Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Bull Math Biol ; 86(6): 67, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700758

ABSTRACT

In biology, evolutionary game-theoretical models often arise in which players' strategies impact the state of the environment, driving feedback between strategy and the surroundings. In this case, cooperative interactions can be applied to studying ecological systems, animal or microorganism populations, and cells producing or actively extracting a growth resource from their environment. We consider the framework of eco-evolutionary game theory with replicator dynamics and growth-limiting public goods extracted by population members from some external source. It is known that the two sub-populations of cooperators and defectors can develop spatio-temporal patterns that enable long-term coexistence in the shared environment. To investigate this phenomenon and unveil the mechanisms that sustain cooperation, we analyze two eco-evolutionary models: a well-mixed environment and a heterogeneous model with spatial diffusion. In the latter, we integrate spatial diffusion into replicator dynamics. Our findings reveal rich strategy dynamics, including bistability and bifurcations, in the temporal system and spatial stability, as well as Turing instability, Turing-Hopf bifurcations, and chaos in the diffusion system. The results indicate that effective mechanisms to promote cooperation include increasing the player density, decreasing the relative timescale, controlling the density of initial cooperators, improving the diffusion rate of the public goods, lowering the diffusion rate of the cooperators, and enhancing the payoffs to the cooperators. We provide the conditions for the existence, stability, and occurrence of bifurcations in both systems. Our analysis can be applied to dynamic phenomena in fields as diverse as human decision-making, microorganism growth factors secretion, and group hunting.


Subject(s)
Biological Evolution , Cooperative Behavior , Game Theory , Mathematical Concepts , Models, Biological , Animals , Humans , Spatio-Temporal Analysis , Computer Simulation , Population Dynamics/statistics & numerical data , Feedback
2.
Biomed Chromatogr ; 38(9): e5948, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981997

ABSTRACT

Epimedium is a traditional Chinese medicine with a wide range of clinical applications; however, there have been numerous reports of adverse reactions in recent years. The most common side effect of Epimedium is liver injury. In this study, the liquid chromatography-mass spectrometry (LC-MS) method has been established to study the components of Epimedium and to identify the components absorbed into the blood of rats. Bioinformatics was used to screen out potential toxic components, and the integrating metabolomics method was used to explore the molecular mechanism of Epimedium-induced liver injury. The chemical constituents of Epimedium were identified by LC-MS, and 62 compounds were obtained, including 57 flavonoids, four organic acids and one alkaloid. The toxicity network of "Epimedium-component-target-liver injury" was constructed using bioinformatics research methods, and then the key hepatotoxic component icaritin was identified. Integrating metabolomics was used to investigate the changes in the metabolic profile of L-02 cells with different durations of icaritin administration compared with the control group, and 106 different metabolites were obtained. A total of 14 potential biomarkers significantly associated with cell survival were screened by Pearson correlation analysis combined with the L-02 cell survival rate. Our study preliminarily revealed the mechanism of hepatotoxicity induced by Epimedium.


Subject(s)
Chemical and Drug Induced Liver Injury , Computational Biology , Epimedium , Flavonoids , Metabolomics , Rats, Sprague-Dawley , Epimedium/chemistry , Metabolomics/methods , Animals , Chemical and Drug Induced Liver Injury/metabolism , Rats , Flavonoids/chemistry , Flavonoids/pharmacology , Male , Humans , Chromatography, Liquid/methods , Cell Line , Mass Spectrometry/methods , Drugs, Chinese Herbal/chemistry , Metabolome/drug effects , Cell Survival/drug effects
3.
Math Biosci ; 372: 109202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692481

ABSTRACT

Phytoplankton bloom received considerable attention for many decades. Different approaches have been used to explain the bloom phenomena. In this paper, we study a Nutrient-Phytoplankton-Zooplankton (NPZ) model consisting of a periodic driving force in the growth rate of phytoplankton due to solar radiation and analyse the dynamics of the corresponding autonomous and non-autonomous systems in different parametric regions. Then we introduce a novel aspect to extend the model by incorporating another periodic driving force into the growth term of the phytoplankton due to sea surface temperature (SST), a key point of innovation. Temperature dependency of the maximum growth rate (µmax) of the phytoplankton is modelled by the well-known Q10 formulation: [Formula: see text] , where µ0 is maximum growth at 0oC. Stability conditions for all three equilibrium points are expressed in terms of the new parameter ρ2, which appears due to the incorporation of periodic driving forces. System dynamics is explored through a detailed bifurcation analysis, both mathematically and numerically, with respect to the light and temperature dependent phytoplankton growth response. Bloom phenomenon is explained by the saddle point bloom mechanism even when the co-existing equilibrium point does not exist for some values of ρ2. Solar radiation and SST are modelled using sinusoidal functions constructed from satellite data. Our results of the proposed model describe the initiation of the phytoplankton bloom better than an existing model for the region 25-35° W, 40-45° N of the North Atlantic Ocean. An improvement of 14 days (approximately) is observed in the bloom initiation time. The rate of change method (ROC) is applied to predict the bloom initiation.


Subject(s)
Models, Biological , Phytoplankton , Phytoplankton/growth & development , Phytoplankton/physiology , Temperature , Eutrophication , Animals , Zooplankton/physiology , Zooplankton/growth & development , Sunlight
4.
Math Biosci Eng ; 21(4): 5687-5711, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38872554

ABSTRACT

In this paper, we have proposed and investigated an intraguild predator-prey system incorporating two delays and a harvesting mechanism based on the Michaelis-Menten principle, and it was assumed that the two species compete for a shared resource. Firstly, we examined the properties of the relevant characteristic equations to derive sufficient conditions for the asymptotical stability of equilibria in the delayed model and the existence of Hopf bifurcation. Using the normal form method and the central manifold theorem, we analyzed the stability and direction of periodic solutions arising from Hopf bifurcations. Our theoretical findings were subsequently validated through numerical simulations. Furthermore, we explored the impact of harvesting on the quantity of biological resources and examined the critical values associated with the two delays.


Subject(s)
Computer Simulation , Ecosystem , Fisheries , Food Chain , Models, Biological , Population Dynamics , Predatory Behavior , Animals , Algorithms
5.
Polymers (Basel) ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891490

ABSTRACT

The development of smart protective clothing will help detect injuries from contact sports, traffic collisions, and other accidents. The combination of ecoflex, spacer fabric, and graphene-based aerogel provides a multifunctional composite. It shows a strain sensitivity of 17.71 at the strain range of 40~55%, a pressure sensitivity of 0.125 kPa-1 at the pressure range of 0~15 kPa, and a temperature sensitivity of -0.648 °C-1. After 50 impact tests, its protection coefficient only dropped from 60% to 55%. Additionally, it shows thermal insulation properties. The compression and impact process results of finite element numerical simulation analysis are in good agreement with the experimental results. The ecoflex/aerogel/spacer fabric sensor exhibits a simple structure, large pressure strain, high sensitivity, flexibility, and ease of fabrication, making it a candidate for smart protective clothing resistant to impact loads.

6.
Phytomedicine ; 129: 155698, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728919

ABSTRACT

BACKGROUND: Gestational diabetes could elevate the risk of congenital heart defects (CHD) in infants, and effective preventive and therapeutic medications are currently lacking. Atractylenolide-I (AT-I) is the active ingredient of Atractylodes Macrocephala Koidz (known as Baizhu in China), which is a traditional pregnancy-supporting Chinese herb. PURPOSE: In this study, we investigated the protective effect of AT-I on the development of CHD in embryos exposed to high glucose (HG). STUDY DESIGN AND METHODS: First, systematic review search results revealed associations between gestational diabetes mellitus (GDM) and cardiovascular malformations. Subsequently, a second systematic review indicated that heart malformations were consistently associated with oxidative stress and cell apoptosis. We assessed the cytotoxic impacts of Atractylenolide compounds (AT-I, AT-II, and AT-III) on H9c2 cells and chick embryos, determining an optimal concentration of AT-I for further investigation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR), and flow cytometry were utilized to delve into the mechanisms through which AT-I mitigates oxidative stress and apoptosis in cardiac cells. Molecular docking was employed to investigate whether AT-I exerts cardioprotective effects via the STAT3 pathway. Then, we developed a streptozotocin-induced diabetes mellitus (PGDM) mouse model to evaluate AT-I's protective efficacy in mammals. Finally, we explored how AT-I protects hyperglycemia-induced abnormal fetal heart development through microbiota analysis and untargeted metabolomics analysis. RESULTS: The study showed the protective effect of AT-I on embryonic development using a chick embryo model which rescued the increase in the reactive oxygen species (ROS) and decrease in cell survival induced by HG. We also provided evidence suggesting that AT-I might directly interact with STAT3, inhibiting its phosphorylation. Further, in the PGDM mouse model, we observed that AT-I not only partially alleviated PGDM-related blood glucose issues and complications but also mitigated hyperglycemia-induced abnormal fetal heart development in pregnant mice. This effect is hypothesized to be mediated through alterations in gut microbiota composition. We proposed that dysregulation in microbiota metabolism could influence the downstream STAT3 signaling pathway via EGFR, consequently impacting cardiac development and formation. CONCLUSIONS: This study marks the first documented instance of AT-I's effectiveness in reducing the risk of early cardiac developmental anomalies in fetuses affected by gestational diabetes. AT-I achieves this by inhibiting the STAT3 pathway activated by ROS during gestational diabetes, significantly reducing the risk of fetal cardiac abnormalities. Notably, AT-I also indirectly safeguards normal fetal cardiac development by influencing the maternal gut microbiota and suppressing the EGFR/STAT3 pathway.


Subject(s)
Apoptosis , Diabetes, Gestational , Heart Defects, Congenital , Hyperglycemia , Lactones , Oxidative Stress , STAT3 Transcription Factor , Sesquiterpenes , Animals , STAT3 Transcription Factor/metabolism , Lactones/pharmacology , Sesquiterpenes/pharmacology , Hyperglycemia/drug therapy , Female , Chick Embryo , Pregnancy , Apoptosis/drug effects , Mice , Oxidative Stress/drug effects , Diabetes, Gestational/drug therapy , Signal Transduction/drug effects , Diabetes Mellitus, Experimental/drug therapy , Rats , Cell Line , Atractylodes/chemistry , Molecular Docking Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL