Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 698
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 25(1): 66-76, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168955

ABSTRACT

CD4+ T cells are central to various immune responses, but the molecular programs that drive and maintain CD4+ T cell immunity are not entirely clear. Here we identify a stem-like program that governs the CD4+ T cell response in transplantation models. Single-cell-transcriptomic analysis revealed that naive alloantigen-specific CD4+ T cells develop into TCF1hi effector precursor (TEP) cells and TCF1-CXCR6+ effectors in transplant recipients. The TCF1-CXCR6+CD4+ effectors lose proliferation capacity and do not reject allografts upon adoptive transfer into secondary hosts. By contrast, the TCF1hiCD4+ TEP cells have dual features of self-renewal and effector differentiation potential, and allograft rejection depends on continuous replenishment of TCF1-CXCR6+ effectors from TCF1hiCD4+ TEP cells. Mechanistically, TCF1 sustains the CD4+ TEP cell population, whereas the transcription factor IRF4 and the glycolytic enzyme LDHA govern the effector differentiation potential of CD4+ TEP cells. Deletion of IRF4 or LDHA in T cells induces transplant acceptance. These findings unravel a stem-like program that controls the self-renewal capacity and effector differentiation potential of CD4+ TEP cells and have implications for T cell-related immunotherapies.


Subject(s)
Gene Expression Regulation , T-Lymphocytes, Regulatory , Cell Differentiation
2.
Cell ; 183(5): 1219-1233.e18, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33242418

ABSTRACT

Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner. Sb9-deficient mice exhibited protective T cell-based host immunity to tumors in association with a decline in GrB-expressing immunosuppressive cells within the tumor microenvironment (TME). Maximal protection against tumor development was observed when the tumor and host were deficient in Sb9. The therapeutic utility of Sb9 inhibition was demonstrated by the control of tumor growth, resulting in increased survival times in mice. Our studies describe a molecular target that permits a combination of tumor ablation, interference within the TME, and immunotherapy in one potential modality.


Subject(s)
Cytotoxicity, Immunologic , Immunotherapy , Membrane Proteins/metabolism , Neoplasms/immunology , Neoplasms/therapy , Serpins/metabolism , Animals , Apoptosis/drug effects , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cytotoxicity, Immunologic/drug effects , Disease Progression , Female , Gene Deletion , Granzymes/metabolism , Immunity/drug effects , Melanoma/pathology , Mice, Inbred C57BL , Neoplasms/prevention & control , Small Molecule Libraries/pharmacology , Stromal Cells/drug effects , Stromal Cells/pathology , Tumor Microenvironment/drug effects
3.
Proc Natl Acad Sci U S A ; 121(25): e2400546121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857407

ABSTRACT

Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.

4.
Proc Natl Acad Sci U S A ; 120(51): e2312876120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38085783

ABSTRACT

Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ-generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm-2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.

5.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37898127

ABSTRACT

The emergence of single-cell RNA-seq (scRNA-seq) technology makes it possible to capture their differences at the cellular level, which contributes to studying cell heterogeneity. By extracting, amplifying and sequencing the genome at the individual cell level, scRNA-seq can be used to identify unknown or rare cell types as well as genes differentially expressed in specific cell types under different conditions using clustering for downstream analysis of scRNA-seq. Many clustering algorithms have been developed with much progress. However, scRNA-seq often appears with characteristics of high dimensions, sparsity and even the case of dropout events', which make the performance of scRNA-seq data clustering unsatisfactory. To circumvent the problem, a new deep learning framework, termed variational graph attention auto-encoder (VGAAE), is constructed for scRNA-seq data clustering. In the proposed VGAAE, a multi-head attention mechanism is introduced to learn more robust low-dimensional representations for the original scRNA-seq data and then self-supervised learning is also recommended to refine the clusters, whose number can be automatically determined using Jaccard index. Experiments have been conducted on different datasets and results show that VGAAE outperforms some other state-of-the-art clustering methods.


Subject(s)
Algorithms , Single-Cell Analysis , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Cluster Analysis , RNA , Gene Expression Profiling/methods
6.
Immunity ; 44(6): 1271-83, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27317259

ABSTRACT

T helper 17 (Th17) cells are prominently featured in multiple autoimmune diseases, but the regulatory mechanisms that control Th17 cell responses are poorly defined. Here we found that stimulation of OX40 triggered a robust chromatin remodeling response and produced a "closed" chromatin structure at interleukin-17 (IL-17) locus to inhibit Th17 cell function. OX40 activated the NF-κB family member RelB, and RelB recruited the histone methyltransferases G9a and SETDB1 to the Il17 locus to deposit "repressive" chromatin marks at H3K9 sites, and consequently repressing IL-17 expression. Unlike its transcriptional activities, RelB acted independently of both p52 and p50 in the suppression of IL-17. In an experimental autoimmune encephalomyelitis (EAE) disease model, we found that OX40 stimulation inhibited IL-17 and reduced EAE. Conversely, RelB-deficient CD4(+) T cells showed enhanced IL-17 induction and exacerbated the disease. Our data uncover a mechanism in the control of Th17 cells that might have important clinic implications.


Subject(s)
Chromatin Assembly and Disassembly , Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-17/metabolism , Multiple Sclerosis/immunology , Receptors, OX40/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Cells, Cultured , Down-Regulation , Forkhead Transcription Factors/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Interleukin-17/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, OX40/genetics , Signal Transduction , Transcription Factor RelB/genetics , Transcription Factor RelB/metabolism
7.
Nucleic Acids Res ; 51(D1): D479-D487, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36165955

ABSTRACT

Post-translational modifications (PTMs) are critical molecular mechanisms that regulate protein functions temporally and spatially in various organisms. Since most PTMs are dynamically regulated, quantifying PTM events under different states is crucial for understanding biological processes and diseases. With the rapid development of high-throughput proteomics technologies, massive quantitative PTM proteome datasets have been generated. Thus, a comprehensive one-stop data resource for surfing big data will benefit the community. Here, we updated our previous phosphorylation dynamics database qPhos to the qPTM (http://qptm.omicsbio.info). In qPTM, 11 482 553 quantification events among six types of PTMs, including phosphorylation, acetylation, glycosylation, methylation, SUMOylation and ubiquitylation in four different organisms were collected and integrated, and the matched proteome datasets were included if available. The raw mass spectrometry based false discovery rate control and the recurrences of identifications among datasets were integrated into a scoring system to assess the reliability of the PTM sites. Browse and search functions were improved to facilitate users in swiftly and accurately acquiring specific information. The results page was revised with more abundant annotations, and time-course dynamics data were visualized in trend lines. We expected the qPTM database to be a much more powerful and comprehensive data repository for the PTM research community.


Subject(s)
Protein Processing, Post-Translational , Proteome , Animals , Humans , Mice , Rats , Phosphorylation , Proteome/metabolism , Saccharomyces cerevisiae/metabolism , Databases, Genetic
8.
Proc Natl Acad Sci U S A ; 119(41): e2212711119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191228

ABSTRACT

Infusing "chemical wisdom" should improve the data-driven approaches that rely exclusively on historical synthetic data for automatic retrosynthesis planning. For this purpose, we designed a chemistry-informed molecular graph (CIMG) to describe chemical reactions. A collection of key information that is most relevant to chemical reactions is integrated in CIMG:NMR chemical shifts as vertex features, bond dissociation energies as edge features, and solvent/catalyst information as global features. For any given compound as a target, a product CIMG is generated and exploited by a graph neural network (GNN) model to choose reaction template(s) leading to this product. A reactant CIMG is then inferred and used in two GNN models to select appropriate catalyst and solvent, respectively. Finally, a fourth GNN model compares the two CIMG descriptors to check the plausibility of the proposed reaction. A reaction vector is obtained for every molecule in training these models. The chemical wisdom of reaction propensity contained in the pretrained reaction vectors is exploited to autocategorize molecules/reactions and to accelerate Monte Carlo tree search (MCTS) for multistep retrosynthesis planning. Full synthetic routes with recommended catalysts/solvents are predicted efficiently using this CIMG-based approach.


Subject(s)
Machine Learning , Neural Networks, Computer , Catalysis , Chemistry Techniques, Synthetic , Monte Carlo Method , Solvents
9.
Small ; 20(13): e2306947, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37972273

ABSTRACT

As one of promising candidates for large-scale energy-storage systems, Zn-I2 aqueous battery exhibits multifaceted advantages including low cost, high energy/powder density, and intrinsic operational safety, but also suffers from fast self-discharge and short cycle/shelf lifespan associating with I3 - shuttle, Zn dendrite growth, and corrosion. In this paper, the battery's self-discharge rate is successfully suppressed down to an unprecedent level of 17.1% after an ultralong shelf-time of 1 000 h (i.e., 82.9% capacity retention after 41 days open-circuit storage), by means of manipulating solvation structures of traditional ZnSO4 electrolyte via simply adjusting electrolyte concentration. Better yet, the optimized 2.7 m ZnSO4 electrolyte further prolongs the cycle lifespan of the battery up to >10 000 and 43 000 cycles at current density of 1 and 5 A g-1, respectively, thanks to the synthetic benefits from reduced free water content, modified solvation structure and lowered I2 dissolution in the electrolyte. With both long lifespan and ultralow self-discharge, this reliable and affordable Zn-I2 battery may provide a feasible alternative to the centuries-old lead-acid battery.

10.
Small ; 20(16): e2306914, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38041488

ABSTRACT

Electrocatalysts with high activity and durability for acidic oxygen evolution reaction (OER) play a crucial role in achieving cost-effective hydrogen production via proton exchange membrane water electrolysis. A novel electrocatalyst, Te-doped RuO2 (Te-RuO2) nanotubes, synthesized using a template-directed process, which significantly enhances the OER performance in acidic media is reported. The Te-RuO2 nanotubes exhibit remarkable OER activity in acidic media, requiring an overpotential of only 171 mV to achieve an anodic current density of 10 mA cm-2. Furthermore, they maintain stable chronopotentiometric performance under 10 mA cm-2 in acidic media for up to 50 h. Based on the experimental results and density functional calculations, this significant improvement in OER performance to the synergistic effect of large specific surface area and modulated electronic structure resulting from the doping of Te cations is attributed.

11.
Opt Express ; 32(5): 6917-6928, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439386

ABSTRACT

Augmented reality head-up display (AR-HUD) using diffractive waveguide is a challenging research field. It can drastically reduce the system volume compared with AR-HUD based on freeform mirror. However, one of the remaining challenges that affects the performance of the diffractive waveguide is to expand the eye-box while maintaining the illuminance uniformity. In this paper, a one-dimensional pupil expansion diffractive optical waveguide system for AR-HUD is presented. The optimization of grating parameters is based on scalar diffraction theory and rigorous coupled wave analysis (RCWA). Then, the illuminance uniformity is optimized through non-sequential ray tracing. We simulate and construct a waveguide-based AR-HUD. The presented AR-HUD realized an exit pupil size of 80 mm × 15 mm and a field of view of 10° × 5° at the wavelength of 532 nm.

12.
Virol J ; 21(1): 100, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689312

ABSTRACT

BACKGROUND: In the aftermath of the COVID-19 pandemic, there has been a surge in human metapneumovirus (HMPV) transmission, surpassing pre-epidemic levels. We aim to elucidate the clinical and epidemiological characteristics of HMPV infections in the post-COVID-19 pandemic era. METHODS: In this retrospective single-center study, participants diagnosed with laboratory confirmed HMPV infection through Targeted Next Generation Sequencing were included. The study encompassed individuals admitted to Henan Children's Hospital between April 29 and June 5, 2023. Demographic information, clinical records, and laboratory indicators were analyzed. RESULTS: Between April 29 and June 5, 2023, 96 pediatric patients were identified as infected with HMPV with a median age of 33.5 months (interquartile range, 12 ~ 48 months). The majority (87.5%) of infected children were under 5 years old. Notably, severe cases were statistically younger. Predominant symptoms included fever (81.3%) and cough (92.7%), with wheezing more prevalent in the severe group (56% vs 21.1%). Coinfection with other viruses was observed in 43 patients, with Epstein-Barr virus (EBV) (15.6%) or human rhinovirus A (HRV type A) (12.5%) being the most common. Human respiratory syncytial virus (HRSV) coinfection rate was significantly higher in the severe group (20% vs 1.4%). Bacterial coinfection occurred in 74 patients, with Haemophilus influenzae (Hin) and Streptococcus pneumoniae (SNP) being the most prevalent (52.1% and 41.7%, respectively). Severe patients demonstrated evidence of multi-organ damage. Noteworthy alterations included lower concentration of IL-12p70, decreased lymphocytes percentages, and elevated B lymphocyte percentages in severe cases, with statistical significance. Moreover, most laboratory indicators exhibited significant changes approximately 4 to 5 days after onset. CONCLUSIONS: Our data systemically elucidated the clinical and epidemiological characteristics of pediatric patients with HMPV infection, which might be instructive to policy development for the prevention and control of HMPV infection and might provide important clues for future HMPV research endeavors.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Humans , China/epidemiology , Child, Preschool , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Retrospective Studies , Female , Male , Infant , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , COVID-19/epidemiology , Child , Coinfection/epidemiology , Coinfection/virology , SARS-CoV-2/genetics
13.
Mol Pharm ; 21(7): 3186-3203, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38815167

ABSTRACT

Globally, prostate cancer is the most commonly diagnosed tumor and a cause of death in older men. Abiraterone, an orally administered irreversible CYP17 inhibitor, is employed to treat prostate cancer. However, abiraterone has several clinical limitations, such as poor water solubility, low dissolution rate, low bioavailability, and toxic side effects in the liver and kidney. Therefore, there is a need to identify high-efficiency and low-toxicity water-soluble abiraterone derivatives. In this work, we aimed to design and synthesize a series of abiraterone derivatives by methoxypoly(ethylene glycol) (mPEG) modification. Their antitumor activities and toxicology were analyzed in vitro and in vivo. The most potent compound, 2e, retained the principle of action on the CYP17 enzyme target and significantly improved the abiraterone water solubility, cell permeability, and blood safety. No significant abnormalities were observed in toxicology. mPEG-modification significantly improved abiraterone's antitumor activity and efficiency while reducing the associated toxic effects. The finding will provide a theoretical basis for future clinical application of mPEG-modified abiraterone.


Subject(s)
Androstenes , Antineoplastic Agents , Polyethylene Glycols , Prostatic Neoplasms , Solubility , Male , Humans , Androstenes/pharmacology , Androstenes/chemistry , Animals , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polyethylene Glycols/chemistry , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Steroid 17-alpha-Hydroxylase/metabolism
14.
BMC Infect Dis ; 24(1): 115, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254003

ABSTRACT

BACKGROUND: sCD25 is an important immune molecule for T cell regulation. Tracking the detection of plasma sCD25 plays an important role in the evaluation of immune function, progression, and prognosis of tuberculosis (TB) patients. This study analyzed the association of plasma sCD25 levels with clinical, laboratory, CT imaging characteristics, and clinical outcome of TB patients. METHODS: The clinical data of 303 TB patients treated in the Fifth People's Hospital of Suzhou from October 2019 to January 2022 were retrospectively analyzed. The levels of sCD25 in plasma were detected by ELISA. According to the cut-off threshold of plasma sCD25 levels, the patients were divided into a low-value group (Group TB1) and a high-value group (Group TB2). The association of plasma sCD25 levels with clinical, laboratory, and CT imaging characteristics of TB patients, as well as their TB treatment outcome were analyzed. RESULTS: The levels of plasma sCD25 of patients with TB patients were higher than that of the healthy control group (P < 0.01). Among the 303 TB patients, the levels were increased in Group TB2 patients (0.602 ± 0.216 vs. 1.717 ± 0.604 ng/ml, P < 0.001), and there was a progressive reduction after anti-TB treatment. Furthermore, patients in Group TB2 showed higher positive rates in sputum smear (52.0% vs. 34.3%; P = 0.003), sputum culture (69.7% vs. 56.9%; P = 0.032), Xpert MTB/RIF (66.3% vs. 51.2%; P = 0.013) and TB-DNA (51.5% vs. 31.2%; P = 0.001) than those in Group TB1. Patients in Group TB2 had higher incidence in cough (78.8% vs. 62.3%; P = 0.004), expectoration (64.4% vs. 45.1%; P = 0.001), concomitant extrapulmonary TB (14.1% vs. 5.9%; P = 0.016), cavities (47.9% vs. 34.0%; P = 0.022), and unfavorable outcomes after anti-TB treatment. CONCLUSION: The clinical, laboratory and radiological manifestations of TB patients with high plasma sCD25 levels indicate that the disease is more severe. Tracking plasma sCD25 detection of TB patients has evident clinical significance. It is noteworthy that when the plasma sCD25 levels are significantly elevated, patients should be cautious of the TB progression and disease severity.


Subject(s)
Clinical Relevance , Tuberculosis , Humans , Retrospective Studies , Prognosis , Biomarkers , Tuberculosis/diagnosis
15.
Environ Res ; 257: 119295, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824983

ABSTRACT

Doping with nitrogen atoms can improve the catalytic activity of activated carbon cathodes in electro-Fenton systems, but currently there is a lack of understanding of the catalytic mechanism, which limits the further development of high-performance activated carbon cathodes. Here, a multi-scale exploration was conducted using density functional theory and experimental methods to investigate the mechanism of different nitrogen doping types promoting the redox performance of activated carbon cathodes and the degradation of phenol. The density functional theory results indicate that the introduction of nitrogen atoms enhances the binding ability between carbon substrates and oxygen-containing substances, promotes the localization of surrounding electrons, and makes it easier for O2 to bind with protons and catalyze the hydrogenation reaction of *OOH. Due to its weak binding ability with oxygen-containing substances, AC is difficult to form H2O2, resulting in a tendency towards the 4e-ORR pathway. The binding energy between graphite-N carbon substrate and pyridine-N carbon substrate with *OOH is closer to the volcano top, so graphite n and pyridine n can better promote the selectivity of activated carbon for 2e-ORR. In addition, the calculation results also indicate that pyrrole-N and graphite-N are more capable of catalyzing the reaction energy barrier between ·OH and phenol. Finally, the simulation results were used to guide the modification of nitrogen doped activated carbon and experimental verification was carried out. The degradation results of phenol confirmed the efficient synergistic effect between different types of nitrogen doping, and the NAC-800 electrode exhibited efficient and stable characteristics. This work provides a guiding strategy for further developing stable and highly selective activated carbon cathode materials.

16.
Environ Res ; 246: 118104, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38181847

ABSTRACT

Intensive development of vanadium-titanium mines leads to an increasing discharge of vanadium (V) into the environment, imposing potential risks to both environmental system and public health. Microorganisms play a key role in the biogeochemical cycling of V, influencing its transformation and distribution. In addition, the characterization of microbial community patterns serves to assess potential threats imposed by elevated V exposure. However, the impact of V on microbial community remains largely unknown in alkaline V tailing areas with a substantial amounts of V accumulation and nutrient-poor conditions. This study aims to explore the characteristics of microbial community in a wet tailing pond nearby a large-scale V mine. The results reveal V contamination in both water (0.60 mg/L) and sediment tailings (340 mg/kg) in the tailing pond. Microbial community diversity shows distinctive pattern between environmental metrices. Genera with the functional potential of metal reduction\resistance, nitrogen metabolism, and carbon fixation have been identified. In this alkaline V tailing pond, V and pH are major drivers to induce community variation, particularly for functional bacteria. Stochastic processes primarily govern the assemblies of microbial community in the water samples, while deterministic process regulate the community assemblies of sediment tailings. Moreover, the co-occurrence network pattern unveils strong selective pattern for sediment tailings communities, where genera form a complex network structure exhibiting strong competition for limited resource. These findings reveal the patterns of microbial adaptions in wet vanadium tailing ponds, providing insightful guidelines to mitigate the negative impact of V tailing and develop sustainable management for mine-waste reservoir.


Subject(s)
Bacteria , Vanadium , Titanium , Microbial Interactions , Water
17.
Mol Ther ; 31(8): 2489-2506, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37087570

ABSTRACT

Growing evidence has proved that RNA editing enzyme ADAR1, responsible for detecting endogenous RNA species, was significantly associated with poor response or resistance to immune checkpoint blockade (ICB) therapy. Here, a genetically engineered nanovesicle (siAdar1-LNP@mPD1) was developed as an RNA interference nano-tool to overcome tumor resistance to ICB therapies. Small interfering RNA against ADAR1 (siAdar1) was packaged into a lipid nanoparticle (LNP), which was further coated with plasma membrane extracted from the genetically engineered cells overexpressing PD1. siAdar1-LNP@mPD1 could block the PD1/PDL1 immune inhibitory axis by presenting the PD1 protein on the coating membranes. Furthermore, siAdar1 could be effectively delivered into cancer cells by the designed nanovesicle to silence ADAR1 expression, resulting in an increased type I/II interferon (IFN-ß/γ) production and making the cancer cells more sensitive to secreted effector cytokines such as IFN-γ with significant cell growth arrest. These integrated functions confer siAdar1-LNP@mPD1 with robust and comprehensive antitumor immunity, as evidenced by significant tumor growth regression, abscopal tumor prevention, and effective suppression of lung metastasis, through a global remodeling of the tumor immune microenvironment. Overall, we provided a promising translatable strategy to simultaneously silence ADAR1 and block PDL1 immune checkpoint to boost robust antitumor immunity.


Subject(s)
Cytokines , Lung Neoplasms , Humans , Lung Neoplasms/therapy , Interferon-gamma , Cell Proliferation , Tumor Microenvironment/genetics
18.
BMC Psychiatry ; 24(1): 268, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594713

ABSTRACT

BACKGROUND: Access to high-quality mental healthcare remains challenging for people with psychosis globally, including China. Smartphone-based symptom monitoring has the potential to support scalable mental healthcare. However, no such tool, until now, has been developed and evaluated for people with psychosis in China. This study investigated the acceptability and the experience of using a symptom self-monitoring smartphone app (YouXin) specifically developed for people with psychosis in China. METHODS: Semi-structured interviews were conducted with 10 participants with psychosis to explore the acceptability of YouXin. Participants were recruited from the non-randomised feasibility study that tested the validity, feasibility, acceptability and safety of the YouXin app. Data analysis was guided by the theoretical framework of acceptability. RESULTS: Most participants felt the app was acceptable and easy to use, and no unbearable burdens or opportunity costs were reported. Participants found completing the self-monitoring app rewarding and experienced a sense of achievement. Privacy and data security were not major concerns for participants, largely due to trust in their treating hospital around data protection. Participants found the app easy to use and attributed this to the training provided at the beginning of the study. A few participants said they had built some form of relationship with the app and would miss the app when the study finished. CONCLUSIONS: The YouXin app is acceptable for symptom self-monitoring in people with experience of psychosis in China. Participants gained greater insights about their symptoms by using the YouXin app. As we only collected retrospective acceptability in this study, future studies are warranted to assess hypothetical acceptability before the commencement of study to provide a more comprehensive understanding of implementation.


Subject(s)
Mobile Applications , Psychotic Disorders , Humans , Smartphone , Retrospective Studies , Psychotic Disorders/diagnosis , Psychotic Disorders/therapy , Qualitative Research
19.
BMC Surg ; 24(1): 187, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877439

ABSTRACT

BACKGROUND: The descending genicular artery (DGA) and medial thigh region have been underused as donor sites for perforator flaps. This study evaluated the anatomical relationship between the perforators of the DGA and the saphenous vein (SV) to review the clinical applications of the free descending genicular artery perforator (DGAP) flap for locoregional reconstruction. METHODS: Fifteen cadavers were arterially perfused with red latex and dissected. Thirty-one patients with extremity tissue defects were treated with a free DGAP flap, including six patients who received a chimeric flap. The minimum distance between the DGAP and the SV was measured during surgery. RESULTS: In all patients, the skin branch of the descending genicular artery was found in the medial femoral condyle plane in front of the SV. The average distance between the descending genicular artery perforator and the SV was 3.71 ± 0.38 cm (range: 2.9-4.3 cm). Thirty flaps survived completely, and one flap developed partial necrosis; however, this flap healed two weeks after skin grafting. The average follow-up time was 11.23 months. CONCLUSIONS: We conclude that the SV can be preserved when harvesting the descending genicular artery perforator flap, causing less damage to the donor site and having no effect on flap survival. The free descending genicular artery perforator flap without the SV is a better therapy for complicated tissue defects.


Subject(s)
Cadaver , Perforator Flap , Plastic Surgery Procedures , Saphenous Vein , Humans , Perforator Flap/blood supply , Male , Female , Saphenous Vein/transplantation , Middle Aged , Aged , Adult , Plastic Surgery Procedures/methods
20.
Nano Lett ; 23(1): 107-115, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36541945

ABSTRACT

In comparison to the well-developed proton-exchange-membrane fuel cells, anion-exchange-membrane fuel cells (AEMFCs) permit adoption of platinum-group-metal (PGM)-free catalysts due to the alkaline environment, giving a substantial cost reduction. However, previous AEMFCs have generally shown unsatisfactory performances due to the lack of effective PGM-free catalysts that can endure harsh fuel cell conditions. Here we report a plasma-assisted synthesis of high-quality nickel nitride (Ni3N) and zirconium nitride (ZrN) employing dinitrogen as the nitrogen resource, exhibiting exceptional catalytic performances toward hydrogen oxidation and oxygen reduction in an alkaline enviroment, respectively. A PGM-free AEMFC assembled by using Ni3N as the anode and ZrN as the cathode delivers power densities of 256 mW cm-2 under an H2-O2 condition and 151 mW cm-2 under an H2-air condition. Furthermore, the fuel cell shows no evidence of degradation after 25 h of operation. This work creates opportunities for developing high-performance and durable AEMFCs based on metal nitrides.


Subject(s)
Nickel , Platinum , Membranes , Cell Membrane , Anions , Protons
SELECTION OF CITATIONS
SEARCH DETAIL