Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 555
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(36): e2206708119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36044551

ABSTRACT

The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca2+ from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria-SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria-SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload-induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9-mediated knockdown of mitofusin-2 (Mfn2), the mitochondria-SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria-SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria-SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria-SR microdomains resulted in abnormal mitochondrial Ca2+ handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria-SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.


Subject(s)
Connectome , Heart Failure , Mitochondria, Heart , Sarcoplasmic Reticulum , Sick Sinus Syndrome , Sinoatrial Node , Animals , Heart Failure/pathology , Heart Failure/physiopathology , Mice , Mitochondria, Heart/ultrastructure , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/pathology , Sick Sinus Syndrome/pathology , Sick Sinus Syndrome/physiopathology , Sinoatrial Node/physiopathology
2.
Nano Lett ; 24(33): 10337-10347, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39120122

ABSTRACT

Breast cancer (BC) is the most common tumor worldwide and requires crucial molecular typing for treatment and prognosis assessment. Currently, approaches like pathological staining, immunohistochemistry (IHC), and immunofluorescence (IF) face limitations due to the low signal-to-background ratio (SBR) and high tumor heterogeneity, resulting in a high misdiagnosis rate. Fluorescent assay in the second near-infrared region (NIR-II, 1000-1700 nm) exhibits ultrahigh SBR owing to diminished scattering and tissue autofluorescence. Here, we present a NIR-II strategy for accurate BC molecular typing and three-dimensional (3D) visualization based on the atomically precise fluorescent Au24Pr1 clusters. Single-atom Pr doping results in 3.9-fold fluorescence enhancement and long-term photostability. The Au24Pr1 clusters possess high fluorescence centered at ∼1100 nm and the SBR on pathological section diagnosis was 4 times higher than that of NIR-I imaging. This enables high spatial resolution 3D visualization of biopsy specimens, which can surmount tissue heterogeneity for clinical diagnosis of BC.


Subject(s)
Breast Neoplasms , Imaging, Three-Dimensional , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Imaging, Three-Dimensional/methods , Optical Imaging/methods , Gold/chemistry , Fluorescent Dyes/chemistry
3.
Nano Lett ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619329

ABSTRACT

Excessive accumulation of reduced nicotinamide adenine dinucleotide (NADH) within biological organisms is closely associated with many diseases. It remains a challenge to efficiently convert superfluous and detrimental NADH to NAD+. NADH oxidase (NOX) is a crucial oxidoreductase that catalyzes the oxidation of NADH to NAD+. Herein, M1M2 (Mi=V/Mn/Fe/Co/Cu/Mo/Rh/Ru/Pd, i = 1 or 2) mated-atom nanozymes (MANs) are designed by mimicking natural enzymes with polymetallic active centers. Excitingly, RhCo MAN possesses excellent and sustainable NOX-like activity, with Km-NADH (16.11 µM) being lower than that of NOX-mimics reported so far. Thus, RhCo MAN can significantly promote the regeneration of NAD+ and regulate macrophage polarization toward the M2 phenotype through down-regulation of TLR4 expression, which may help to recover skin regeneration. However, RhRu MAN with peroxidase-like activity and RhMn MAN with superoxide dismutase-like activity exhibit little modulating effects on eczema. This work provides a new strategy to inhibit skin inflammation and promote skin regeneration.

4.
J Am Chem Soc ; 146(31): 21677-21688, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39042557

ABSTRACT

Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Crown Ethers/chemistry , Calixarenes/chemistry , Palladium/chemistry , Zinc/chemistry , Fullerenes/chemistry , Molecular Structure
5.
J Am Chem Soc ; 146(29): 20414-20424, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38982611

ABSTRACT

The structural dynamics of artificial assemblies, in aspects such as molecular recognition and structural transformation, provide us with a blueprint to achieve bioinspired applications. Here, we describe the assembly of redox-switchable chiral metal-organic cages Λ8/Δ8-[Pd6(CoIIL3)8]28+ and Λ8/Δ8-[Pd6(CoIIIL3)8]36+. These isomeric cages demonstrate an on-off chirality logic gate controlled by their chemical and stereostructural dynamics tunable through redox transitions between the labile CoII-state and static CoIII-state with a distinct Cotton effect. The transition between different states is enabled by a reversible redox process and chiral recognition originating in the tris-chelate Co-centers. All cages in two states are thoroughly characterized by NMR, ESI-MS, CV, CD, and X-ray crystallographic analysis, which clarify their redox-switching behaviors upon chemical reduction/oxidation. The stereochemical lability of the CoII-center endows the Λ8/Δ8-CoII-cages with efficient chiral-induction by enantiomeric guests, leading to enantiomeric isomerization to switch between Λ8/Δ8-CoII-cages, which can be stabilized by oxidation to their chemically inert forms of Λ8/Δ8-CoIII-cages. Kinetic studies reveal that the isomerization rate of the Δ8-CoIII-cage is at least an order of magnitude slower than that of the Δ8-CoII-cage even at an elevated temperature, while its activation energy is 16 kcal mol-1 higher than that of the CoII-cage.

6.
Mol Med ; 30(1): 119, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129004

ABSTRACT

BACKGROUND: AGTPBP1 is a cytosolic carboxypeptidase that cleaves poly-glutamic acids from the C terminus or side chains of α/ß tubulins. Although its dysregulated expression has been linked to the development of non-small cell lung cancer, the specific roles and mechanisms of AGTPBP1 in pancreatic cancer (PC) have yet to be fully understood. In this study, we examined the role of AGTPBP1 on PC in vitro and in vivo. METHODS: Immunohistochemistry was used to examine the expression of AGTPBP1 in PC and non-cancerous tissues. Additionally, we assessed the malignant behaviors of PC cells following siRNA-mediated AGTPBP1 knockdown both in vitro and in vivo. RNA sequencing and bioinformatics analysis were performed to identify the differentially expressed genes regulated by AGTPBP1. RESULTS: We determined that AGTPBP1 was overexpressed in PC tissues and the higher expression of AGTPBP1 was closely related to the location of tumors. AGTPBP1 inhibition can significantly decrease cell progression in vivo and in vitro. Moreover, the knockdown of AGTPBP1 inhibited the expression of ERK1/2, P-ERK1/2, MYLK, and TUBB4B proteins via the ERK signaling pathway. CONCLUSION: Our research indicates that AGTPBP1 may be a putative therapeutic target for PC.


Subject(s)
Carboxypeptidases , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System , Microtubules , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carboxypeptidases/metabolism , Carboxypeptidases/genetics , Cell Line, Tumor , Microtubules/metabolism , Animals , Mice , Male , Female , Cell Proliferation , Disease Progression , Middle Aged , Cell Movement/genetics
7.
Bioconjug Chem ; 35(4): 540-550, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38557019

ABSTRACT

Ultrasmall Au25(MPA)18 clusters show great potential in biocatalysts and bioimaging due to their well-defined, tunable structure and properties. Hence, in vivo pharmacokinetics and toxicity of Au nanoclusters (Au NCs) are very important for clinical translation, especially at high dosages. Herein, the in vivo hematological, tissue, and neurological effects following exposure to Au NCs (300 and 500 mg kg-1) were investigated, in which the concentration is 10 times higher than in therapeutic use. The biochemical and hematological parameters of the injected Au NCs were within normal limits, even at the ultrahigh level of 500 mg kg-1. Meanwhile, no histopathological changes were observed in the Au NC group, and immunofluorescence staining showed no obvious lesions in the major organs. Furthermore, real-time near-infrared-II (NIR-II) imaging showed that most of the Au25(MPA)18 and Au24Zn1(MPA)18 can be metabolized via the kidney. The results demonstrated that Au NCs exhibit good biosafety by evaluating the manifestation of toxic effects on major organs at ultrahigh doses, providing reliable data for their application in biomedicine.


Subject(s)
Gold , Metal Nanoparticles , Gold/toxicity , Gold/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
8.
Scand J Gastroenterol ; 59(2): 133-141, 2024.
Article in English | MEDLINE | ID: mdl-37752679

ABSTRACT

BACKGROUND: Gastrointestinal motility disorders tend to develop after pancreaticoduodenectomy (PD). The objectives of this study were: (1) to investigate the impact of needleless transcutaneous neuromodulation (TN) on the postoperative recuperation following pancreaticoduodenectomy (PD), and (2) to explore the underlying mechanisms by which TN facilitates the recovery of gastrointestinal function after PD. METHODS: A total of 41 patients scheduled for PD were randomized into two groups: the TN group (n = 21) and the Sham-TN group (n = 20). TN was performed at acupoints ST-36 and PC-6 twice daily for 1 h from the postoperative day 1 (POD1) to day 7. Sham-TN was performed at non-acupoints. Subsequent assessments incorporated both heart rate variation and dynamic electrogastrography to quantify alterations in vagal activity (HF) and gastric pacing activity. RESULTS: 1)TN significantly decreased the duration of the first passage of flatus (p < 0.001) and defecation (p < 0.01) as well as the time required to resume diet (p < 0.001) when compared to sham-TN;2)Compared with sham-TN, TN increased the proportion of regular gastric pacing activity (p < 0.01);3) From POD1 to POD7, there was a discernible augmentation in HF induced by TN stimulation(p < 0.01);4) TN significantly decreased serum IL-6 levels from POD1 to POD7 (p < 0.001);5) TN was an independent predictor of shortened hospital stay(ß = - 0.349, p = 0.035). CONCLUSION: Needleless TN accelerates the recovery of gastrointestinal function and reduces the risk of delayed gastric emptying in patients after PD by enhancing vagal activity and controlling the inflammatory response.


Subject(s)
Pancreaticoduodenectomy , Stomach , Humans , Pancreaticoduodenectomy/adverse effects , Length of Stay , Gastric Emptying , Postoperative Complications/prevention & control , Postoperative Complications/etiology
9.
Europace ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150065

ABSTRACT

BACKGROUND: Pulsed field ablation (PFA) is a novel, myocardial-selective, non-thermal ablation modality used to target cardiac arrhythmias. Although prompt EGM signal disappearance is observed immediately after PFA application in the pulmonary veins, whether this finding results in adequate transmural lesions is unknown. STUDY AIM: If application repetition and catheter-tissue contact impact on lesion formation during PFA. METHODS: A circular loop PFA catheter was used to deliver repeated energy applications with various levels of contact-force. A benchtop vegetal potato model and a beating heart ventricular myocardial model were utilized to evaluate the impact of application repetition, contact force, and catheter repositioning on contiguity and lesion depth. Lesion development occurred over 18 hours in the vegetal model and over 6 hours in the porcine model. RESULTS: Lesion formation was found to be dependent on application repetition and contact. In porcine ventricles, single and multiple stacked applications led to a lesion depth of 3.5 ± 0.7 mm and 4.4 ± 1.3 mm, respectively (p =0.002). Furthermore, the greater the catheter-tissue contact, the more contiguous and deeper the lesions in the vegetal model (1.0±0.9 mm with no contact Vs. 5.4±1.4 mm with 30 g of force; p=.0001). CONCLUSION: PFA delivered via a circular catheter showed that both repetition and catheter contact led independently to deeper lesion formation. These findings indicate that endpoints for effective PFA ablation are more related to PFA biophysics than mere EGM attenuation.

10.
Anal Bioanal Chem ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436693

ABSTRACT

Gold nanoclusters (Au NCs) exhibit broad fluorescent spectra from visible to near-infrared regions and good enzyme-mimicking catalytic activities. Combined with excellent stability and exceptional biocompatibility, the Au NCs have been widely exploited in biomedicine such as biocatalysis and bioimaging. Especially, the long fluorescence lifetime and large Stokes shift attribute Au NCs to good probes for fluorescence sensing and biological detection. In this review, we systematically summarized the molecular structure and fluorescence properties of Au NCs and highlighted the advances in fluorescence sensing and biological detection. The Au NCs display high sensitivity and specificity in detecting iodine ions, metal ions, and reactive oxygen species, as well as certain diseases based on the fluorescence activities of Au NCs. We also proposed several points to improve the practicability and accelerate the clinical translation of the Au NCs.

11.
Acta Pharmacol Sin ; 45(9): 1951-1963, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38760543

ABSTRACT

Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3'UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.


Subject(s)
Bevacizumab , CD8-Positive T-Lymphocytes , Ferroptosis , Liver Neoplasms , Ferroptosis/drug effects , Humans , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Hep G2 Cells , Tumor Microenvironment/drug effects , Vascular Endothelial Growth Factor A/metabolism , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Male
12.
Acta Pharmacol Sin ; 45(8): 1686-1700, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38589688

ABSTRACT

Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Liver Neoplasms , Ubiquitin-Specific Peptidase 7 , Up-Regulation , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitin-Specific Peptidase 7/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Fibrinogen , Thiophenes
13.
Acta Pharmacol Sin ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090392

ABSTRACT

Aristolochic acids (AAs) have been identified as a significant risk factor for hepatocellular carcinoma (HCC). Ferroptosis is a type of regulated cell death involved in the tumor development. In this study, we investigated the molecular mechanisms by which AAs enhanced the growth of HCC. By conducting bioinformatics and RNA-Seq analyses, we found that AAs were closely correlated with ferroptosis. The physical interaction between p53 and AAs in HepG2 cells was validated by bioinformatics analysis and SPR assays with the binding pocket sites containing Pro92, Arg174, Asp207, Phe212, and His214 of p53. Based on the binding pocket that interacts with AAs, we designed a mutant and performed RNA-Seq profiling. Interestingly, we found that the binding pocket was responsible for ferroptosis, GADD45A, NRF2, and SLC7A11. Functionally, the interaction disturbed the binding of p53 to the promoter of GADD45A or NRF2, attenuating the role of p53 in enhancing GADD45A and suppressing NRF2; the mutant did not exhibit the same effects. Consequently, this event down-regulated GADD45A and up-regulated NRF2, ultimately inhibiting ferroptosis, suggesting that AAs hijacked p53 to down-regulate GADD45A and up-regulate NRF2 in HepG2 cells. Thus, AAs treatment resulted in the inhibition of ferroptosis via the p53/GADD45A/NRF2/SLC7A11 axis, which led to the enhancement of tumor growth. In conclusion, AAs-hijacked p53 restrains ferroptosis through the GADD45A/NRF2/SLC7A11 axis to enhance tumor growth. Our findings provide an underlying mechanism by which AAs enhance HCC and new insights into p53 in liver cancer. Therapeutically, the oncogene NRF2 is a promising target for liver cancer.

14.
Mar Drugs ; 22(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786621

ABSTRACT

Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 µg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.


Subject(s)
Escherichia coli , Polysaccharide-Lyases , Trisaccharides , Vibrio , Polysaccharide-Lyases/metabolism , Trisaccharides/biosynthesis , Vibrio/enzymology , Substrate Specificity , Alginates , Zea mays , Oligosaccharides
15.
J Obstet Gynaecol Res ; 50(4): 751-757, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263573

ABSTRACT

We report a case of fetal nasal chondromesenchymal hamartoma (NCMH) first noted on prenatal ultrasound at 34 weeks. A solid-cystic mass which predominantly hyperechoicgenic and relatively clear margin, was located on the left nasal cavity and pharynx, with anterior extension and moderate blood flow. Further follow-up ultrasound examination depicted an enlargement of the tumor. Fetal magnetic resonance imaging (MRI) showed an inhomogeneous signal lesion involving the ethmoid sinuses, nasal cavity, and pharynx. The infant, delivered via cesarean section at 37 + 5 weeks, required urgent neonatology intervention due to respiratory difficulties. Neonatal MRI and computer tomography were subsequently performed at 1 day after birth. Surgical excision occurred at 7 days, confirming NCMH via histological examination. Awareness of this entity, is essential to avoid potentially harmful therapies, especially in prenatal period. Considered NCMH in diagnosis when fetal nasal masses presenting with predominantly high-level echo, well-defined margins and moderate vascularity.


Subject(s)
Cesarean Section , Hamartoma , Pregnancy , Infant , Infant, Newborn , Humans , Female , Diagnosis, Differential , Hamartoma/diagnostic imaging , Hamartoma/pathology , Fetus/pathology , Prenatal Diagnosis , Magnetic Resonance Imaging
16.
Chaos ; 34(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38285726

ABSTRACT

Various disasters stem from minor perturbations, such as the spread of infectious diseases and cascading failure in power grids. Analyzing perturbations is crucial for both theoretical and application fields. Previous researchers have proposed basic propagation patterns for perturbation and explored the impact of basic network motifs on the collective response to these perturbations. However, the current framework is limited in its ability to decouple interactions and, therefore, cannot analyze more complex structures. In this article, we establish an effective, robust, and powerful propagation framework under a general dynamic model. This framework reveals classical and dense network motifs that exert critical acceleration on signal propagation, often reducing orders of magnitude compared with conclusions generated by previous work. Moreover, our framework provides a new approach to understand the fundamental principles of complex systems and the negative feedback mechanism, which is of great significance for researching system controlling and network resilience.

17.
J Clin Ultrasound ; 52(2): 144-151, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37991026

ABSTRACT

PURPOSE: To explore the value of ultrasound (US) characteristics in diagnosing breast fibromatosis (BF) and evaluate their differences from breast carcinoma. METHODS: A total of 121 patients with BF (n = 24, 29 lesions) or invasive ductal carcinoma (IDC) (n = 97, 102 lesions) of the breast were included. Their clinical and US findings were recorded and analyzed. RESULTS: The mean age of BF was younger than that of IDC (28.75 ± 5.55 vs. 50.19 ± 9.87, p < 0.001). The mean size of the BF was smaller than that of IDC (2.09 ± 0.91 vs. 2.71 ± 1.20, p = 0.011). Compared to IDC, BF had more frequency of posterior echo attenuation (p < 0.001), less frequency of peripheral hyperechoic halo (p = 0.002), calcification (p = 0.001), US reported axillary lymph node positive (p = 0.025), and grade 2-3 vascularity (p < 0.001). The Breast Imaging Reporting and Data System categorized BF at a lower level than IDC (p < 0.001). After adjusting for age, the peripheral hyperechoic halo, posterior echo feature, and vascularity could independently identify the differences between these two entities. CONCLUSION: Some differences were observed between BF and IDC in terms of patient age, lesion size, and US characteristics.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Humans , Female , Carcinoma, Ductal, Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast/diagnostic imaging , Breast/pathology , Ultrasonography , Lymph Nodes/pathology , Retrospective Studies
18.
Nano Lett ; 23(11): 5131-5140, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37191492

ABSTRACT

Selenium (Se) and tellurium (Te) nanomaterials with novel chain-like structures have attracted widespread interest owing to their intriguing properties. Unfortunately, the still-unclear catalytic mechanisms have severely limited the development of biocatalytic performance. In this work, we developed chitosan-coated Se nanozymes with a 23-fold higher antioxidative activity than Trolox and bovine serum albumin coated Te nanozymes with stronger prooxidative biocatalytic effects. Based on density functional theory calculations, we first propose that the Se nanozyme with Se/Se2- active centers favored reactive oxygen species (ROS) clearance via a LUMO-mediated mechanism, while the Te nanozyme with Te/Te4+ active centers promoted ROS production through a HOMO-mediated mechanism. Furthermore, biological experiments confirmed that the survival rate of γ-irritated mice treated with the Se nanozyme was maintained at 100% for 30 days by inhibiting oxidation. However, the Te nanozyme had the opposite biological effect via promoting radiation oxidation. The present work provides a new strategy for improving the catalytic activities of Se and Te nanozymes.


Subject(s)
Biocatalysis , Tellurium/chemistry , Selenium/chemistry , Reactive Oxygen Species/chemistry , Nanoparticles/chemistry , Antioxidants/chemistry , Animals , Mice , Oxidation-Reduction
19.
Dentomaxillofac Radiol ; 53(4): 222-232, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38426379

ABSTRACT

OBJECTIVES: Preoperative identification of different stromal subtypes of pleomorphic adenoma (PA) of the salivary gland is crucial for making treatment decisions. We aimed to develop and validate a model based on histogram analysis (HA) of ultrasound (US) images for predicting tumour stroma ratio (TSR) in salivary gland PA. METHODS: A total of 219 PA patients were divided into low-TSR (stroma-low) and high-TSR (stroma-high) groups and enrolled in a training cohort (n = 151) and a validation cohort (n = 68). The least absolute shrinkage and selection operator regression algorithm was used to screen the most optimal clinical, US, and HA features. The selected features were entered into multivariable logistic regression analyses for further selection of independent predictors. Different models, including the nomogram model, the clinic-US (Clin + US) model, and the HA model, were built based on independent predictors using logistic regression. The performance levels of the models were evaluated and validated on the training and validation cohorts. RESULTS: Lesion size, shape, cystic areas, vascularity, HA_mean, and HA_skewness were identified as independent predictors for constructing the nomogram model. The nomogram model incorporating the clinical, US, and HA features achieved areas under the curve of 0.839 and 0.852 in the training and validation cohorts, respectively, demonstrating good predictive performance and calibration. Decision curve analysis and clinical impact curves further confirmed its clinical usefulness. CONCLUSIONS: The nomogram model we developed offers a practical tool for preoperative TSR prediction in PA, potentially enhancing clinical decision-making.


Subject(s)
Adenoma, Pleomorphic , Nomograms , Salivary Gland Neoplasms , Ultrasonography , Humans , Adenoma, Pleomorphic/diagnostic imaging , Adenoma, Pleomorphic/pathology , Female , Salivary Gland Neoplasms/diagnostic imaging , Salivary Gland Neoplasms/pathology , Male , Middle Aged , Ultrasonography/methods , Adult , Aged , Retrospective Studies , Adolescent , Predictive Value of Tests
20.
Article in English | MEDLINE | ID: mdl-39067046

ABSTRACT

OBJECTIVES: To investigate the ultrasound (US) characteristics of metastatic malignancies (MM) in the major salivary glands and to assess the diagnostic value of the close relationship with the glandular capsule in identifying MM. METHODS: From January 2016 and April 2022, 122 patients with major salivary gland malignancies, including 20 patients with MM and 102 patients with primary malignancies (PM) confirmed by histopathological examination, were enrolled in this study. Their clinicopathologic and US data were recorded and analyzed. The diagnostic performance of the close relationship with the glandular capsule for differentiating MM from PM was analyzed. RESULTS: The mean age of MM were older than that of PM (59.50 ± 14.57 vs. 49.96 ± 15.73, p = 0.013). Compared with PM patients, MM were associated with a higher prevalence of local pain symptoms (p = 0.007) and abnormal facial nerve function (p < 0.001). MM were also more frequently characterized by unclear borders, rough margins, irregular shapes, heterogeneous internal echos, absence of cystic areas, presence of calcifications, close relationship with the glandular capsule, and US-reported positive cervical lymph nodes (all p < 0.05). The close relationship with the glandular capsule showed to be a good indicator in distinguishing between MM and PM, with an area under the receiver operating characteristic curve of 0.863, a sensitivity of 100%, a specificity of 72.5%, and an accuracy of 92.2%. Positive and negative predictive were calculated at 41.7% and 100%, respectively. CONCLUSIONS: The US finding of a close relationship with the glandular capsule is a highly sensitive diagnostic indicator for MM. Following this finding, US-guided needle biopsy should be recommended to further confirm the diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL