Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Plant Biol ; 24(1): 579, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890571

ABSTRACT

BACKGROUND: The quality of maize kernels is significantly enhanced by amino acids, which are the fundamental building blocks of proteins. Meanwhile, calcium (Ca) and magnesium (Mg), as important nutrients for maize growth, are vital in regulating the metabolic pathways and enzyme activities of amino acid synthesis. Therefore, our study analyzed the response process and changes of amino acid content, endogenous hormone content, and antioxidant enzyme activity in kernels to the coupling addition of sugar alcohol-chelated Ca and Mg fertilizers with spraying on maize. RESULT: (1) The coupled addition of Ca and Mg fertilizers increased the Ca and Mg content, endogenous hormone components (indole-3-acetic acid, IAA; gibberellin, GA; zeatin riboside, ZR) content, antioxidant enzyme activity, and amino acid content of maize kernels. The content of Ca and Mg in kernels increased with the increasing levels of Ca and Mg fertilizers within a certain range from the filling to the wax ripening stage, and significantly positively correlated with antioxidant enzyme activities. (2) The contents of IAA, GA, and ZR continued to rise, and the activities of superoxide dismutase (SOD) and catalase (CAT) were elevated, which effectively enhanced the ability of cells to resist oxidative damage, promoted cell elongation and division, and facilitated the growth and development of maize. However, the malondialdehyde (MDA) content increased consistently, which would attack the defense system of the cell membrane plasma to some extent. (3) Leucine (LEU) exhibited the highest percentage of essential amino acid components and a gradual decline from the filling to the wax ripening stage, with the most substantial beneficial effect on essential amino acids. (4) CAT and SOD favorably governed essential amino acids, while IAA and MDA negatively regulated them. The dominant physiological driving pathway for the synthesis of essential amino acids was "IAA-CAT-LEU", in which IAA first negatively drove CAT activity, and CAT then advantageously controlled LEU synthesis. CONCLUSION: These findings provide a potential approach to the physiological and biochemical metabolism of amino acid synthesis, and the nutritional quality enhancement of maize kernel.


Subject(s)
Amino Acids , Calcium , Magnesium , Plant Growth Regulators , Zea mays , Zea mays/metabolism , Zea mays/growth & development , Zea mays/physiology , Magnesium/metabolism , Amino Acids/metabolism , Calcium/metabolism , Plant Growth Regulators/metabolism , Fertilizers , Indoleacetic Acids/metabolism , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Gibberellins/metabolism
2.
Small ; : e2311703, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459649

ABSTRACT

High tap density electrodes play a vital role in developing rechargeable batteries with high volumetric capacities, however, developing advanced electrodes with satisfied capacity, excellent structural stability, and achieving the resulted batteries with a high initial Coulombic efficiency (ICE) and good rate capability with long lifespan simultaneously, are still an intractable challenge. Herein, an ultrahigh ICE of 94.1% and stable cycling of carbon-free iron selenides anode is enabled with a high tap density of 2.57 g cm-3 up to 4000 cycles at 5 A g-1 through strain-modulating by constructing a homologous heterostructure. Systematical characterization and theoretical calculation show that the self-adaptive homologous heterointerface alleviates the stress of the iron selenide anodes during cycling processes and subsequently improves the stability of the assembled batteries. Additionally, the well-formed homologous heterostructure also contributes to the rapid Na+ diffusion kinetic, increased charge transfer, and good reversibility of the transformation reactions, endowing the appealing rate capability of carbon-free iron selenides. The proposed design strategy provides new insight and inspiration to aid in the ongoing quest for advanced electrode materials with high tap densities and excellent stability.

3.
Acta Pharmacol Sin ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914678

ABSTRACT

Thymic egress is a crucial process for thymocyte maturation, strictly regulated by sphingosine-1-phosphate lyase (S1PL). Recently, cystathionine γ-lyase (CSE), one of the enzymes producing hydrogen sulfide (H2S), has emerged as a vital immune process regulator. However, the molecular connection between CSE, H2S and thymic egress remains largely unexplored. In this study, we investigated the regulatory function of CSE in the thymic egress of immune cells. We showed that genetic knockout of CSE or pharmacological inhibition by CSE enzyme inhibitor NSC4056 or D,L-propargylglycine (PAG) significantly enhanced the migration of mature lymphocytes and monocytes from the thymus to the peripheral blood, and this redistribution effect could be reversed by treatment with NaHS, an exogenous donor of H2S. In addition, the CSE-generated H2S significantly increased the levels of S1P in the peripheral blood, thymus and spleen of mice, suppressed the production of proinflammatory cytokines and rescued pathogen-induced sepsis in cells and in vivo. Notably, H2S or polysulfide inhibited S1PL activity in cells and an in vitro purified enzyme assay. We found that this inhibition relied on a newly identified C203XC205 redox motif adjacent to the enzyme's active site, shedding light on the biochemical mechanism of S1PL regulation. In conclusion, this study uncovers a new function and mechanism for CSE-derived H2S in thymic egress and provides a potential drug target for treating S1P-related immune diseases.

4.
Neurosurg Rev ; 47(1): 54, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240919

ABSTRACT

The objective of this study is to compare the clinical effectiveness of visualization of percutaneous endoscopic lumbar discectomy (VPELD) combined with annulus fibrosus suture technique and simple percutaneous endoscopic lumbar discectomy (PELD) technique in the treatment of lumbar disc herniation. A retrospective analysis was conducted on 106 cases of lumbar disc herniation treated with foraminoscopic technique at our hospital from January 2020 to February 2022. Among them, 33 cases were treated with VPELD combined with annulus fibrosus suture in group A, and 73 cases were treated with PELD in group B. The preoperative and postoperative visual analogue scale (VAS), functional index (Oswestry Disability Index, ODI), healing of the annulus fibrosus, intervertebral space height, and postoperative recurrence were recorded and compared between the two groups. All patients underwent preoperative and postoperative MRI examinations, and the average follow-up period was 12 ± 2 months. Both groups showed significant improvements in postoperative VAS and ODI scores compared to the preoperative scores (P < 0.05), with no statistically significant difference between the groups during the same period (P > 0.05). There was no significant decrease in intervertebral space between the two groups after surgery (P > 0.05). Group A showed significantly lower postoperative recurrence rate and better annulus fibrosus healing compared to group B (P < 0.05). The VPELD combined with annulus fibrosus suture technique is a safe, feasible, and effective procedure for the treatment of lumbar disc herniation. When the indications are strictly adhered to, this technique can effectively reduce the postoperative recurrence rate and reoperation rate. It offers satisfactory clinical efficacy and can be considered as an alternative treatment option for eligible patients.


Subject(s)
Annulus Fibrosus , Diskectomy, Percutaneous , Intervertebral Disc Displacement , Humans , Intervertebral Disc Displacement/surgery , Diskectomy, Percutaneous/methods , Retrospective Studies , Annulus Fibrosus/surgery , Endoscopy/methods , Lumbar Vertebrae/surgery , Treatment Outcome , Sutures , Diskectomy
5.
Entropy (Basel) ; 26(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38920464

ABSTRACT

Linear codes are the most important family of codes in cryptography and coding theory. Some codes only have a few weights and are widely used in many areas, such as authentication codes, secret sharing schemes and strongly regular graphs. By setting p≡1(mod4), we constructed an infinite family of linear codes using two distinct weakly regular unbalanced (and balanced) plateaued functions with index (p-1)/2. Their weight distributions were completely determined by applying exponential sums and Walsh transform. As a result, most of our constructed codes have a few nonzero weights and are minimal.

6.
Angew Chem Int Ed Engl ; : e202407149, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949229

ABSTRACT

This paper describes a concise, asymmetric and stereodivergent total synthesis of tacaman alkaloids. A key step in this synthesis is the biocatalytic Baeyer-Villiger oxidation of cyclohexanone, which was developed to produce seven-membered lactones and establish the required stereochemistry at the C14 position (92% yield, 99% ee, 500 mg scale). Cis- and trans-tetracyclic indoloquinolizidine scaffolds were rapidly synthesized through an acid-triggered, tunable acyl-Pictet-Spengler type cyclization cascade, serving as the pivotal reaction for building the alkaloid skeleton. Computational results revealed that hydrogen bonding was crucial in stabilizing intermediates and inducing different addition reactions during the acyl-Pictet-Spengler cyclization cascade. By strategically using these two reactions and the late-stage diversification of the functionalized indoloquinolizidine core, the asymmetric total syntheses of eight tacaman alkaloids were achieved. This study may potentially advance research related to the medicinal chemistry of tacaman alkaloids.

7.
Cell Biol Toxicol ; 39(5): 1-16, 2023 10.
Article in English | MEDLINE | ID: mdl-35478295

ABSTRACT

The current study tries to discuss the functional role of microRNA-497 (miR-497) in diabetic neuropathic pain (DNP) and the related downstream mechanism. Bioinformatics analysis was implemented for the identification of differentially expressed miRNAs and genes. DNP was simulated in rats through intraperitoneal injection of streptozotocin. The expression patterns of miR-497, USP15, NRF2, and G6PD were then determined. The binding of miR-497 and USP15 was confirmed. Using gain- and loss-of-function assays, we analyzed the critical role of miR-497-mediated USP15 in DNP through the NRF2/G6PD axis. Downregulated miR-497 and elevated USP15 were observed in the dorsal root ganglion neurons isolated from spinal cord tissues of STZ-induced DNP rats. miR-497 could alleviate DNP, which was associated with suppression of USP15, a confirmed target of miR-497. USP15 enhanced the degradation and ubiquitination of NRF2 and induced G6PD expression, leading to the progression of DNP. We highlighted the crucial role of miR-497-mediated USP15 in DNP through the NRF2/G6PD axis. 1. miR-497 is downregulated in DRG neurons from spinal cord tissues of STZ-induced DNP rats. 2. miR-497 inhibits the expression of USP15, thereby alleviating STZ-induced DNP in rats. 3. USP15 promotes ubiquitination and degradation of NRF2, reducing the expression of G6PD. 4. miR-497 alleviates STZ-induced DNP in rats by regulating the USP15/NRF2/G6PD axis.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , MicroRNAs , Neuralgia , Animals , Rats , Diabetic Neuropathies/metabolism , MicroRNAs/genetics , Neuralgia/genetics , NF-E2-Related Factor 2/genetics , Rats, Sprague-Dawley , Streptozocin
8.
Entropy (Basel) ; 25(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36832735

ABSTRACT

Linear codes with a few weights have been extensively studied due to their wide applications in secret sharing schemes, strongly regular graphs, association schemes, and authentication codes. In this paper, we choose the defining sets from two distinct weakly regular plateaued balanced functions, based on a generic construction of linear codes. Then we construct a family of linear codes with at most five nonzero weights. Their minimality is also examined and the result shows that our codes are helpful in secret sharing schemes.

9.
Plant Physiol Biochem ; 206: 108280, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103337

ABSTRACT

Soil calcium (Ca) and magnesium (Mg) mineral states in rain-fed arid regions of Northwest China are inefficient, and their levels of substitution and water-soluble states are far below the lowest threshold required for maize growth, resulting in frequent physiological diseases, restricting synthesis of kernel protein (CRP). Our study set up different levels of foliar spraying of Ca and Mg fertilizers before maize pollination to examine the response characteristics of physiological and biochemical indicators in kernel, and the driving process of CRP synthesis. The main findings were: (1) Ca and Mg significantly increased the levels of CRP and endogenous hormones, and the activities of defense enzymes and CRP synthesis enzymes, which decreased significantly and stabilized at the maturity stage of maize. (2) The synthesis and accumulation of CRP were synergistically regulated by endogenous hormones, defense enzymes, and CRP synthase enzymes, with the degree of regulation varying with the level of Ca and Mg supplementation. Indole-3-acetic acid (IAA), gibberellin (GA), zeatin riboside (ZR), catalase (CAT), malondialdehyde (MDA), and glutamate dehydrogenase (GDH) were the primary physiological driving indicators of CRP synthesis, with CRP having a significant synergistic relationship with CAT and a remarkable trade-off with other driving indicators. (3) The dominant driving pathway of CRP synthesis was "Ca, Mg-IAA or GA or ZR-CAT-GDH-CRP". Ca and Mg positively affected IAA and GA levels, and IAA and GA positively regulated CAT activity. However, CAT negatively regulated GDH levels, causing GDH to negatively influence the synthesis and accumulation of CRP and its components. The findings provide theoretical support for further study of inter-root endogenous hormones and soil microbe-driven processes in the regulation of maize quality by Ca and Mg.


Subject(s)
Plant Growth Regulators , Zea mays , Plant Growth Regulators/metabolism , Zea mays/metabolism , Magnesium/metabolism , Hormones/metabolism , Soil
10.
Ying Yong Sheng Tai Xue Bao ; 35(1): 25-30, 2024 Jan.
Article in Zh | MEDLINE | ID: mdl-38511436

ABSTRACT

We systematically elaborated and compared the spatial scope and landscape changes of Horqin Grassland and Horqin Sand Land from their definitions and ranges. Horqin Grassland is an area with geographical units named after Mongolian tribes, but the boundary is unclear. Horqin Sand Land is also an area that borrows tribal names, but has independent topographic and geomorphic units, and clear boundaries. Horqin Grassland and Horqin Sand Land belong to two spatial regions that are both cross and different. The area and range of Horqin Grassland are larger than that of Horqin Sand Land which has obvious regional characteristics, and is a typical and research object area to study the development and restoration of aeolian desertification. Based on those cognition, we summarized the technologies and example models of comprehensive land management and desertification controlling over the years, and finally sorted out what should be focused on in the future to serve the annihilation war against desertification for Horqin Sand Land.


Subject(s)
Conservation of Natural Resources , Sand , Grassland , China
11.
Environ Monit Assess ; 185(7): 6013-21, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23179727

ABSTRACT

Water is a limiting factor to plant growth in Horqin Sand Land of China. Knowledge of soil saturated hydraulic conductivity (K(sat)) is of importance because K(sat) influences soil evaporation and water cycling at various scales. In order to analyze the variation of K(sat) along with sand types and soil depths, and its relationship with soil physiochemical properties, six typical lands were chosen, including mobile dune, fixed dune, pine woodland, poplar woodland, grassland, and cropland, and K(sat) was measured in situ by Guelph Permeameter at each type of land. Soil bulk density, organic matter content, and soil particle size distribution were determined in parallel with K(sat) measurement. The results showed that (1) The averaged K(sat) was decreased in the order: mobile dune > fixed dune > pine woodland > poplar woodland > grassland > cropland; changes in K(sat) varied considerably as soil depth increased, e.g., the changes of K(sat) along with soil depth in fixed dune was fitted by exponential model, but it was fitted by parabola model in the pine woodland and grassland. (2) The K(sat) values of fixed dune and mobile dune were varied considerably among three slope positions (dune top, windward slope, and leeward slope). (3) The relationships of K(sat) and soil physiochemical property revealed that soil bulk density, organic matter content, and coarse sand fraction (2∼0.1 mm) were the key factors affecting K(sat) in Horqin Sand Land. Compared with clay and silt content proportion, sand fraction in this region showed a more significant positive correlation with K(sat).


Subject(s)
Groundwater/analysis , Soil/chemistry , China , Conservation of Natural Resources , Desert Climate , Environmental Monitoring , Water Movements
12.
Front Plant Sci ; 14: 1332517, 2023.
Article in English | MEDLINE | ID: mdl-38259946

ABSTRACT

The content of kernel starch (STC), which is a fundamental indicator of the nutritional value of maize, is directly correlated with the grain's taste and aroma. Both calcium (Ca) and magnesium (Mg) are critical nutrients that play a significant role in the growth and development of maize, as well as in the synthesis of STC. To determine the physiological driving mechanisms of Ca and Mg effects on the accumulation of STC synthesis in maize kernels and the characteristics of their effects on endogenous hormones and enzymes of STC synthesis in maize leaves, our study applied foliar Ca and Mg fertilizers at various levels to maize prior to pollination. (1) The levels of Ca, Mg, indole-3-acetic acid (IAA), gibberellin (GA), and zeatin riboside (ZR) in maize leaves increased and then decreased after the supplementation of Ca and Mg. They peaked on the 32nd day after pollination. In contrast, the levels of abscisic acid (ABA) initially decreased and then increased. Ca and Mg had a negative correlation with ABA and a positive correlation with IAA, GA, and ZR. (2) As the levels of Ca and Mg increased, correspondingly rose the activities of enzymes responsible for STC synthesis and the content of STC and its components. Principally influencing the synthesis of STC were ABA, IAA, uridine diphosphate-glucose pyrophosphorylase (UDPG), granule-bound starch synthase (GBSS), and soluble starch synthase (SSS). (3) "IAA-UDPG or GBSS-STC" was the predominant physiological regulation pathway of Ca on kernel STC, whereas "IAA-GBSS-STC" was the dominant physiological regulation pathway of Mg on kernel STC. The regulatory impact of STC by UDPG and GBSS was positive, as were the effects of IAA on UDPG and GBSS. In conclusion, the accumulation of kernel starch was significantly enhanced by Ca and Mg supplementation via the modulation of endogenous hormone levels and key enzyme activities. This research identifies a viable approach to improve the nutritional composition of maize.

13.
Sci Total Environ ; 903: 166387, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37633370

ABSTRACT

Our current understanding of the processes and mechanisms by which seasonal asymmetric warming affects seed reproduction in semiarid regions, which are essential in preserving the stability of both vegetation ecosystem structure and function, remains poorly understood. Here, we conducted a field warming experiment, including pre-growing season warming (W1), in-growing season warming (W2), and combined pre- and in-growing season warming (W3) treatments, to investigate the seed reproductive strategy of Caragana microphylla, an important sand-stabilizing shrub, from the perspective of reproductive phenology, reproductive effort, and reproductive success. Results show that the warming treatments advanced the initial stages of reproductive phenology, prolonged its duration, and decreased its synchrony (magnitude = W3 > W2 > W1). Additionally, flowering phenology was more sensitive to warming than podding phenology. The W1 treatment inclined seed reproduction towards the conservative strategy with low reproductive effort and success. The W3 treatment tended to increase seed reproductive effort and success. While the W2 treatment did not affect reproductive success, it did increase reproductive effort. Changes in reproductive phenology explained 20 % of the variation in reproductive effort and 38 % of the variation in reproductive success. However, these changes also directly hindered reproductive success (direct effect = -0.57) while indirectly promoting reproductive success (indirect effect = 0.27) by increasing reproductive efforts. Our results reveal that the seasonal asymmetry of warming altered the seed reproduction strategy of sand-stabilizing shrubs, with warmer winters and springs before the growing season decreasing seed fecundity.

14.
Front Surg ; 10: 1096483, 2023.
Article in English | MEDLINE | ID: mdl-37066013

ABSTRACT

Purpose: Adjacent segment degeneration (ASD) following lumbar fusion is technically challenging for spine surgeons. Posterolateral open fusion surgery with pedicle screw fixation is an effective way to treat symptomatic ASD with favorable clinical outcomes; however, it is associated with an increased morbidity rate. Therefore, minimally invasive spine surgery is advocated. This study was designed to compare clinical outcomes among patients with symptomatic ASD who underwent percutaneous transforaminal endoscopic discectomy (PTED) with the transforaminal approach, posterior lumbar interbody fusion (PLIF) with cortical bone trajectory screw fixation (CBT-PLIF), and PLIF with traditional trajectory screw fixation (TT-PLIF). Methods: A retrospective study was conductedon 46 patients (26 men and 20 women; average age 60.8 ± 6.78 years) with symptomatic ASD. The patients were treated with three approaches. The operation time, incision length, time to return to work, complications, and the like were compared among three groups. Intervertebral disc (IVD) space height, angular motion, and vertebral slippage were obtained to assess spine biomechanical stability following surgery. The visual analog scale (VAS) score and Oswestry disability index were evaluated at preoperation and 1-week, 3-month, and the latest follow-ups. Clinical global outcomes were also estimated using modified MacNab criteria. Results: The operation time, incision length, intraoperative blood loss, and time to return to work for the PTED group were significantly decreased compared with those for the other two groups (P < 0.05). The radiological indicators in the CBT-PLIF group and TT-PLIF group had better biomechanical stability compared with those in the PTED groups at the latest follow-up (P < 0.05). The back pain VAS score in the CBT-PLIF group was significantly decreased compared with those in the other two groups at the latest follow-up (P < 0.05). The good-to-excellent rate was 82.35% in the PTED group, 88.89% in the CBT-PLIF group, and 85.00% in the TT-PLIF group. No serious complications were encountered. Two patients experienced dysesthesia in the PTED group; screw malposition was found in one patient in the CBT-PLIF group. One case with a dural matter tear was observed in the TT-PLIF group. Conclusion: All three approaches can treat patients with symptomatic ASD efficiently and safely. Functional recovery was more accelerated in the PTED group compared with the other approaches in the short term; CBT-PLIF and TT-PLIF can provide superior biomechanical stability to the lumbosacral spine following decompression compared with PTED; however, compared with TT-PLIF, CBT-PLIF can significantly reduce back pain caused by iatrogenic muscle injury and improve functional recovery. Therefore, superior clinical outcomes were achieved in the CBT-PLIF group compared with the PTED and TT-PLIF groups in the long term.

15.
J Hazard Mater ; 424(Pt D): 127742, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34799164

ABSTRACT

Rapid and thorough removal of heavy metal ions in wastewater is critical for the urgent need of clean water. Herein, we prepared a high-performance thin film nanofibrous composite (TFNC) membrane consisting of a polyacrylonitrile (PAN)-UiO-66-(COOH)2 composite nanofibrous substrate (CPAN) and a calcium alginate (CaAlg) skin layer. Owing to abundant adsorption sites of UiO-66-(COOH)2 MOF, the optimal CPAN-2 nanofibrous substrate showed excellent adsorption capacity for lead ions. The maximum Pb2+ adsorption capacity of CPAN-2 substrate calculated by Langmuir isotherm model was 254.5 mg/g. Meanwhile, due to the relatively loose structure of CaAlg skin layer, this TFNC membrane showed high water permeate flux about 50 L m-2h-1 at 0.1 MPa, and the rejection for dyes was higher than 95%. Therefore, CaAlg/CPAN TFNC membranes were appropriate for dynamic adsorption/filtration to remove Pb2+. Compared with original CaAlg/PAN membrane, the optimal CaAlg/CPAN TFNC membrane showed much better ability to treat Pb(II)-containing wastewater and had good recyclability. Most importantly, the CaAlg/CPAN TFNC membrane could treat 7659 L m-2 wastewater containing single lead ions under WHO drinking water standard, and effectively deal with more simulated lead-containing wastewater. This work could provide a substitutable solution for effective removal of heavy metal ions and other various contaminants in wastewater.


Subject(s)
Nanofibers , Water Pollutants, Chemical , Water Purification , Adsorption , Kinetics , Lead , Metal-Organic Frameworks , Phthalic Acids , Water Pollutants, Chemical/analysis
16.
Zhongguo Gu Shang ; 35(2): 122-7, 2022 Feb 25.
Article in Zh | MEDLINE | ID: mdl-35191262

ABSTRACT

OBJECTIVE: To investigate the clinical significance and related factors of drainage tube after percutaneous endoscopic lumbar discectomy(PELD). METHODS: The clinical data of 151 patients with lumbar disc herniation who underwent PELD from January 2019 to September 2019 was retrospectively analyzed. According to whether the drainage tube was used after operation, the patients were divided into drainage tube group and non drainage tube group. The placement time and total drainage volume were recorded. The characteristics of patients, such as age, gender, body mass index, lumbar disc herniation segment, smoking history, basic diseases and whether taking anticoagulants, were analyzed by single factor and multiple factor. RESULTS: Drainage tubes were used in 32 patients after PELD. There were statistical differences in visual analogue scale(VAS) and Japanese Orthopaedic Assiciation(JOA) scores between postoperative and preoperative of that in two groups(P<0.05). There were statistical differences in VAS and JOA scores at discharge between two groups(P<0.05), while there were no statistical differences at other time points(P>0.05). Univariate analysis showed that age, basic diseases and whether taking anticoagulants were related to the use of drainage tube, but gender, body mass index, lumbar disc herniation segment and smoking history were not significantly related to the use of drainage tube. Multivariate analysis showed that elderly patients, complicated with hypertension and diabetes, taking anticoagulants were related to the use of drainage tube. CONCLUSION: The use of drainage tube after percutaneous endoscopic lumbar discectomy can improve the symptoms of lumbar and leg pain in early stage. For elderly patients with hypertension, diabetes and taking anticoagulants drugs, drainage tube can be considered after transforaminal endoscopy.


Subject(s)
Diskectomy, Percutaneous , Intervertebral Disc Displacement , Aged , Diskectomy/adverse effects , Diskectomy, Percutaneous/adverse effects , Drainage , Endoscopy , Humans , Intervertebral Disc Displacement/etiology , Intervertebral Disc Displacement/surgery , Lumbar Vertebrae/surgery , Retrospective Studies , Treatment Outcome
17.
Sci Total Environ ; 704: 135443, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31836213

ABSTRACT

Nitrogen pollution effects on plant communities are well documented, however, most field researches on nitrogen pollution have failed to account for extraneous environmental factors and the interaction among changes in multiple stressors. In this study, we show the effect of eutrophication via nitrogen deposition and altered snowfall on the productivity and traits space of an Inner Mongolian grassland where is recovered from abandoned farmland for 13 years. This multi-year factorial experiment allowed us to test the independent and interactive effects of nitrogen and snow deposition within this ecosystem. We simulated nitrogen pollution (added nitrogen) and extremely snowfall (added snow) to each plot for three years. After the third year, only nitrogen was added for the next two years to keep a continuous N-pollution condition. We measured changes in aboveground net primary production (ANPP), occupied functional traits space (OFS), and the centroid range of OFS (spatial traits variability, STV) at community level. Our results showed that the interaction between continuous nitrogen pollution and fluctuated snow have different effects on ANPP and functional diversity (indicated by OFS and STV). In nitrogen and nitrogen combined with snow treatment, its ANPP increased, while its OFS increased in 2010 but decreased in 2012 and 2014. Increases in snow did not affect ANPP and OFS, but significantly impacted spatial traits variability. Snow addition corresponded with decreasing the spatial traits variability in 2010, followed by increasing in 2012 and 2014. The results indicate N-Pollution on grassland ecosystem cannot be interpreted only by ANPP, especially when N-pollution interacted with changes of other extremely stressors such as snowfall.

18.
Exp Ther Med ; 20(4): 3853-3859, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32905161

ABSTRACT

The clinical manifestations of crowned dens syndrome (CDS) include acute neck pain and neck stiffness accompanied by restricted cervical range of motion. CDS is frequently misdiagnosed as meningitis, epidural abscess, rheumatoid arthritis, rheumatoid polymyalgia, giant cell arteritis, cervical spondylosis or metastatic bone tumor, and the incidence of CDS appears to be underestimated. The present study reported on four cases of CDS diagnosed by CT. They included one male and three females, aged from 67 to 78 years, and their major symptoms were acute neck pain and restricted cervical range of motion. Serum C-reactive protein levels and erythrocyte sedimentation rate were significantly increased in all cases. Cervical CT scan revealed calcified deposits surrounding the odontoid process in all cases. Non-steroidal anti-inflammatory drugs (NSAIDs) markedly reduced the levels of inflammatory indicators and rapidly relieved the symptoms. CT scan is considered the gold standard for CDS diagnosis, which may demonstrate calcification around the odontoid process. The patients' symptoms may be improved by treatment with NSAIDs.

19.
Ecol Evol ; 9(19): 10938-10949, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31641447

ABSTRACT

Temperature increasing and precipitation alteration are predicted to occur in arid and semiarid lands; however, the response mechanism of carbon and water exchange at community level is still unclear in semiarid sandy land. We investigated the responses of carbon and water exchanges to warming and precipitation enhancement along a sand dune restoration gradient: mobile sand dunes (MD), semifixed sand dunes (SFD), and fixed sand dunes (FD). The average net ecosystem productivity (NEP) and evapotranspiration (ET) between May and August increased by 98% and 59%, respectively, from MD to SFD, while they had no significant differences between FD and the other two habitats. Warming inhibited ecosystem NEP, ET, and water use efficiency (WUE) by 69%, 49% (p < .001), and 80%, respectively, in SFD, while it nearly had no significant effects in MD and FD. However, precipitation addition by 30% nearly had no significant effects on community NEP, ET, and WUE, except for warming treatment in FD. In general, precipitation addition of 30% may still not be enough to prevent drought stress for growth of plants, due to with low water holding capacity and high evaporation rates in sandy land. Temperature increase magnified drought stress as it increased evapotranspiration rates especially in summer. In addition, community NEP, ET, and WUE were usually influenced by interactions between habitats and temperature, as well as the interactions among habitats, temperature, and precipitation. Species differences in each habitat along the restoration gradient may alter climate sensitivity of sandy land. These results will support in understanding and the prediction of the impacts of warming and precipitation change in semiarid sandy grassland.

20.
J Med Chem ; 62(3): 1677-1683, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30562026

ABSTRACT

We identify three submicromolar inhibitors with new chemical scaffolds for cystathionine γ-lyase (CSE) by a tandem-well-based high-throughput assay. NSC4056, the most potent inhibitor with an IC50 of 0.6 µM, which is also known as aurintricarboxylic acid, selectively binds to Arg and Tyr residues of CSE active site and preferably inhibits the CSE activity in cells rather than cystathionine ß-synthase (CBS), the other H2S-generating enzyme. Moreover, NSC4056 effectively rescues hypotension in hemorrhagic shock rats.


Subject(s)
Aurintricarboxylic Acid/pharmacology , Cystathionine gamma-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Animals , Aurintricarboxylic Acid/chemistry , Aurintricarboxylic Acid/metabolism , Catalytic Domain/drug effects , Cystathionine gamma-Lyase/chemistry , Cystathionine gamma-Lyase/metabolism , Drug Discovery , Enzyme Inhibitors/metabolism , HEK293 Cells , Humans , Male , Mice , Molecular Docking Simulation , Molecular Structure , Nitroquinolines/pharmacology , Protein Binding , RAW 264.7 Cells , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL