Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38687500

ABSTRACT

RATIONALE: Spirometry reference equations that are derived from a large, nationally representative, general population are warranted in China and the impact of using pre- and post-BD spirometry reference values has yet to be assessed in Chinese populations. OBJECTIVES: To present both the pre-BD and post-BD spirometry reference values for Chinese adults using the China Pulmonary Health (CPH) study. METHODS: A reference population of 17969 healthy, non-smoking participants in the CPH study was used to calculate the pre- and post-BD reference values for the forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC. Both pre- and post-BD reference values were applied to the entire CPH population (50991 individuals) to illustrate the divergence between the use of references in determining the disease prevalence and severity grading. MEASUREMENTS AND MAIN RESULTS: The prevalence of airflow limitation was 5.36% using pre-BD reference and 8.02% using the post-BD reference. Individuals who had post-BD FEV1/FVC below post-BD but higher than pre-BD reference values were found to have significantly higher rates of self-reported respiratory symptoms, and significantly lower values in spirometry indicators than those above post-BD reference values. An additional 3.51% of participants were identified as grade II-IV COPD using the post-BD FEV1 predicted values. CONCLUSION: This study generated and applied pre- and post-bronchodilator spirometry reference values in a nationally representative Chinese adult population. Post-BD reference values may serve as an additional criterion in identifying individuals at risk for obstructive pulmonary diseases, its diagnostic and prognostic values should be further investigated.

2.
Mol Cell Biochem ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507020

ABSTRACT

Immunotherapy is regarded as a potent cancer treatment, with DC vaccines playing a crucial role. Although clinical trials have demonstrated the safety and efficacy of DC vaccines, loading antigens in vitro is challenging, and their therapeutic effects remain unpredictable. Moreover, the diverse subtypes and maturity states of DCs in the body could induce both immune responses and immune tolerance, potentially affecting the vaccine's efficacy. Hence, the optimization of DC vaccines remains imperative. Our study discovered a new therapeutic strategy by using CT26 and MC38 mouse colon cancer models, as well as LLC mouse lung cancer models. The strategy involved the synergistic activation of DCs through intertumoral administration of TLR4 agonist high-mobility group nucleosome binding protein 1 (HMGN1) and TLR7/8 agonist (R848/resiquimod), combined with intraperitoneal administration of TNFR2 immunosuppressant antibody. The experimental results indicated that the combined use of HMGN1, R848, and α-TNFR2 had no effect on LLC cold tumors. However, it was effective in eradicating CT26 and MC38 colon cancer and inducing long-term immune memory. The combination of these three drugs altered the TME and promoted an increase in anti-tumor immune components. This may provide a promising new treatment strategy for colon cancer.

3.
Int J Legal Med ; 138(3): 1139-1148, 2024 May.
Article in English | MEDLINE | ID: mdl-38047927

ABSTRACT

OBJECTIVE: The aim of this study is to identify a rapid, sensitive, and non-destructive auxiliary approach for postmortem diagnosis of SCD, addressing the challenges faced in forensic practice. METHODS: ATR-FTIR spectroscopy was employed to collect spectral features of blood samples from different cases, combined with pathological changes. Mixed datasets were analyzed using ANN, KNN, RF, and SVM algorithms. Evaluation metrics such as accuracy, precision, recall, F1-score and confusion matrix were used to select the optimal algorithm and construct the postmortem diagnosis model for SCD. RESULTS: A total of 77 cases were collected, including 43 cases in the SCD group and 34 cases in the non-SCD group. A total of 693 spectrogram were obtained. Compared to other algorithms, the SVM algorithm demonstrated the highest accuracy, reaching 95.83% based on spectral biomarkers. Furthermore, by combing spectral biomarkers with age, gender, and cardiac histopathological changes, the accuracy of the SVM model could get 100%. CONCLUSION: Integrating artificial intelligence technology, pathology, and physical chemistry analysis of blood components can serve as an effective auxiliary method for postmortem diagnosis of SCD.


Subject(s)
Algorithms , Artificial Intelligence , Humans , Spectroscopy, Fourier Transform Infrared/methods , Machine Learning , Biomarkers , Death, Sudden, Cardiac , Ataxia Telangiectasia Mutated Proteins
4.
J Periodontal Res ; 59(1): 140-150, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37885312

ABSTRACT

BACKGROUND AND OBJECTIVES: Periodontitis is a chronic inflammatory disease linked to pyroptosis, an inflammatory cell death process. Macrophages are essential for maintaining microenvironment homeostasis, which is crucial for periodontal health. This study explores the mechanisms underlying the relationship between macrophage pyroptosis and periodontitis. METHODS: Expression of the pyroptosis marker gasdermin E (GSDME) and the macrophage surface marker CD68 was examined by immunofluorescence double staining in healthy and periodontitis gingival tissues. In an in vitro pyroptosis model, RAW264.7 cells were irritated using Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) after treatment with either a nuclear factor kappa-B (NF-κB) agonist or inhibitor. The mRNA and protein levels of NF-κB, caspase-3, GSDME, and interleukin-1ß (IL-1ß) were evaluated through qRT-PCR, western blotting, and ELISA techniques. RESULTS: GSDME and CD68 were heavily elevated in inflamed gingival tissues compared to healthy tissues and co-localized in the same region. Furthermore, exposure to P. gingivalis-LPS resulted in a significant upregulation of NF-κB, caspase-3, GSDME, and IL-1ß at both the mRNA and protein levels in RAW264.7 cells. NF-κB agonist or inhibitor pretreatment enhanced or inhibited these effects. CONCLUSIONS: GSDME-mediated macrophage pyroptosis is implicated in periodontitis. Based on in vitro experiments, P. gingivalis-LPS causes pyroptosis in RAW264.7 cells through the caspase-3/GSDME pathway. Furthermore, NF-κB regulates this pyroptotic pathway.


Subject(s)
NF-kappa B , Periodontitis , Humans , NF-kappa B/metabolism , Gasdermins , Pyroptosis , Caspase 3/metabolism , Lipopolysaccharides/pharmacology , Periodontitis/metabolism , Macrophages/metabolism , Interleukin-1beta/metabolism , RNA, Messenger/metabolism
5.
Genomics ; 115(3): 110634, 2023 05.
Article in English | MEDLINE | ID: mdl-37121446

ABSTRACT

CRKL (CRK Like Proto-Oncogene) belongs to the Crk family and is a 39-kDa adapter protein that encodes SH2 and SH3 (src homologs) domains. To identify its oncogenic role in malignant melanoma, we investigated the association between CRKL and mutation, prognosis, tumor mutation burden, immune cell infiltration of melanoma, and explored the associations between CRKL and immunotherapy response. Our results showed that abnormal CRKL expression is associated with poor prognosis in melanoma and is significantly correlated with immune-activated pathways and processes, immune cell infiltrations, and expression of immunoregulators. Importantly, we found that CRKL expression is a predictive biomarker for anti-PD1 therapy response in melanoma patients. Furthermore, inhibiting CRKL expression in melanoma cell lines suppressed their proliferation and metastasis, as well as activated the pyroptosis-related pathway. Our study provides potential mechanisms of melanoma pathogenesis, which may suggest new avenues for targeted therapy in this disease.


Subject(s)
Melanoma , Nuclear Proteins , Humans , Biomarkers , Immunotherapy , Nuclear Proteins/genetics , Prognosis , Proto-Oncogene Proteins c-crk/metabolism
6.
Biochem Biophys Res Commun ; 653: 106-114, 2023 04 23.
Article in English | MEDLINE | ID: mdl-36868074

ABSTRACT

Immunotherapy is the new approach for cancer treatment that can be achieved through several strategies, one of which is dendritic cells (DCs) vaccine therapy. However, traditional DC vaccination lacks accurate targeting, so DC vaccine preparation needs to be optimized. Immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs) in the tumor microenvironment can promote tumor immune escape. Therefore, targeting Tregs has become a strategy for tumor immunotherapy. In this study, we found that HMGN1 (N1, a dendritic cell-activating TLR4 agonist) and 3M-052 (a newly synthesized TLR7/8 agonist) synergistically stimulate DCs maturation and increase the production of proinflammatory cytokines TNFα and IL-12. In a colon cancer mice model, vaccination with N1 and 3M-052 stimulated and tumor antigen-loaded DCs combined with anti-TNFR2 inhibited tumor growth in mice, and the antitumor effect was mainly achieved through stimulation of cytotoxic CD8 T cell activation and depletion of Tregs. Overall, the combinating of DC activation by N1 and 3M-052 with inhibition of Tregs by antagonizing TNFR2 as a therapeutic strategy may represent a more effective strategy for cancer treatment.


Subject(s)
Cancer Vaccines , Colonic Neoplasms , HMGN1 Protein , Animals , Mice , Colonic Neoplasms/pathology , Cytokines , Dendritic Cells , HMGN1 Protein/pharmacology , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Transcription Factors/pharmacology , Tumor Microenvironment
7.
BMC Med ; 21(1): 153, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076872

ABSTRACT

BACKGROUND: A large proportion of pulmonary embolism (PE) heritability remains unexplained, particularly among the East Asian (EAS) population. Our study aims to expand the genetic architecture of PE and reveal more genetic determinants in Han Chinese. METHODS: We conducted the first genome-wide association study (GWAS) of PE in Han Chinese, then performed the GWAS meta-analysis based on the discovery and replication stages. To validate the effect of the risk allele, qPCR and Western blotting experiments were used to investigate possible changes in gene expression. Mendelian randomization (MR) analysis was employed to implicate pathogenic mechanisms, and a polygenic risk score (PRS) for PE risk prediction was generated. RESULTS: After meta-analysis of the discovery dataset (622 cases, 8853 controls) and replication dataset (646 cases, 8810 controls), GWAS identified 3 independent loci associated with PE, including the reported loci FGG rs2066865 (p-value = 3.81 × 10-14), ABO rs582094 (p-value = 1.16 × 10-10) and newly reported locus FABP2 rs1799883 (p-value = 7.59 × 10-17). Previously reported 10 variants were successfully replicated in our cohort. Functional experiments confirmed that FABP2-A163G(rs1799883) promoted the transcription and protein expression of FABP2. Meanwhile, MR analysis revealed that high LDL-C and TC levels were associated with an increased risk of PE. Individuals with the top 10% of PRS had over a fivefold increased risk for PE compared to the general population. CONCLUSIONS: We identified FABP2, related to the transport of long-chain fatty acids, contributing to the risk of PE and provided more evidence for the essential role of metabolic pathways in PE development.


Subject(s)
East Asian People , Genetic Predisposition to Disease , Genome-Wide Association Study , Pulmonary Embolism , Humans , China/epidemiology , East Asian People/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Genotype , Polymorphism, Single Nucleotide/genetics , Pulmonary Embolism/epidemiology , Pulmonary Embolism/ethnology , Pulmonary Embolism/genetics , Risk Factors
8.
Cancer Cell Int ; 23(1): 68, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37062825

ABSTRACT

Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme in gluconeogenesis. PCK1 is considered an anti-oncogene in several human cancers. In this study, we aimed to determine the functions of PCK1 in colorectal cancer (CRC). PCK1 expression in CRC tissues was tested by western blot and immunohistochemistry analyses and associations of PCK1 level with clinicopathological characteristics and disease survival evaluated. Further, we studied the effect of PCK1 on CRC cell proliferation and the underlying mechanisms. Our results show that PCK1 is expressed at significantly lower levels in CRC than in control tissues. High PCK1 expression was correlated with smaller tumor diameter and less bowel wall invasion (T stage). Overexpression and knockdown experiments demonstrated that PCK1 inhibits CRC cell growth both in vitro and in vivo. Mechanistically, PCK1 antagonizes CRC growth via inactivating UBAP2L phosphorylation at serine 454 and enhancing autophagy. Overall, our findings reveal a novel molecular mechanism involving PCK1 and autophagy, and highlight PCK1 as a promising candidate therapeutic target in CRC.

9.
Int J Legal Med ; 137(2): 329-344, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36538108

ABSTRACT

Sarcophaga peregrina (Robineau-Desvoidy, 1830) (Diptera: Sarcophagidae) is a forensically important flesh fly with potential value for estimating the minimum postmortem interval (PMImin). Here, the developmental patterns of S. peregrina were investigated at 5 constant temperatures (15-35 °C). Morphological changes at different developmental stages of the pupa were observed at 4 constant temperatures (15-30 °C) by removing the puparium and staining the pupa with hematoxylin and eosin. Furthermore, differentially expressed genes (DEGs) were analyzed at 25 °C in the intrapuparial period to estimate the age of S. peregrina during the intrapuparial stage. S. peregrina completed development from larviposition to adult eclosion at 15 °C, 20 °C, 25 °C, and 30 °C; the developmental durations were 1090.3 ± 30.6 h, 566.6 ± 21.9 h, 404.6 ± 13.01 h, and 280.3 ± 4.5 h, respectively, while the development could not be completed at 35 °C. The intrapuparial period of S. peregrina was divided into 12 sub-stages on the basis of the overall external morphological changes; 6 sub-stages on the basis of individual morphological structures such as the compound eyes, antennae, thorax, legs, wings, and abdomen; and 10 sub-stages on the basis of internal morphological changes detected using histological analysis. The period of each sub-stage or structure that appeared was determined. Moreover, we found that 6 genes (NDUFS2, CPAMD8, NDUFV2, Hsp27, Hsp23, and TPP) with differential expression can be used for the precise age estimation of S. peregrina during the intrapuparial period. This study provided basic developmental data for the use of S. peregrina in PMImin estimation, and we successfully estimated PMImin in a real forensic case by using a multimethod combination.


Subject(s)
Diptera , Sarcophagidae , Animals , Sarcophagidae/genetics , Autopsy , Pupa , Forensic Medicine , Temperature , Larva
10.
Am J Respir Crit Care Med ; 205(4): 450-458, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34813411

ABSTRACT

Rationale: It remains unknown whether long-term ozone exposure can impair lung function. Objectives: To investigate the associations between long-term ozone exposure and adult lung function in China. Methods: Lung function results and diagnosis of small airway dysfunction (SAD) were collected from a cross-sectional study, the China Pulmonary Health Study (N = 50,991). We used multivariable linear and logistic regression models to examine the associations of long-term ozone exposure with lung function parameters and SAD, respectively, adjusting for demographic characteristics, individual risk factors, and longitudinal trends. We then performed a stratification analysis by chronic obstructive pulmonary disease (COPD). Measurements and Main Results: We observed that each 1 SD (4.9 ppb) increase in warm-season ozone concentrations was associated with a 14.2 ml/s (95% confidence interval [CI], 8.8-19.6 ml/s] decrease in forced expiratory flow at the 75th percentile of vital capacity and a 29.5 ml/s (95% CI, 19.6-39.5 ml/s) decrease in mean forced expiratory flow between the 25th and 75th percentile of vital capacity. The odds ratio of SAD was 1.09 (95% CI, 1.06-1.11) for a 1 SD increase in warm-season ozone concentrations. Meanwhile, we observed a significant association with decreased FEV1/FVC but not with FEV1 or FVC. The association estimates were greater in the COPD group than in the non-COPD group. Conclusions: We found independent associations of long-term ozone exposure with impaired small airway function and higher SAD risks, while the associations with airflow obstruction were weak. Patients with COPD appear to be more vulnerable.


Subject(s)
Air Pollutants/toxicity , Environmental Exposure/adverse effects , Lung/physiopathology , Ozone/toxicity , Adult , Aged , China , Cross-Sectional Studies , Female , Health Surveys , Humans , Linear Models , Logistic Models , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Respiratory Function Tests
11.
Metab Eng ; 73: 247-255, 2022 09.
Article in English | MEDLINE | ID: mdl-35987433

ABSTRACT

Ferulic acid (FA) is a natural methylated phenolic acid which represents various bioactivities. Bioproduction of FA suffers from insufficient methyl donor supplement and inefficient hydroxylation. To overcome these hurdles, we first activate the S-adenosylmethionine (SAM) cycle in E. coli by using endogenous genes to supply sufficient methyl donor. Then, a small protein Fre is introduced into the pathway to efficiently regenerate FADH2 for the hydroxylation. Remarkably, regeneration of these two cofactors dramatically promotes FA synthesis. Together with decreasing the byproducts formation and boosting precursor supply, the titer of FA reaches 5.09 g/L under fed-batch conditions, indicating a 20-fold improvement compared with the original producing E. coli strain. This work not only establishes a promising microbial platform for industrial level production of FA and its derivatives, but also highlights a convenient and effective strategy to enhance the biosynthesis of chemicals requiring methylation and FADH2-dependent hydroxylation.


Subject(s)
Escherichia coli , Metabolic Engineering , Coumaric Acids , Escherichia coli/genetics , Escherichia coli/metabolism , Hydroxylation , Methylation , Regeneration
12.
Environ Sci Technol ; 56(18): 13245-13253, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36040863

ABSTRACT

Wastewater-based surveillance of the COVID-19 pandemic holds great promise; however, a point-of-use detection method for SARS-CoV-2 in wastewater is lacking. Here, a portable paper device based on CRISPR/Cas12a and reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with excellent sensitivity and specificity was developed for SARS-CoV-2 detection in wastewater. Three primer sets of RT-LAMP and guide RNAs (gRNAs) that could lead Cas12a to recognize target genes via base pairing were used to perform the high-fidelity RT-LAMP to detect the N, E, and S genes of SARS-CoV-2. Due to the trans-cleavage activity of CRISPR/Cas12a after high-fidelity amplicon recognition, carboxyfluorescein-ssDNA-Black Hole Quencher-1 and carboxyfluorescein-ssDNA-biotin probes were adopted to realize different visualization pathways via a fluorescence or lateral flow analysis, respectively. The reactions were integrated into a paper device for simultaneously detecting the N, E, and S genes with limits of detection (LODs) of 25, 310, and 10 copies/mL, respectively. The device achieved a semiquantitative analysis from 0 to 310 copies/mL due to the different LODs of the three genes. Blind experiments demonstrated that the device was suitable for wastewater analysis with 97.7% sensitivity and 82% semiquantitative accuracy. This is the first semiquantitative endpoint detection of SARS-CoV-2 in wastewater via different LODs, demonstrating a promising point-of-use method for wastewater-based surveillance.


Subject(s)
SARS-CoV-2 , Wastewater , Biotin/genetics , CRISPR-Cas Systems , Fluoresceins , Nucleic Acid Amplification Techniques , Pandemics , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Wastewater/virology
13.
Environ Res ; 209: 112877, 2022 06.
Article in English | MEDLINE | ID: mdl-35131324

ABSTRACT

BACKGROUND: Studies on the association of greenness with respiratory health are scarce in developing countries, and previous studies in China have focused on only one or two indicators of lung function. OBJECTIVE: The study aims to evaluate the associations of residential greenness with full-spectrum lung function indicators and prevalence of chronic obstructive pulmonary disease (COPD). METHODS: This nationwide cross-sectional survey included 50,991 participants from the China Pulmonary Health study. Lung function indicators included four categories: indicators of obstructive ventilatory dysfunction (FEV1, FVC and FEV1/FVC); an indicator of large-airway dysfunction (PEF); indicators of small-airway dysfunction (FEF25-75% and FEV3/FEV6); and other indicators. Residential greenness was assessed by the Normalized Difference Vegetation Index (NDVI). Multivariable linear regression models and logistic regression models were used to analyze associations of greenness with lung function and COPD prevalence. RESULTS: Within the 500 m buffer, an interquartile range (IQR) increase in NDVI was associated with higher FEV1 (24.76 mL), FVC (16.52 mL), FEV1/FVC (0.38), FEF50% (56.34 mL/s), FEF75% (33.43 mL/s), FEF25-75% (60.73 mL/s), FEV3 (18.59 mL), and FEV6 (21.85 mL). However, NDVI was associated with lower PEF. In addition, NDVI was significantly associated with 10% lower odds of COPD. The stratified analyses found that the associations were only significant in middle-young people, females, and nonsmokers. The associations were influenced by geographic regions. CONCLUSIONS: Residential greenness was associated with better lung function and lower odds of COPD in China. These findings provide a scientific basis for healthy community planning.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Adolescent , China/epidemiology , Cross-Sectional Studies , Female , Humans , Lung , Pulmonary Disease, Chronic Obstructive/epidemiology , Respiratory Function Tests
14.
COPD ; 19(1): 255-261, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35604834

ABSTRACT

Our previous study suggested that hypomethylation of perforin promoter of CD4 + T cells might be involved in the pathogenesis of autoimmune emphysema of rats. Whether transfer of this kind of cells hypomethylated in vitro into naive immunocompetent rats also results in emphysema is unknown yet. To test the hypothesis above, thirty Sprague Dawley (SD) rats were randomly divided into three groups: a model group (n = 10), a normal control group (n = 10) and a sham operation group (n = 10). In the model group, spleen-derived CD4 + T cells of normal rats were treated with 5-azacytidine (5-Aza), complete Freund's adjuvant and Phosphate Buffered Saline (PBS), then transferred into naive immunocompetent rats. The normal control group was injected with CD4 + T lymphocytes from spleens of normal rats and the same amount of adjuvant and PBS as above. In sham operation group, normal rats were injected intraperitoneally with complete Freund's adjuvant and PBS. Histopathological evaluations (mean linear Intercept (MLI) and mean alveolar numbers (MAN)), anti-endothelial cell antibodies (AECA) in serum and bronchoalveolar lavage fluid (BALF), lung vascular endothelial growth factor (VEGF)), the apoptotic index (AI) of alveolar septal cells and the methylation levels of perforin promoter of CD4 + T cells were investigated. The levels of the methylation above and MAN were lower in the model group than in the control and the sham operation group, while the AECA in serum and BALF, VEGF, MLI and the AI were greater (all p < 0.05). The methylation levels of perforin promoter were positively correlated with the MAN (r = 0.747, p < 0.05) and negatively correlated with AI, AECA, MLI, and VEGF (r was -0.789, -0.746, -0.743, -0.660, respectively, all p < 0.05). This study suggests that transfer of invitro CD4 + T cells with hypomethylation of perforin promoter into rats causes autoimmune emphysema, possibly by increasing expression of VEGF and promoting alveolar septal cell apoptosis.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Freund's Adjuvant/metabolism , Humans , Perforin/genetics , Perforin/metabolism , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/genetics , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/genetics
15.
COPD ; 19(1): 118-124, 2022.
Article in English | MEDLINE | ID: mdl-35385369

ABSTRACT

OBJECTIVE: We aimed to establish an easy-to-use screening questionnaire with risk factors and suspected symptoms of COPD for primary health care settings. METHODS: Based on a nationwide epidemiological study of pulmonary health among adults in mainland China (China Pulmonary Health, CPH study) between 2012 and 2015, participants ≥40 years who completed the questionnaire and spirometry tests were recruited and randomly divided into development set and validation set by the ratio of 2:1. Parameters including sex, age, BMI, residence, education, smoking status, smoking pack-years, biomass exposure, parental history of respiratory diseases and daily respiratory symptoms were initially selected for the development of scoring system. Receiver operating characteristic (ROC) curve, area under curve (AUC), positive and negative predictive values were calculated in development set and validation set. RESULTS: After random split by 2:1 ratio, 22443 individuals were assigned to development set and 11221 to validation set. Ten variables were significantly associated with COPD independently in development set after a stepwise selection by multivariable logistic model and used to develop scoring system. The scoring system yielded good discrimination, as measured by AUC of 0.7737, and in the validation set, the AUC was 0.7711. When applying a cutoff point of ≥16, the sensitivity in development set was 0.69 (0.67 - 0.71); specificity 0.72 (0.71 - 0.73), PPV 0.25 (0.24 - 0.26) and NPV 0.94 (0.94 - 0.95). CONCLUSION: We developed and validated a comprehensive screening questionnaire, COPD-CPHS, with good discrimination. The score system still needs to be validated by large cohort in the future.Supplemental data for this article is available online at https://doi.org/10.1080/15412555.2022.2042504 .


Subject(s)
Pulmonary Disease, Chronic Obstructive , Adult , Area Under Curve , China/epidemiology , Epidemiologic Studies , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , ROC Curve , Spirometry , Surveys and Questionnaires
16.
Forensic Sci Med Pathol ; 18(3): 288-298, 2022 09.
Article in English | MEDLINE | ID: mdl-35201602

ABSTRACT

In forensic pathology, traumatic brain injury (TBI) is a frequently encountered cause of death. Unfortunately, the statistic autopsy data, risk investigation about injury patterns, and circumstances of TBI are still sparse. Estimates of survival time post-TBI and postmortem diagnosis of TBI are especially important implications in forensic medicine. Neurogranin (Ng) and myelin basic protein (MBP) represent potential biomarkers of TBI. The present study analyzed retrospectively the forensic autopsy records of TBI cases at a university center of medico-legal investigation from 2008 to 2020. Immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to investigate the expression changes of Ng and MBP in the cortical brain injury adjacent tissues and serum, respectively, from cases of TBI at autopsy with different survival times post-TBI. The results show that the major mechanism of death of TBI is assault, and accident was the major manner of death. Ng and MBP are mainly expressed in the cortical nerve cells and the myelin sheath, respectively. The serum levels of Ng and MBP in each TBI group were higher compared with those in the controls. The brain cortical levels of Ng and MBP decreased at first and then steadily increased with extended survival time post-TBI. The immunopositive ratios and serum concentration of Ng and MBP have shown significant differences among control group and all TBI group (p < 0.001). Collectively, the immunohistochemical analyses of Ng and MBP in human brain tissues may be useful to determine the survival time after TBI, and Ng and MBP level in the human blood specimens could be considered as a postmortem diagnostic tools of TBI in forensic practice.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Autopsy , Myelin Basic Protein/metabolism , Neurogranin , Retrospective Studies , Biomarkers
17.
Lab Invest ; 101(10): 1371-1381, 2021 10.
Article in English | MEDLINE | ID: mdl-34239033

ABSTRACT

Sepsis is an acute inflammatory reaction and a cause of acute respiratory distress syndrome (ARDS). In the present study, we explored the roles and underlying mechanism of the lncRNA Nuclear enriched abundant transcript 1 (NEAT1) in ARDS. The expression levels of genes, proteins and pro-inflammatory cytokines in patients with ARDS, LPS-stimulated cells and septic mouse models were quantified using qPCR, western blotting and ELISA assays, respectively. The molecular targeting relationship was validated by conducting a dual-luciferase reporter assay. Cell proliferation was assessed using the Cell Counting Kit-8 (CCK-8) assay. The cell cycle phase was determined by flow cytometry assay. The expression levels of NEAT1 and pro-inflammatory cytokines were higher in patients with ARDS and septic models than in controls. Knockdown of NEAT1 significantly increased cell proliferation and cycle progression and prolonged mouse survival in vitro and in vivo. Mechanistically, miR-27a was identified as a downstream target of NEAT1 and directly inhibited PTEN expression. Further rescue experiments revealed that inhibition of miR-27a impeded the promoting effects of NEAT1 silence on cell proliferation and cycle progression, whereas inhibition of PTEN markedly weakened the inhibitory effects of NEAT1 overexpression on cell proliferation and cycle progression. Altogether, our study revealed that NEAT1 plays a promoting role in the progression of ARDS via the NEAT1/miR-27a/PTEN regulatory network, providing new insight into the pathologic mechanism behind ARDS.


Subject(s)
MicroRNAs/metabolism , PTEN Phosphohydrolase/metabolism , RNA, Long Noncoding , Respiratory Distress Syndrome/metabolism , Sepsis/metabolism , Adult , Animals , Cell Line , Disease Models, Animal , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , PTEN Phosphohydrolase/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction/genetics
18.
BMC Microbiol ; 21(1): 351, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34922455

ABSTRACT

BACKGROUND: The 2019 novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) is a current worldwide threat for which the immunological features after infection need to be investigated. The aim of this study was to establish a highly sensitive and quantitative detection method for SARS-CoV-2 IgG antibody and to compare the antibody reaction difference in patients with different disease severity. RESULTS: Recombinant SARS-CoV-2 nucleocapsid protein was expressed in Escherichia coli and purified to establish an indirect IgG ELISA detection system. The sensitivity of the ELISA was 100% with a specificity of 96.8% and a 98.3% concordance when compared to a colloidal gold kit, in addition, the sensitivity of the ELISA was 100% with a specificity of 98.9% and a 99.4% concordance when compared to a SARS-CoV-2 spike S1 protein IgG antibody ELISA kit. The increased sensitivity resulted in a higher rate of IgG antibody detection for COVID-19 patients. Moreover, the quantitative detection can be conducted with a much higher serum dilution (1:400 vs 1:10, 1:400 vs 1:100). The antibody titers of 88 patients with differing COVID-19 severity at their early convalescence ranged from 800 to 102,400, and the geometric mean titer for severe and critical cases, moderate cases, asymptomatic and mild cases was 51,203, 20,912, and 9590 respectively. CONCLUSION: The development of a highly sensitive ELISA system for the detection of SARS-CoV-2 IgG antibodies is described herein. This system enabled a quantitative study of rSARS-CoV-2-N IgG antibody titers in COVID-19 patients, the occurrence of higher IgG antibody titers were found to be correlated with more severe cases.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin G/blood , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Child , Child, Preschool , China , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Male , Middle Aged , Phosphoproteins/immunology , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
19.
Microb Pathog ; 153: 104788, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33571624

ABSTRACT

Acinetobacter baumannii (A. baumannii), one of the major pathogens that causes severe nosocomial infections, is characterised by a high prevalence of drug resistance. It has been reported that A. baumannii triggers the NOD-like receptor 3 (NLRP3) inflammasome, but the role of its virulence-related outer membrane protein A (ompA) remains unclear. Therefore, this study aimed to explore the effects of ompA on the NLRP3 inflammasome and its underlying molecular mechanisms. Results showed that ompA enhanced inflammatory damage, which was reduced as a result of knockout of the ompA gene. Additionally, ompA-stimulated expression of NLRP3 inflammasome was significantly blocked by silencing caspase-1, but activation of NLRP3 inflammasome was not altered after silencing ASC; this indicated that ompA was dependent on the caspase-1 pathway to activate the inflammatory response. Simultaneously, the wild-type (WT) strains triggered NLRP3 inflammasome after inhibition of caspase-1 degradation by proteasome inhibitor MG-132, aggravating tissue damage. These findings indicated that ompA may be dependent on the caspase-1 pathway to enhance inflammation and exacerbate tissue damage. Taken together, these results confirmed a novel capsase-1-modulated mechanism underpinning ompA activity, which further reveals the NLRP3 inflammasome pathway as a potential immunomodulatory target against A. baumannii infections.


Subject(s)
Acinetobacter baumannii , Pneumonia , Bacterial Outer Membrane Proteins , Caspase 1 , Humans , Inflammasomes , Interleukin-1beta/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Proteins
20.
BMC Cancer ; 21(1): 426, 2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33865364

ABSTRACT

BACKGROUND: In the era of immunotherapy, it is still unclear which is the best first-line therapy for patients with oncogenic driver negative advanced non-squamous non-small cell lung cancer (NS-NSCLC) who cannot tolerate immunotherapy, or subsequent therapy for patients with oncogenic driver positive NS-NSCLC whose disease progressed on prior targeted therapy. To assess the optimal choice of first-line and maintenance treatment regimens, we performed a meta-analysis of prospective randomized controlled clinical trials (RCTs) of patients with NS-NSCLC on bevacizumab combined with chemotherapy. METHODS: All eligible RCTs comparing pemetrexed-platinum with or without bevacizumab (PP ± B) and paclitaxel-carboplatin with bevacizumab (PC + B) as a first-line therapy, or comparing bevacizumab plus pemetrexed (Pem + B) and bevacizumab alone (B) as a maintenance treatment for advanced NS-NSCLC, were included after systematically searching web databases and meeting abstracts. The main research endpoints were comparisons of overall survival (OS) and progression-free survival (PFS). The other endpoints were objective response rate (ORR), 1-year PFS rate (PFSR1y) and major grade 3/4 treatment-related adverse events. RESULTS: Data of 3139 patients from six RCTs were incorporated into analyses. Three RCTs were included in an analysis that compared PP ± B and PC + B as a first-line therapy for advanced NS-NSCLC. Patients treated with first-line PP ± B showed similar OS and ORR, but significantly improved PFS (hazard ratio [HR], 0.88) and PFSR1y (risk ratio [RR], 0.83), as compared to patients treated with PC + B (all P < 0.05). PP ± B resulted in higher rates of grade 3/4 anemia and thrombocytopenia, but lower rates of neutropenia, febrile neutropenia, and sensory neuropathy than PC + B (all P < 0.001). The other three RCTs were included in an analysis that compared Pem + B and B as a maintenance treatment. Compared with B, Pem + B maintenance treatment resulted in significant improvements in OS (HR, 0.88), PFS (HR, 0.64), and PFSR1y (RR, 0.70), but higher rates of anemia, thrombocytopenia, and neutropenia (all P < 0.001). CONCLUSION: Although the first-line PP + B regimen had longer PFS and PFSR1y than the PC + B regimen, no OS difference was observed. Addition of pemetrexed to bevacizumab as maintenance therapy significantly improved OS compared with bevacizumab maintenance alone, but led to more toxicity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/administration & dosage , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/mortality , Female , Humans , Induction Chemotherapy , Lung Neoplasms/diagnosis , Lung Neoplasms/mortality , Maintenance Chemotherapy , Male , Neoplasm Metastasis , Neoplasm Staging , Paclitaxel/administration & dosage , Pemetrexed/administration & dosage , Publication Bias , Randomized Controlled Trials as Topic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL