsa_circ_0001806 silencing on HCC cell proliferation, migration and glycolysis. CONCLUSION: The inhibition of hsa_circ_0001806 suppressed HCC cell proliferation, migration and glycolysis through mediating miR-125b/HK2 axis.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , MicroRNAs/genetics , RNA, Circular/genetics , Adult , Apoptosis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Cell Line, Tumor , Cell Movement/genetics , Female , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Hexokinase/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Male , Middle Aged , Prognosis
7.
Nanotechnology ; 30(37): 375703, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31163404

ABSTRACT

Upconversion nanoparticle (UCNP)-based luminescence resonance energy transfer (LRET) systems are a powerful tool widely used to detect organic molecules or metal ions because of their simplicity and high sensitivity. The sandwich structure NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs, as a highly selective and sensitive aqueous probe for detecting nitroaromatics, has been designed and prepared by a cothermolysis method and modified with polyetherimide to acquire amine groups on the surface of the core/shell UCNPs. The detection principle of nitroaromatics is based on LRET, which forms the Meisnheimer complex between the electron-deficient cyclobenzene of nitroaromatics and the electron-rich amino group on the surface of the sandwich structure UCNPs. As a consequence, nitroaromatics can be brought into close proximity to the sandwich structure UCNPs. With the increase of nitroaromatics (2,4,6-trinitrophenol and 2,4,6-trinitrotoluene) concentrations, the sandwich structure NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs display a dramatic luminescent quenching effect at 407 nm and 540 nm under 980 nm excitation. The luminescent quenching intensity of the sandwich structure UCNPs is linearly correlated to the concentration of the nitroaromatics. The detection limit of 2,4,6-trinitrophenol (TNP) and 2,4,6-trinitrotoluene (TNT) are 0.78 and 0.77 ng ml-1, respectively. Therefore, the sandwich structure of NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs can act as a valuable probe to detect nitroaromatics in public safety and security conditions.

8.
J Med Virol ; 88(9): 1552-9, 2016 09.
Article in English | MEDLINE | ID: mdl-26889748

ABSTRACT

STAT3 and hexokinase II (HK-II) are involved in viral infection and carcinogenesis of various cancers including hepatocellular carcinoma (HCC). The roles of STAT3 and HK-II in hepatitis B virus (HBV)- and hepatitis C virus (HCV)-related HCC remain largely unclear. This study examined STAT3 and HK-II expression in HBV- and HCV-related HCC, HBV-related liver fibrosis, and normal control liver by using tissue microarray and immunohistochemical method. Results showed that STAT3 expression in HBV-related HCC, HCV-related HCC, and HBV-related liver fibrosis was significantly higher than in control liver (P < 0.001, P = 0.016, and P = 0.005, respectively) and had no significant differences between these three diseased liver tissues. The HK-II expression in HBV-related HCC was significantly higher than that in HCV-related HCC, HBV-related liver fibrosis, and control liver (P = 0.007, P = 0.029, and P = 0.008, respectively) but had no significant elevation in and no significant differences between HCV-related HCC, HBV-related liver fibrosis, and control liver. The HK-II expression was significantly correlated to STAT3 expression in HBV-related HCC (P = 0.022), but no correlation was observed in HCV-related HCC, HBV-related liver fibrosis, and control liver. In conclusion, STAT3 expression is upregulated in both HBV- and HCV-related HCC, while HK-II is predominantly upregulated and correlated to STAT3 in HBV-related HCC. These differential expression and association may suggest the distinct roles of STAT3 and HK-II in hepatocarcinogenesis of HBV and HCV infection. Studies are needed to confirm the relationship of STAT3 and HK-II and to examine the underlying mechanisms. J. Med. Virol. 88:1552-1559, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Carcinoma, Hepatocellular/genetics , Hexokinase/genetics , Liver Neoplasms/genetics , STAT3 Transcription Factor/genetics , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/virology , Hepacivirus/physiology , Hepatitis B/epidemiology , Hepatitis B/virology , Hepatitis B virus/physiology , Hepatitis C/epidemiology , Hepatitis C/virology , Hexokinase/metabolism , Humans , Liver Cirrhosis/virology , Liver Neoplasms/enzymology , Liver Neoplasms/virology , RNA, Viral , STAT3 Transcription Factor/metabolism , Tissue Array Analysis
9.
Pak J Med Sci ; 32(3): 711-4, 2016.
Article in English | MEDLINE | ID: mdl-27375719

ABSTRACT

OBJECTIVE: To determine whether continuing midwifery care has more benefits than standard maternity care in vaginal birth after cesarean (VBAC). METHODS: This study was conducted on women in labour who had history of previous cesarean section and received vaginal birth in obstetrical department of our hospital from May 2013 to November 2014. The included patients were divided randomly into observation group and control group. The women in labour allocated to the observation group received continuing midwifery care, and those to control group received standard maternity care in all the stages of labour. The duration of labor stage together with the rate of fetal distress, neonatal asphyxia, vaginal birth and postpartum bleeding were compared between the two groups. RESULTS: Ninety-six participants were included in the current study, forty-eight in each group. The length of labor was significantly longer (p<0.05), the vaginal birth rate was significantly lower (p<0.05) and the postpartum hemorrhage rate was significantly higher (p<0.05) in the control group than the observation group. In addition, the rate of fetal distress and neonatal asphyxia were higher in the control group, but there was no significant difference between the two groups (p>0.05). CONCLUSION: The continuing midwifery care has more benefits than the standard maternity care in vaginal birth after cesarean (VBAC).

10.
BMC Infect Dis ; 13: 524, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24195671

ABSTRACT

BACKGROUND: Neither HBV DNA nor HBsAg positivity at birth is an accurate marker for HBV infection of infants. No data is available for continuous changes of HBV markers in newborns to HBsAg(+) mothers. This prospective, multi-centers study aims at observing the dynamic changes of HBV markers and exploring an early diagnostic marker for mother-infant infection. METHODS: One hundred forty-eight HBsAg(+) mothers and their newborns were enrolled after mothers signed the informed consent forms. Those infants were received combination immunoprophylaxis (hepatitis B immunoglobulin [HBIG] and hepatitis B vaccine) at birth, and then followed up to 12 months. Venous blood of the infants (0, 1, 7, and 12 months of age) was collected to test for HBV DNA and HBV markers. RESULTS: Of the 148 infants enrolled in our study, 41 and 24 infants were detected as HBsAg(+) and HBV DNA(+) at birth, respectively. Nine were diagnosed with HBV infection after 7 mo follow-up. Dynamic observation of the HBV markers showed that HBV DNA and HBsAg decreased gradually and eventually sero-converted to negativity in the non-infected infants, whereas in the infected infants, HBV DNA and HBsAg were persistently positive, or higher at the end of follow-up. At 1 mo, the infants with anti-HBs(+), despite positivity for HBsAg or HBV DNA at birth, were resolved after 12 mo follow-up, whereas all the nine infants with anti-HBs(-) were diagnosed with HBV infection. Anti-HBs(-) at 1 mo showed a higher positive likelihood ratio for HBV mother-infant infection than HBV DNA and/or HBsAg at birth. CONCLUSIONS: Negativity for anti-HBs at 1 mo can be considered as a sensitive and early diagnostic indictor for HBV infection in the infants with positive HBV DNA and HBsAg at birth, especially for those infants with low levels of HBV DNA load and HBsAg titer.


Subject(s)
DNA, Viral/blood , Hepatitis B Surface Antigens/blood , Hepatitis B/virology , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/virology , Adult , Biomarkers/blood , Female , Hepatitis B/drug therapy , Hepatitis B/prevention & control , Hepatitis B Antibodies/blood , Hepatitis B Vaccines/immunology , Hepatitis B Vaccines/therapeutic use , Humans , Immunoglobulins/therapeutic use , Infant , Infant, Newborn , Male , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/prevention & control , Prospective Studies , Young Adult
11.
Food Chem ; 413: 135599, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36750007

ABSTRACT

Folic acid (FA) is an ingredient that must be added to infant milk powder to avoid potential defects. Rapid, sensitive and reliable detection methods are needed to determined FA addition levels. Thus, this study established a microsphere immunochromatographic test strip for time-resolved luminescence detection (TRLM-ICTS) based on carboxyl-functionalized time-resolved luminescent microspheres (Eu-TRLMs) prepared by a one-step method as fluorescent markers for the immediate quantitative detection of FA in milk powder. Eu-TRLMs prepared by the one-step method showed good dispersion, high stability and strong fluorescence intensity, which is improving the sensitivity of TRLM-ICTS. In the performance evaluation of TRLM-ICTS, the detection limit was 0.487 ng mL-1, the recovery rate was 97.3-105 %, and the actual sample detection results were in line with those of UPLC-MS/MS. TRLM-ICTS has the advantages of rapid, high sensitivity and strong specificity and could as a practical quantitative detection method for the detection of FA in milk powder.


Subject(s)
Folic Acid , Luminescence , Humans , Microspheres , Chromatography, Liquid , Powders , Tandem Mass Spectrometry , Chromatography, Affinity/methods , Limit of Detection
12.
Animals (Basel) ; 13(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37889649

ABSTRACT

This study was conducted to investigate the effects of different proteases alone or in combination on protein digestibility of broilers. In vitro, the properties of four proteases in broilers, including acidic protease (AcP), alkaline protease (AlP), neutral protease (NeP) and keratinase (Ker), on endogenous protease activity and their effects on protein digestibility of common ingredients in broiler diets were investigated using a gut-mimicking model. In vivo, 640 1-day-old male broilers were randomly divided into 8 groups of 10 with 8 replicates of 10 birds per replicate cage. Eight dietary treatments included a corn-soybean meal basal diet (control), and the basal diet with 1.6 U AcP/g, 0.8 U NeP/g, 0.8 U AlP/g, 0.4 U Ker/g, 1.6 U AcP/g + 0.8 U NeP/g, 1.6 U AcP/g + 0.8 U AlP/g, or 1.6 U AcP/g + 0.4 U Ker/g added. The experiment lasted for 31 days. The results showed that the optimum pH values of AcP, NeP, AlP and Ker were 3.0, 9.0, 11.0 and 11.0 in vitro, respectively. Ker recovery proportion was 37.68% at pH 3.3-6.2. AcP alone or in combination with NeP, AlP or Ker increased in vitro crude protein digestibility (IVCPD) and decreased ileal apparent digestibility of crude protein in 31-day-old broilers (p < 0.05). All protease supplementation reduced the ileal apparent digestibility of amino acids compared to the control (p < 0.05). Acidic protease had a positive effect on trypsin and chymotrypsin activities, while AlP and Ker showed a negative effect. In vivo, average daily gain and average daily feed intake were significantly (p < 0.05) increased in broiler diets supplemented with AcP compared to the control group. When adding exogenous proteases to broiler diets, their sensitivity to digestive pH and their negative effects on endogenous protease activity, dosage and combination effects should be taken into account. In addition, the properties and dosage of proteases and the protein level in the feed should be considered.

13.
RSC Adv ; 13(14): 9273-9280, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36968048

ABSTRACT

Multi-color luminescence materials are important in the illumination, solid-state three-dimensional display, information storage, biological labelling and anticounterfeiting fields. Herein, we designed a novel core-shell structure upconversion nanoparticle (UCNP) material (NaYF4) with lanthanide ion doping to achieve multi-color luminescence under a single NIR excitation laser. Different from the typical single-sensitizer materials, the core-shell structure utilizes Nd3+, Yb3+, Tm3+ and Er3+ ions to obtain tuning of the color and brightness. The doping of Nd3+ ions enhances the weak color (red) light source to maintain the light color balance. Benefiting from the color adjustment of the sensitizers and the change of the core-shell coating, bright-white emission and flexible color emission from red to green, cyan and blue can be achieved via the diverse doped rare earth ions in a single UCNP under continuous-wave laser excitation (980 nm). Simultaneously, the emission color of the UCNPs can change with the intensity of the excitation light source and the wavelength. The bright-white emission can be used for lighting displays, and the flexible full-color emission can be applied in the anticounterfeiting and information storage fields.

14.
ACS Omega ; 8(39): 35779-35790, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810648

ABSTRACT

Nanomaterials with enzyme-like activity, namely, nanozymes, have been widely used as substitutes for natural enzymes, and they show excellent potential for application in many fields, such as biotechnology, environmental chemistry, and medicine. Layered double hydroxides (LDHs) are inorganic nanomaterials with adjustable compositions, simple preparation methods, and low costs and are some of the most promising candidate materials for the preparation of nanozymes. Here, we studied the syntheses and peroxidase-like activities of LDHs with four anions and four cations. First, LDHs prepared by the coprecipitation-hydrothermal method adopted hexagonal lamellar structures with good dispersion and uniform particle sizes. The Lambert-Beer law showed that the prepared LDHs exhibited good enzymatic activity. Later, the Km and Vmax values of the LDHs with different anionic/cationic materials intercalated into their structures were compared. Under the optimum conditions, the Vmax of Mg2Al-NO3-LDH was 7.35 × 10-2, which is 2-4 times higher than that of the LDHs containing other anions; the Vmax values of NiFe-LDH and FeAl-LDH were 0.152 and 0.284, respectively, which are 10 times higher than those of the LDHs with other cations. Importantly, according to kinetic analyses of the enzymatic reactions, the effects of Fe2+ and Fe3+ on the LDH enzyme activity were greater than those of the intercalated anions. This study showed that NiFe-LDH and FeAl-LDH with high catalytic activities are candidate materials for peroxidase simulations, which may provide new strategies for the application of LDHs in biosensors, antioxidants, biotechnology, and other nanozyme applications.

15.
J Mol Model ; 29(1): 3, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482221

ABSTRACT

OBJECTIVE: The targets and mechanism of lomustine in the treatment of primary glioblastoma (PGBM) were investigated by molecular docking and molecular dynamics simulation, which provided theoretical guidance for its clinical application. METHODS: We used the PharmMapper database to identify all of the targets of lomustine, and then examined the effect of lomustine on PGBM using molecular docking, molecular mechanics generalized born surface area (MMGB/SA), gene difference analysis, molecular dynamics simulation, survival analysis, and protein subcellular localization prediction. RESULTS: A total of 243 lomustine targets and 3197 PGBM-related targets were screened. The intersection of the two was 59 active targets. Protein interaction (PPI), gene enrichment analysis, gene difference analysis, molecular docking, and molecular dynamics simulation finally screened out three effective targets of lomustine, namely HMOX1, AKT1, and EGFR, which exist mainly in the cytoplasm, nucleus, and vesicles, respectively. These three targets mainly inhibit JAK-STAT, PD-1/PD-L1, PI3K-Akt, Rap1, HIF-1, MAPK, and Fc-εRI involved in protein metabolism, the regulation of cell differentiation, the regulation of the Notch signaling pathway and glial cell activation, and other biological processes and could play a role in the treatment of PGBM. CONCLUSIONS: HMOX1, AKT1, and EGFR may represent novel therapeutic targets for lomustine in the clinical treatment of PGBM.


Subject(s)
Molecular Dynamics Simulation , Phosphatidylinositol 3-Kinases , Molecular Docking Simulation , Databases, Factual , Lomustine/therapeutic use
16.
J Mol Model ; 28(6): 138, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35523987

ABSTRACT

Based on molecular docking and molecular dynamics simulation, to find a new target and mechanism of MEK inhibitor Selumetinib in the treatment of low-grade glioma (LGG), and to provide theoretical guidance for its clinical medication. All possible targets of Selumetinib were fished through the compound target prediction database. New targets of Selumetinib in the treatment of LGG were found and its mechanism was evaluated employing molecular docking, gene difference analysis, molecular dynamics simulation, and protein subcellular localization prediction. A total of 100 Selumetinib targets and 85 LGG-related targets were screened in this study. There were 7 active targets at the intersection of the two. Through protein interaction (PPI), gene enrichment analysis, and gene difference analysis, one effective target of Selumetinib was finally screened, CDK2 mainly existing in the cytoplasm, endoplasmic reticulum, and plasma membrane; the target plays a role in the treatment of LGG by inhibiting the signal pathways of PI3K Akt and participating in biological processes such as peptide amino acid modification, regulation of intracellular signal transduction, and positive regulation of cell metabolism. CDK2 may be a new direction of Selumetinib in the clinical treatment of LGG.


Subject(s)
Benzimidazoles , Glioma , Protein Kinase Inhibitors , Benzimidazoles/pharmacology , Glioma/drug therapy , Glioma/genetics , Humans , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors/pharmacology
17.
Bioengineered ; 13(3): 6464-6475, 2022 03.
Article in English | MEDLINE | ID: mdl-35220908

ABSTRACT

Numerous studies have clarified the involvement of circular RNAs (circRNAs) in modulating malignant behavior of non-small cell lung cancer (NSCLC), while the concrete mechanism is not completely elucidated. The aim of the study was to figure out the latent functions and molecular mechanisms of circRNA Eps15-homology domain containing protein 2 (EHD2) on NSCLC proliferation, glycolysis and autophagy. The results clarified in NSCLC elevated expression of circEHD2 and declined expression of microRNA (miR)-3186-3p. Repressive circEHD2 or enhancive miR-3186-3p facilitated cell apoptosis rate and autophagy substrates LC3BII and Beclin-1, but curbed the colony-formation and DNA replication ability of NSCLC, glucose consumption, lactic acid production, glycolytic rate-limiting enzyme HK-2 and glutamine hydrolase GLS1 and P62, while overexpressed circEHD2 was adverse. Meanwhile, the impacts of repressive and elevated circEHD2 on NSCLC were turned around via reduced miR-3186-3p or forkhead box k1 (FOXK1) separately. Mechanically, FOXK1 was augmented via circEHD2's competitive integration of miR-3186-3p. Depressive circEHD2 refrained NSCLC tumor growth, which was accelerated via enhancive one. All in all, circEHD2 accelerates the proliferation and glycolysis of NSCLC, but refrains autophagy and apoptosis via strengthening FOXK1 via the adsorption of miR-3186-3p, which is supposed to be a latent molecular target for NSCLC therapy later.


Subject(s)
Autophagy/genetics , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs/genetics , RNA, Circular/genetics , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/genetics , Forkhead Transcription Factors/genetics , Glycolysis/genetics , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice, Nude
18.
BMC Complement Med Ther ; 22(1): 53, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35227278

ABSTRACT

BACKGROUND: Saussurea involucrata (SAIN), also known as Snow lotus (SI), is mainly distributed in high-altitude areas such as Tibet and Xinjiang in China. To identify novel targets for the prevention or treatment of lung adenocarcinoma and lung squamous cell carcinoma (LUAD&LUSC), and to facilitate better alternative new drug discovery as well as clinical application services, the therapeutic effects of SAIN on LUAD&LUSC were evaluated by gene differential analysis of clinical samples, compound target molecular docking, and GROMACS molecular dynamics simulation. RESULTS: Through data screening, alignment, analysis, and validation it was confirmed that three of the major active ingredients in SAIN, namely quercetin (Q), luteolin (L), and kaempferol (K), mainly act on six protein targets, which mainly regulate signaling pathways in cancer, transcriptional misregulation in cancer, EGFR tyrosine kinase inhibitor resistance, adherens junction, IL-17 signaling pathway, melanoma, and non-small cell lung cancer. In addition, microRNAs in cancer exert preventive or therapeutic effects on LUAD&LUSC. Molecular dynamics (MD) simulations of Q, L, or K in complex with EGFR, MET, MMP1, or MMP3 revealed the presence of Q in a very stable tertiary structure in the human body. CONCLUSION: There are three active compounds of Q, L, and K in SAIN, which play a role in the treatment and prevention of non-small cell lung cancer (NSCLC) by directly or indirectly regulating the expression of genes such as MMP1, MMP3, and EGFR.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Saussurea , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Molecular Docking Simulation , Network Pharmacology
19.
Front Chem ; 9: 812083, 2021.
Article in English | MEDLINE | ID: mdl-35096771

ABSTRACT

Nanozymes are particles with diameters in the range of 1-100 nm, which has been widely studied due to their biological enzyme-like properties and stability that natural enzymes do not have. In this study, several reducing agents with different structures (catechol (Cc), hydroquinone (Hq), resorcinol (Rs), vitamin C (Vc), pyrogallic acid (Ga), sodium citrate (Sc), sodium malate (Sm), and sodium tartrate (St)) were used to prepare colloidal gold with a negative charge and similar particle size by controlling the temperature and pH. The affinity analysis of the substrate H2O2 and TMB showed that the order of activities of colloidal gold Nanozymes prepared by different reducing agents was Cc, Hq, Rs, Vc, Ga, Sc, Sm, St. It was also found that the enzyme activity of colloidal gold reduced by benzene rings is higher than that of the colloidal gold enzyme reduced by linear chains. Finally, we discussed the activity of the colloidal gold peroxidase based on the number and position of isomers and functional groups; and demonstrated that the nanozymes activity is affected by the surface activity of colloidal gold, the elimination of hydroxyl radicals and the TMB binding efficiency.

20.
RSC Adv ; 11(39): 23851-23859, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-35479024

ABSTRACT

In this study, a facile and environmentally friendly synthesis process was proposed without regular chemical additives. We successfully synthesized spherical gold nanoparticles (AuNPs) coated with glycyrrhizin (GL) by using GL as both a reductant and a stabilizer to reduce chloroauric acid. The obtained NPs were approximately 35 nm in size. The formation of these GL-AuNPs was verified by the presence of a surface plasmon resonance band at 526 nm. We also experimentally determined that in terms of chemical structure, GL can be used as a reducing agent to obtain colloidal gold. The d-glucuronic acid structure, rather than glycyrrhetinic acid (GA), plays an important reducing role in colloidal gold production. From this, we hypothesized that other compounds with sugar structures in Glycyrrhiza may also have the ability to reduce chloroauric acid. To mitigate the high cost and low efficiency of current GL detection methods, we applied AuNPs to the immunochromatographic system. Then, a colloidal gold immunochromatographic test strip based on the indirect competition method was developed for the rapid detection of GL, and the detection limit of this strip was 25 ng mL-1. The cross-test showed that the strip has high specificity. The test results are consistent with the data obtained by high-performance liquid chromatography (HPLC) with a coincidence rate of up to 100%. The rapid test strip is simple, fast, highly efficient and inexpensive, making it suitable for large-scale, rapid glycyrrhizin content determination.

SELECTION OF CITATIONS
SEARCH DETAIL