Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(49): e2211429119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442087

ABSTRACT

The current classification of acute myeloid leukemia (AML) relies largely on genomic alterations. Robust identification of clinically and biologically relevant molecular subtypes from nongenomic high-throughput sequencing data remains challenging. We established the largest multicenter AML cohort (n = 655) in China, with all patients subjected to RNA sequencing (RNA-Seq) and 619 (94.5%) to targeted or whole-exome sequencing (TES/WES). Based on an enhanced consensus clustering, eight stable gene expression subgroups (G1-G8) with unique clinical and biological significance were identified, including two unreported (G5 and G8) and three redefined ones (G4, G6, and G7). Apart from four well-known low-risk subgroups including PML::RARA (G1), CBFB::MYH11 (G2), RUNX1::RUNX1T1 (G3), biallelic CEBPA mutations or -like (G4), four meta-subgroups with poor outcomes were recognized. The G5 (myelodysplasia-related/-like) subgroup enriched clinical, cytogenetic and genetic features mimicking secondary AML, and hotspot mutations of IKZF1 (p.N159S) (n = 7). In contrast, most NPM1 mutations and KMT2A and NUP98 fusions clustered into G6-G8, showing high expression of HOXA/B genes and diverse differentiation stages, from hematopoietic stem/progenitor cell down to monocyte, namely HOX-primitive (G7), HOX-mixed (G8), and HOX-committed (G6). Through constructing prediction models, the eight gene expression subgroups could be reproduced in the Cancer Genome Atlas (TCGA) and Beat AML cohorts. Each subgroup was associated with distinct prognosis and drug sensitivities, supporting the clinical applicability of this transcriptome-based classification of AML. These molecular subgroups illuminate the complex molecular network of AML, which may promote systematic studies of disease pathogenesis and foster the screening of targeted agents based on omics.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Transcriptome , Leukemia, Myeloid, Acute/genetics , Cell Differentiation/genetics , Hematopoietic Stem Cells
2.
Bioorg Chem ; 147: 107377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653150

ABSTRACT

The first systematic acylated diversification of naturally scarce premyrsinane diterpenes, together with their biosynthetic precursors lathyrane diterpene were carried out. Two new series of premyrsinane derivates (1a-32a) and lathyrane derivates (1-32) were synthesized from the naturally abundant lathyrane diterpene Euphorbia factor L3 through a bioinspired approach. The cholinesterase inhibitory and neuroprotective activities of these diterpenes were investigated to explore potential anti-Alzheimer's disease (AD) bioactive lead compounds. In general, the lathyrane diterpenes showed the better acetylcholinesterase (AChE) inhibitory activity than that of premyrsinanes. The lathyrane derivative 17 bearing a 3-dimethylaminobenzoyl moiety showed the best AChE inhibition effect with the IC50 value of 7.1 µM. Molecular docking demonstrated that 17 could bond with AChE well (-8 kal/mol). On the other hand, premyrsinanes showed a better neuroprotection profile against H2O2-induced injury in SH-SY5Y cells. Among them, the premyrsinane diterpene 16a had significant neuroprotective effect with the cell viability rate of 113.5 % at 12.5 µM (the model group with 51.2 %). The immunofluorescence, western blot and reactive oxygen species (ROS) analysis were conducted to demonstrate the mechanism of 16a. Furthermore, a preliminary SAR analysis of the two categories of diterpenes was performed to provide the insights for anti-AD drug development.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Cholinesterase Inhibitors , Diterpenes , Euphorbia , Neuroprotective Agents , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/chemical synthesis , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Euphorbia/chemistry , Humans , Acetylcholinesterase/metabolism , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , Dose-Response Relationship, Drug , Cell Survival/drug effects
3.
Arch Microbiol ; 205(5): 166, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37014519

ABSTRACT

A Gram-staining-negative, non-motile, rod-shaped or curved rod-shaped, moderately halophilic bacterium, designated C176T, was isolated from Yuncheng Salt Lake in Shanxi Province, P.R. China. The optimal temperature, salinity and pH for growth of strain C176T was 37 °C, 6% (w/v) NaCl and 7.5. Phylogenetic analysis using 16S rRNA gene sequences indicated strain C176T has the highest similarity with Spiribacter salinus LMG 27464 T (97.7%), following by the S. halobius E85T (97.6%), S. curvatus DSM 28542 T (97.2%), S. roseus CECT 9117 T (97.0%) and S. vilamensis DSM 21056 T (96.9%). The ANI and dDDH values between strain C176T and S. salinus LMG 27464 T were 69.8 and 17.7%, respectively. The DNA G + C content of genome for strain C176T was 54.1%. Summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C16:0 were detected as its major fatty acids, with content of 38.7 and 28.6% respectively, while Q-8 was the predominant ubiquinone. The major polar lipids of strain C176T contained phospholipid, phosphatidylglycerol and phosphoglycolipid. In accordance with results of polyphasic taxonomy, strain C176T is considered as a novel species of the genus Spiribacter, for which the name Spiribacter salilacus sp. nov. is proposed. The type strain is C176T (= MCCC 1H00417T = KCTC 72692 T).


Subject(s)
Fatty Acids , Lakes , Phylogeny , Lakes/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Fatty Acids/analysis , China , Sequence Analysis, DNA , Bacterial Typing Techniques
4.
Am J Hematol ; 98(1): 66-78, 2023 01.
Article in English | MEDLINE | ID: mdl-36219502

ABSTRACT

Mixed phenotype acute leukemia (MPAL) is a subtype of leukemia in which lymphoid and myeloid markers are co-expressed. Knowledge regarding the genetic features of MPAL is lacking due to its rarity and heterogeneity. Here, we applied an integrated genomic and transcriptomic approach to explore the molecular characteristics of 176 adult patients with MPAL, including 86 patients with T-lymphoid/myeloid MPAL (T/My MPAL-NOS), 42 with Ph+ MPAL, 36 with B-lymphoid/myeloid MPAL (B/My MPAL-NOS), 4 with t(v;11q23), and 8 with MPAL, NOS, rare types. Genetically, T/My MPAL-NOS was similar to B/T MPAL-NOS but differed from Ph+ MPAL and B/My MPAL-NOS. T/My MPAL-NOS exhibited higher CEBPA, DNMT3A, and NOTCH1 mutations. Ph+ MPAL demonstrated higher RUNX1 mutations. B/T MPAL-NOS showed higher NOTCH1 mutations. By integrating next-generation sequencing and RNA sequencing data of 89 MPAL patients, we defined eight molecular subgroups (G1-G8) with distinct mutational and gene expression characteristics. G1 was associated with CEBPA mutations, G2 and G3 with NOTCH1 mutations, G4 with BCL11B rearrangement and FLT3 mutations, G5 and G8 with BCR::ABL1 fusion, G6 with KMT2A rearrangement/KMT2A rearrangement-like features, and G7 with ZNF384 rearrangement/ZNF384 rearrangement-like characteristics. Subsequently, we analyzed single-cell RNA sequencing data from five patients. Groups G1, G2, G3, and G4 exhibited overexpression of hematopoietic stem cell disease-like and common myeloid progenitor disease-like signatures, G5 and G6 had high expression of granulocyte-monocyte progenitor disease-like and monocyte disease-like signatures, and G7 and G8 had common lymphoid progenitor disease-like signatures. Collectively, our findings indicate that integrative genomic and transcriptomic profiling may facilitate more precise diagnosis and develop better treatment options for MPAL.


Subject(s)
Leukemia, Myeloid, Acute , Transcriptome , Humans , Acute Disease , Phenotype , Genomics
5.
Int J Mol Sci ; 24(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36834576

ABSTRACT

Decidualization is necessary for the successful establishment of early pregnancy in rodents and humans. Disturbed decidualization results in recurrent implantation failure, recurrent spontaneous abortion, and preeclampsia. Tryptophan (Trp), one of the essential amino acids in humans, has a positive effect on mammalian pregnancy. Interleukin 4-induced gene 1 (IL4I1) is a recently identified enzyme that can metabolize L-Trp to activate aryl hydrocarbon receptor (AHR). Although IDO1-catalyzed kynurenine (Kyn) from Trp has been shown to enhance human in vitro decidualization via activating AHR, whether IL4I1-catalyzed metabolites of Trp are involved in human decidualization is still unknown. In our study, human chorionic gonadotropin stimulates IL4I1 expression and secretion from human endometrial epithelial cells through ornithine decarboxylase-induced putrescine production. Either IL4I1-catalyzed indole-3-pyruvic acid (I3P) or its metabolite indole-3-aldehyde (I3A) from Trp is able to induce human in vitro decidualization by activating AHR. As a target gene of AHR, Epiregulin induced by I3P and I3A promotes human in vitro decidualization. Our study indicates that IL4I1-catalyzed metabolites from Trp can enhance human in vitro decidualization through AHR-Epiregulin pathway.


Subject(s)
Interleukin-4 , Receptors, Aryl Hydrocarbon , Animals , Humans , Epiregulin , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Kynurenine/metabolism , Chorionic Gonadotropin , Mammals/metabolism , L-Amino Acid Oxidase
6.
BMC Musculoskelet Disord ; 23(1): 1010, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36424631

ABSTRACT

STUDY DESIGN: Retrospective case-control study. OBJECTIVES: Proximal junctional kyphosis (PJK) is a postoperative complication involving the proximal segments which is commonly seen in patients with degenerative spine diseases (DSD). The purpose of the present study was to identify predictive factors for postoperative PJK in elderly patients with DSD. METHODS: We reviewed elderly patients with DSD who underwent thoracolumbar fusion involving no less than 3 levels. Patients who developed PJK were propensity score-matched with patients with DSD who received the same procedure but did not develop PJK. Demographic characteristics, sagittal vertical axis (SVA), computed tomography (CT) value (Hounsfield unit), and paraspinal muscle parameters were compared between PJK and non-PJK groups. RESULTS: Eighty-three PJK and non-PJK patients were selected by propensity score matching for age, sex, history of smoking, body mass index, number of fused segments, and upper instrumented vertebra (UIV) location. SVA showed no significant difference between the two groups. In PJK group, fatty infiltration (FI) in erector spinae and multifidus was significantly greater, while the relative cross-sectional area (rCSA) of erector spinae was significantly smaller than that in non-PJK group. CT value was significantly lower in PJK group. Lower erector spinae rCSA and CT value of the UIV, higher erector spinae FI and multifidus FI were identified as predictors of postoperative PJK. CONCLUSIONS: PJK is a common complication in older patients with DSD. Paraspinal muscle degeneration and low bone mineral density of the UIV are predictors of PJK. Protective measures targeting paraspinal muscles and the UIV may help prevent postoperative PJK.


Subject(s)
Kyphosis , Musculoskeletal Abnormalities , Spinal Fusion , Aged , Humans , Bone Density , Case-Control Studies , Kyphosis/diagnostic imaging , Kyphosis/surgery , Kyphosis/etiology , Paraspinal Muscles/diagnostic imaging , Propensity Score , Retrospective Studies , Spinal Fusion/adverse effects , Spinal Fusion/methods , Spine
7.
J Integr Plant Biol ; 64(6): 1145-1156, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35419850

ABSTRACT

Current gene delivery methods for maize are limited to specific genotypes and depend on time-consuming and labor-intensive tissue culture techniques. Here, we report a new method to transfect maize that is culture-free and genotype independent. To enhance efficiency of DNA entry and maintain high pollen viability of 32%-55%, transfection was performed at cool temperature using pollen pretreated to open the germination aperture (40%-55%). Magnetic nanoparticles (MNPs) coated with DNA encoding either red fluorescent protein (RFP), ß-glucuronidase gene (GUS), enhanced green fluorescent protein (EGFP) or bialaphos resistance (bar) was delivered into pollen grains, and female florets of maize inbred lines were pollinated. Red fluorescence was detected in 22% transfected pollen grains, and GUS stained 55% embryos at 18 d after pollination. Green fluorescence was detected in both silk filaments and immature kernels. The T1 generation of six inbred lines showed considerable EGFP or GUS transcripts (29%-74%) quantitated by polymerase chain reaction, and 5%-16% of the T1 seedlings showed immunologically active EGFP or GUS protein. Moreover, 1.41% of the bar transfected T1 plants were glufosinate resistant, and heritable bar gene was integrated into the maize genome effectively as verified by DNA hybridization. These results demonstrate that exogenous DNA could be delivered efficiently into elite maize inbred lines recalcitrant to tissue culture-mediated transformation and expressed normally through our genotype-independent pollen transfection system.


Subject(s)
Magnetite Nanoparticles , Zea mays , DNA , Genotype , Plants, Genetically Modified/genetics , Pollen/genetics , Zea mays/genetics
8.
Ann Hematol ; 98(4): 987-996, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30715567

ABSTRACT

Epstein-Barr virus (EBV) reactivation is a life-threatening complication after allogeneic haematopoietic stem cell transplantation (allo-HSCT). In this study, we investigated the characteristics of EBV reactivation in 186 consecutive myelodysplastic (MDS) patients who underwent allo-HSCT in our centre. In 35 patients (18.8%) who experienced EBV reactivation after allo-HSCT, the median onset was 53 days (range 4-381 days). The cumulative incidence of EBV reactivation at the first, sixth, and twelfth month after allo-HSCT was 10.7%, 15.1%, and 17.9%, respectively. Twenty-five patients (71.4%) received pre-emptive rituximab therapy, and no patients developed post-transplant lymphoproliferative disorders. Stem cell source was proven to be a risk factor correlated with EBV reactivation. The cumulative incidence of relapse in the EBV-positive group was 11.4%, 25.2%, and 31.0% at the first, second, and third year after transplantation, respectively, being significantly higher than the corresponding 6.8%, 10.2%, and 10.2%, in the EBV-negative group (P = 0.014). Prognostic analysis showed that EBV reactivation was an independent risk factor for relapse-free survival (RFS). Patients in the EBV-positive group showed obviously shorter RFS than those in the EBV-negative group, with 3-year RFS of 62% and 85%, respectively (P = 0.017).


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Herpesvirus 4, Human , Myelodysplastic Syndromes , Adolescent , Adult , Allografts , Child , Disease-Free Survival , Epstein-Barr Virus Infections/etiology , Epstein-Barr Virus Infections/mortality , Female , Humans , Incidence , Male , Middle Aged , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/therapy , Risk Factors , Rituximab/administration & dosage , Survival Rate , Time Factors
9.
Cell Physiol Biochem ; 50(5): 1964-1987, 2018.
Article in English | MEDLINE | ID: mdl-30396166

ABSTRACT

BACKGROUND/AIMS: The purpose of this study was to probe the clinico-pathological significance and the underlying mechanism of miR-30d-5p expression in non-small cell lung cancer (NSCLC). METHODS: We initially examined the level of miR-30d-5p expression in NSCLC and non-cancer tissues using RT-qPCR. Then, a series of validation analyses including a meta-analysis of data from microarray chips in Gene Expression Omnibus (GEO), data mining of the cancer genome atlas (TCGA) and an integrated meta-analysis incorporating GEO microarray chips, TCGA data, in-house RT-qPCR and literature studies were performed to examine the clinico-pathological value of miR-30d-5p expression in NSCLC. In vitro experiments were further conducted to investigate the impact of miR-30d-5p on NSCLC cell growth. The molecular mechanism by which miR-30d-5p regulates the pathogenesis of NSCLC was probed through a bioinformatics analysis of its target genes. Moreover, dual luciferase reporter assay was conducted to verify the targeting regulatory relationship between miR-30d-5p and CCNE2. RESULTS: Based on results from RT-qPCR, GEO meta-analysis, TCGA data mining and the integrated meta-analysis incorporating GEO microarray chips, TCGA data, in-house RT-qPCR and literature studies, miR-30d-5p expression was decreased in NSCLC tissues, and patients with NSCLC who presented with lower miR-30d-5p expression tended to display an advanced clinical progression. Significant pathways including the Mucin type O-glycan biosynthesis pathway, cell cycle pathway and cysteine and methionine metabolism pathway (all P< 0.05) revealed potential roles of the target genes of miR-30d-5p in the oncogenesis of NSCLC. Results from in vitro experiments indicated that miR-30d-5p could attenuate proliferation and viability of NSCLC cells. Among the 12 identified hub genes, nine genes including E2F3, CCNE2, SKP2, CDK6, TFDP1, LDHA, GOT2, DNMT3B and ST6GALNAC1 were validated by Pearson's correlation test and the human protein atlas (HPA) database as targets of miR-30d-5p with higher probability. Specifically, dual luciferase reporter assay confirmed that CCNE2 was directly targeted by miR-30d-5p. CONCLUSION: In summary, miR-30d-5p expression is decreased in NSCLC, and it might play the role as tumor suppressor in NSCLC by regulating target genes.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , MicroRNAs/metabolism , 3' Untranslated Regions , Area Under Curve , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Cell Line, Tumor , Cell Proliferation , Cyclins/chemistry , Cyclins/genetics , Cyclins/metabolism , Databases, Factual , Female , Humans , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Male , Meta-Analysis as Topic , MicroRNAs/chemistry , MicroRNAs/genetics , Middle Aged , Prognosis , ROC Curve
10.
World J Surg Oncol ; 16(1): 109, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29914539

ABSTRACT

BACKGROUND: This study was carried out to discover the underlying role that HOXA11 plays in lung squamous cancer (LUSC) and uncover the potential corresponding molecular mechanisms and functions of HOXA11-related genes. METHODS: Twenty-three clinical paired LUSC and non-LUSC samples were utilized to examine the level of HOXA11 using quantitative real-time polymerase chain reaction (qRT-PCR). The clinical significance of HOXA11 was systematically analyzed based on 475 LUSC and 18 non-cancerous adjacent tissues from The Cancer Genome Atlas (TCGA) database. A total of 102 LUSC tissues and 121 non-cancerous tissues were available from Oncomine to explore the expressing profiles of HOXA11 in LUSC. A meta-analysis was carried out to further assess the differential expression of HOXA11 in LUSC, including in-house qRT-PCR data, expressing data extracted from TCGA and Oncomine databases. Moreover, the enrichment analysis and potential pathway annotations of HOXA11 in LUSC were accomplished via Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of hub genes and according correlations with HOXA11 were assessed to further explore the biological role of HOXA11 in LUSC. RESULTS: HOXA11 expression in LUSC had a tendency to be upregulated in comparison to adjacent non-cancerous tissues by qRT-PCR. TCGA data displayed that HOXA11 was remarkably over-expressed in LUSC compared with that in non-LUSC samples, and the area under curves (AUC) was 0.955 (P < 0.001). A total of 1523 co-expressed genes were sifted for further analysis. The most significant term enriched in the KEGG pathway was focal adhesion. Among the six hub genes of HOXA11, including PARVA, ILK, COL4A1, COL4A2, ITGB1, and ITGA5, five (with the exception of COL4A1) were significantly decreased compared with the normal lung tissues. Moreover, the expression of ILK was negatively related to HOXA11 (r = - 0.141, P = 0.002). CONCLUSION: High HOXA11 expression may lead to carcinogenesis and the development of LUSC. Furthermore, co-expressed genes might affect the prognosis of LUSC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Homeodomain Proteins/genetics , Lung Neoplasms/genetics , Carcinoma, Squamous Cell/blood , Computational Biology , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/blood , Humans , Lung Neoplasms/blood , Male , Middle Aged , Neoplasm Staging , Prognosis
11.
Int J Food Sci Nutr ; 69(4): 472-479, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28903608

ABSTRACT

Steviol glycosides, a natural sweetener, may perform bioactivities via steviol, their main metabolite in human digestion. The metabolising kinetics, i.e. glucuronidation kinetics and interaction between steviol glycosides or their metabolites and metabolising enzyme, are important for understanding the bioactivity and cytotoxicity. The present study investigated kinetics of steviol glucuronidation in human liver microsome and a recombinant human UDP-glucuronosyltransferases isomer, UGT2B7, along with molecular docking to analyse interaction between UGT2B7 and steviol or glucose. The active pocket of UGT2B7 is consisted of Arg352, Leu347, Lys343, Phe339, Tyr354, Lys355 and Leu353. The influence of stevioside, rebaudioside A, glucose and some chemotherapy reagents on the glucuronidation was also studied. The predicted hepatic clearence suggested that steviol could be classified as high-clearence drug. The steviol glycosides did not affect the glucuronidation of steviol notably.


Subject(s)
Diterpenes, Kaurane/metabolism , Glucose/metabolism , Glucosides/metabolism , Glucuronosyltransferase/metabolism , Microsomes, Liver/metabolism , Humans , Kinetics , Models, Molecular , Protein Binding , Protein Conformation , Recombinant Proteins
12.
Tumour Biol ; 39(3): 1010428317691683, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28347234

ABSTRACT

MicroRNAs have been reported to be involved in various biological processes. Here, we performed a systematic analysis to explore the clinical value and potential molecular mechanism of miR-145-5p in non-small cell lung cancer. First, a meta-analysis was performed with eligible literature, followed by microRNA microarrays in the Gene Expression Omnibus database, to verify the diagnostic and prognostic values of miR-145-5p. A cohort of 125 clinical paired non-small cell lung cancer samples was next used to detect the level of miR-145-5p and to explore the relationship of miR-145-5p with clinicopathological parameters. The Cancer Genome Atlas database was additionally applied to investigate the role of miR-145-5p in non-small cell lung cancer. The potential targets of miR-145-5p were predicted using 12 online prediction databases to explore the prospective molecular mechanism of miR-145-5p in non-small cell lung cancer. The expression of miR-145-5p in non-small cell lung cancer was significantly lower than that in healthy tissues. And miR-145-5p tended to show better diagnostic performance in lung squamous cell carcinoma than in lung adenocarcinoma. Furthermore, the expression of miR-145-5p was closely associated with lymph node metastasis in non-small cell lung cancer. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes were mainly enriched with enzyme-linked receptor protein signaling pathways, SH3 domain binding, cell leading edge, and adherens junction. The protein-protein interaction network showed that eight hub genes (SMAD4, SMAD2, IRS1, FOXO1, ERBB4, NRAS, ACTB, and ACTG1) might be the key target genes of miR-145-5p in non-small cell lung cancer. The information we obtained might offer new perspectives for clinical diagnosis and treatment for non-small cell lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Computational Biology/methods , Databases, Genetic , Formaldehyde , Humans , Lung Neoplasms/pathology , Paraffin Embedding , Real-Time Polymerase Chain Reaction/methods , Retrospective Studies , Tissue Fixation
13.
Yao Xue Xue Bao ; 51(12): 1906-12, 2016 12.
Article in Zh | MEDLINE | ID: mdl-29923696

ABSTRACT

Artesunate is one of artemisinin derivatives with anti-malarial and anti-inflammatory activities though its water solubility and bioavailability are low. Acute lung injury (ALI) is a seriously dispersive lung disease with a high mortality. In this study, artesunate liposomes were prepared with the film dispersion method, and then lyophilized to obtain the liposomal artesunate dry powder inhalers(LADPIs). The LADPIs were pulmonary-delivered into the lung to treat ALI in rats. The artesunate liposomes had the capsulation efficiency of 71.4%, the particle size of 47.3 nm, and the zeta potential of -13.7 m V. The LADPIs had the aerodynamic particle size of 4.2 µm and the fine particle fraction (FPF) of 34.5%. ALI was established in rats by instilling lipopolysaccharide (LPS) into the lungs. The rats quickly showed a reduction in movement and acceleration in breath followed by diarrhea and so on. The LADPIs were directly administrated into the lungs of ALI rats through airways after 1 h of LPS challenge. The treatment induced a reduction in ALI syndromes. Two inflammatory factors, including TNF-α and IL-6, were significantly reduced by the artesunate powder in the LADPI group similarly to the reduction in the positive drug dexamethasone group (P < 0.05). Therefore, the anti-inflammatory effect of LADPIs contributed to the anti-ALI activity. Furthermore, the liposomal formulation improved drug bioavailability in the lung and increased therapeutic efficiency. The LADPIs are promising medicines for therapy of ALI through local drug administration.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/administration & dosage , Artemisinins/administration & dosage , Dry Powder Inhalers , Liposomes/chemistry , Animals , Artesunate , Freeze Drying , Interleukin-6/analysis , Lipopolysaccharides , Lung , Particle Size , Powders , Rats , Tumor Necrosis Factor-alpha/analysis
14.
J Biol Chem ; 289(30): 20845-57, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24928515

ABSTRACT

Sphingosine kinase 2 (SPK2) and autophagy are both involved in brain preconditioning, but whether preconditioning-induced SPK2 up-regulation and autophagy activation are linked mechanistically remains to be elucidated. In this study, we used in vitro and in vivo models to explore the role of SPK2-mediated autophagy in isoflurane and hypoxic preconditioning. In primary mouse cortical neurons, both isoflurane and hypoxic preconditioning induced autophagy. Isoflurane and hypoxic preconditioning protected against subsequent oxygen glucose deprivation or glutamate injury, whereas pretreatment with autophagy inhibitors (3-methyladenine or KU55933) abolished preconditioning-induced tolerance. Pretreatment with SPK2 inhibitors (ABC294640 and SKI-II) or SPK2 knockdown prevented preconditioning-induced autophagy. Isoflurane also induced autophagy in mouse in vivo as shown by Western blots for LC3 and p62, LC3 immunostaining, and electron microscopy. Isoflurane-induced autophagy in mice lacking the SPK1 isoform (SPK1(-/-)), but not in SPK2(-/-)mice. Sphingosine 1-phosphate and the sphingosine 1-phosphate receptor agonist FTY720 did not protect against oxygen glucose deprivation in cultured neurons and did not alter the expression of LC3 and p62, suggesting that SPK2-mediated autophagy and protections are not S1P-dependent. Beclin 1 knockdown abolished preconditioning-induced autophagy, and SPK2 inhibitors abolished isoflurane-induced disruption of the Beclin 1/Bcl-2 association. These results strongly indicate that autophagy is involved in isoflurane preconditioning both in vivo and in vitro and that SPK2 contributes to preconditioning-induced autophagy, possibly by disrupting the Beclin 1/Bcl-2 interaction.


Subject(s)
Autophagy , Cerebral Cortex/metabolism , Ischemic Preconditioning , Neurons/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Adamantane/analogs & derivatives , Adamantane/pharmacology , Anesthetics, Inhalation/pharmacology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Beclin-1 , Cells, Cultured , Cerebral Cortex/cytology , Enzyme Inhibitors/pharmacology , Isoflurane/pharmacology , Lactosylceramides/genetics , Lactosylceramides/metabolism , Mice , Mice, Knockout , Morpholines/pharmacology , Neurons/cytology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyridines/pharmacology , Pyrones/pharmacology , Transcription Factor TFIIH , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Mol Carcinog ; 54(10): 1205-13, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25044025

ABSTRACT

DNAJB6 is a member of the heat shock protein 40 (Hsp40) family. We here investigated the clinical correlation and biological role of DNAJB6 overexpression in colorectal cancer (CRC). The expression of DNAJB6 protein was examined in 200 cases of colorectal adenocarcinomas by immunohistochemistry (IHC) technology. Gene transfection and RNA interference were performed to determine the effect of DNAJB6 expression on the invasion of CRC cells and to explore the underlying molecular mechanisms in vitro and in vivo. Overexpression of DNAJB6 was found in 39% (78/200) of the CRC tissues, especially in tumors at pT4 as compared with at pT1-3 (P = 0.02). A Kaplan-Meier survival analysis revealed a correlation between DNAJB6 expression and overall survival (OS) times (P = 0.003). Multivariate analysis confirmed that DNAJB6 overexpression was an independent prognostic factor for CRC (P = 0.002). RNA interference-mediated silencing of the DNAJB6 gene inhibited the invasion of CRC cells in vitro were accompanied by a significant reduction in the protein levels of IQ-domain GTPase-activating protein 1 (IQGAP1) and phosphorylated ERK (pERK). An in vivo assay showed that inhibition of DNAJB6 expression decreased the lung metastases of CRC cells. IHC analysis of serial sections showed that there was a positive correlation between DNAJB6 and IQGAP1 expression in primary CRC tissues (P = 0.013). The data suggest that DNAJB6 plays an important oncogenic role in CRC cell invasion by up-regulating IQGAP1 and activating the ERK signaling pathway and that DNAJB6 may be used as a prognostic marker for CRC.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HSP40 Heat-Shock Proteins/genetics , MAP Kinase Signaling System/genetics , Molecular Chaperones/genetics , Neoplasm Invasiveness/genetics , Nerve Tissue Proteins/genetics , Signal Transduction/genetics , ras GTPase-Activating Proteins/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/genetics , HCT116 Cells , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplasm Invasiveness/pathology , Phosphorylation/genetics , Prognosis , RNA Interference/physiology , Up-Regulation/genetics
16.
J Affect Disord ; 347: 569-575, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38065480

ABSTRACT

BACKGROUND: Dental anxiety is a widespread complication occurring in pediatric patients during dental visits and may lead to undesirable complications. Esketamine may be effective in anxiety. OBJECTIVE: The objective of this study was to investigate the effect of premedication with a dexmedetomidine-esketamine combination compared with dexmedetomidine alone on dental anxiety in preschool children undergoing dental treatment under general anesthesia. METHODS: This is a prospective, double-blinded, randomized controlled trial. A total of 84 patients were scheduled for elective outpatient dental caries treatment under general anesthesia. Patients were randomly premedicated with intranasal dexmedetomidine (group D) or intranasal dexmedetomidine-esketamine (group DS). The primary outcome was the level of dental anxiety assessed by the Modified Child Dental Anxiety Scale (MCDAS) at 2 h after surgery. Secondary outcomes included level of dental anxiety at 1 day and 7 days after surgery, the incidence of dental anxiety at 2 h, 1 day, and 7 days after surgery, sedation onset time, overall success of sedation, acceptance of mask induction, postoperative pain intensity, incidence of emergence agitation in PACU, adverse reactions, HR, and SpO2 before premedication (baseline) and at 10, 20, and 30 min after the end of study drug delivery. RESULTS: The dental anxiety in group DS was lower than that in group D at 2 h, 1 day, and 7 days postoperatively (P = 0.04, 0.004, and 0.006, respectively). The incidences of dental anxiety in group DS were lower than those in group D at 2 h (53 % vs 76 %, P = 0.03), 1 day (47 % vs 71 %, P = 0.04), and 7 days (44 % vs 71 %, P = 0.02) after surgery. Group DS had a higher success rate of sedation (P = 0.03) but showed a lower MAS score (P = 0.005) and smoother hemodynamics (P < 0.01) after drug administration than group D. Group DS showed a significantly lower incidence rate of emergence agitation (P = 0.03) and postoperative pain intensity (P = 0.006) than that in group D during the anesthesia recovery time. The occurrence of adverse reactions was similar in both groups (P > 0.05). LIMITATIONS: We did not analyze and correct for the learning effect caused by repeated applications of the MCDAS and MCDAS scores on the 1 day after surgery were obtained by telephone follow-up. CONCLUSIONS: Compared to premedication with dexmedetomidine alone, premedication with intranasal dexmedetomidine combined with esketamine could significantly improve dental anxiety in preschool children undergoing dental treatment under general anesthesia.


Subject(s)
Dental Caries , Dexmedetomidine , Emergence Delirium , Child , Humans , Child, Preschool , Dexmedetomidine/adverse effects , Hypnotics and Sedatives/adverse effects , Emergence Delirium/epidemiology , Emergence Delirium/prevention & control , Emergence Delirium/chemically induced , Prospective Studies , Dental Anxiety/prevention & control , Dental Caries/chemically induced , Dental Caries/drug therapy , Anesthesia, General/adverse effects , Pain, Postoperative/chemically induced , Dental Care , Double-Blind Method
17.
Int Immunopharmacol ; 127: 111408, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38128309

ABSTRACT

Microglia aggregate in regions of active inflammation and demyelination in the CNS of multiple sclerosis (MS) patients and are considered pivotal in the disease process. Targeting microglia is a promising therapeutic approach for myelin repair. Previously, we identified two candidates for microglial modulation and remyelination using a Connectivity Map (CMAP)-based screening strategy. Interestingly, with results that overlapped, sanguinarine (SAN) emerged as a potential drug candidate to modulate microglial polarization and promote remyelination. In the current study, we demonstrate the efficacy of SAN in mitigating the MS-like experimental autoimmune encephalomyelitis (EAE) in a dose-dependent manner. Meanwhile, prophylactic administration of a medium dose (2.5 mg/kg) significantly reduces disease incidence and ameliorates clinical signs in EAE mice. At the cellular level, SAN reduces the accumulation of microglia in the spinal cord. Morphological analyses and immunophenotyping reveal a less activated state of microglia following SAN administration, supported by decreased inflammatory cytokine production in the spinal cord. Mechanistically, SAN skews primary microglia towards an immunoregulatory state and mitigates proinflammatory response through PPARγ activation. This creates a favorable milieu for the differentiation of oligodendrocyte progenitor cells (OPCs) when OPCs are incubated with conditioned medium from SAN-treated microglia. We further extend our investigation into the cuprizone-induced demyelinating model, confirming that SAN treatment upregulates oligodendrocyte lineage genes and increases myelin content, further suggesting its pro-myelination effect. In conclusion, our data propose SAN as a promising candidate adding to the preclinical therapeutic arsenal for regulating microglial function and promoting myelin repair in CNS demyelinating diseases such as MS.


Subject(s)
Benzophenanthridines , Encephalomyelitis, Autoimmune, Experimental , Isoquinolines , Multiple Sclerosis , Humans , Mice , Animals , Microglia , PPAR gamma , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Myelin Sheath/physiology , Multiple Sclerosis/drug therapy , Mice, Inbred C57BL , Disease Models, Animal
18.
World J Gastrointest Oncol ; 16(4): 1180-1191, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660654

ABSTRACT

Esophageal cancer ranks among the most prevalent malignant tumors globally, primarily due to its highly aggressive nature and poor survival rates. According to the 2020 global cancer statistics, there were approximately 604000 new cases of esophageal cancer, resulting in 544000 deaths. The 5-year survival rate hovers around a mere 15%-25%. Notably, distinct variations exist in the risk factors associated with the two primary histological types, influencing their worldwide incidence and distribution. Squamous cell carcinoma displays a high incidence in specific regions, such as certain areas in China, where it meets the cost-effectiveness criteria for widespread endoscopy-based early diagnosis within the local population. Conversely, adenocarcinoma (EAC) represents the most common histological subtype of esophageal cancer in Europe and the United States. The role of early diagnosis in cases of EAC originating from Barrett's esophagus (BE) remains a subject of controversy. The effectiveness of early detection for EAC, particularly those arising from BE, continues to be a debated topic. The variations in how early-stage esophageal carcinoma is treated in different regions are largely due to the differing rates of early-stage cancer diagnoses. In areas with higher incidences, such as China and Japan, early diagnosis is more common, which has led to the advancement of endoscopic methods as definitive treatments. These techniques have demonstrated remarkable efficacy with minimal complications while preserving esophageal functionality. Early screening, prompt diagnosis, and timely treatment are key strategies that can significantly lower both the occurrence and death rates associated with esophageal cancer.

19.
Gastroenterology ; 142(3): 521-530.e3, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22108192

ABSTRACT

BACKGROUND & AIMS: Aberrant activation of the signal transducer and activator of transcription (Stat)3 and overexpression of polo-like kinase (PLK)1 each have been associated with cancer pathogenesis. The mechanisms and significance of dysregulation of Stat3 and PLK1 in carcinogenesis and cancer progression are unclear. We investigated the relationship between Stat3 and PLK1 and the effects of their dysregulation in esophageal squamous cell carcinoma (ESCC) cells. METHODS: We used immunoblot, quantitative reverse-transcription polymerase chain reaction, immunochemistry, chromatin immunoprecipitation, mobility shift, and reporter assays to investigate the relationship between Stat3 and PLK1. We used colony formation, fluorescence-activated cell sorting, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling, and xenograft tumor assays to determine the effects of increased activation of Stat3 and PLK1 in proliferation and survival of ESCC cells. RESULTS: Stat3 directly activated transcription of PLK1 in esophageal cancer cells and mouse embryonic fibroblast cell NIH3T3. PLK1 then potentiated the expression of Stat3; ß-catenin was involved in PLK1-dependent transcriptional activation of Stat3. This mutual regulation between Stat3 and PLK1 was required for proliferation of esophageal cancer cells and resistance to apoptosis in culture and as tumor xenografts in mice. Furthermore, phosphorylation of Stat3 and overexpression of PLK1 were correlated in a subset of ESCC. CONCLUSIONS: Stat3 and PLK1 control each other's transcription in a positive feedback loop that contributes to the development of ESCC. Increased activity of Stat3 and overexpression of PLK1 promote survival and proliferation of ESCC cells in culture and in mice.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Cell Cycle Proteins/metabolism , Cell Proliferation , Esophageal Neoplasms/enzymology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , STAT3 Transcription Factor/metabolism , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Separation/methods , Cell Survival , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , Enzyme Activation , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Feedback, Physiological , Female , Flow Cytometry , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genes, Reporter , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Nude , NIH 3T3 Cells , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Pteridines/pharmacology , RNA Interference , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , Signal Transduction , Time Factors , Transcriptional Activation , Transfection , Xenograft Model Antitumor Assays , beta Catenin/metabolism , Polo-Like Kinase 1
20.
Acta Pharmacol Sin ; 34(5): 657-66, 2013 May.
Article in English | MEDLINE | ID: mdl-23603983

ABSTRACT

AIM: To investigate whether endoplasmic reticulum (ER) stress participates in the neuroprotective effects of ischemic preconditioning (IPC)-induced neuroprotection and autophagy activation in rat brains. METHODS: The right middle cerebral artery in SD rats was occluded for 10 min to induce focal cerebral IPC, and was occluded permanently 24 h later to induce permanent focal ischemia (PFI). ER stress inhibitor salubrinal (SAL) was injected via intracerebral ventricle infusion 10 min before the onset of IPC. Infarct volume and motor behavior deficits were examined after the ischemic insult. The protein levels of LC3, p62, HSP70, glucose-regulated protein 78 (GRP 78), p-eIF2α and caspase-12 in the ipsilateral cortex were analyzed using immunoblotting. LC3 expression pattern in the sections of ipsilateral cortex was observed with immunofluorescence. RESULTS: Pretreatment with SAL (150 pmol) abolished the neuroprotective effects of IPC, as evidenced by the significant increases in mortality, infarct volume and motor deficits after PFI. At the molecular levels, pretreatment with SAL (150 pmol) significantly increased p-eIF2α level, and decreased GRP78 level after PFI, suggesting that SAL effectively inhibited ER stress in the cortex. Furthermore, the pretreatment with SAL blocked the IPC-induced upregulation of LC3-II and downregulation of p62 in the cortex, thus inhibiting the activation of autophagy. Moreover,SAL blocked the upregulation of HSP70, but significantly increased the cleaved caspase-12 level, thus promoting ER stress-dependent apoptotic signaling in the cortex. CONCLUSION: ER stress-induced autophagy might contribute to the neuroprotective effect of brain ischemic preconditioning.


Subject(s)
Autophagy/drug effects , Brain Ischemia/pathology , Brain Ischemia/therapy , Brain/pathology , Cinnamates/pharmacology , Endoplasmic Reticulum Stress/drug effects , Ischemic Preconditioning , Thiourea/analogs & derivatives , Animals , Apoptosis/drug effects , Brain/blood supply , Brain/drug effects , Brain/metabolism , Brain Ischemia/metabolism , Ischemic Preconditioning/methods , Male , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Thiourea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL