Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.153
Filter
Add more filters

Publication year range
1.
Nature ; 617(7959): 118-124, 2023 05.
Article in English | MEDLINE | ID: mdl-37100915

ABSTRACT

Modern green revolution varieties of wheat (Triticum aestivum L.) confer semi-dwarf and lodging-resistant plant architecture owing to the Reduced height-B1b (Rht-B1b) and Rht-D1b alleles1. However, both Rht-B1b and Rht-D1b are gain-of-function mutant alleles encoding gibberellin signalling repressors that stably repress plant growth and negatively affect nitrogen-use efficiency and grain filling2-5. Therefore, the green revolution varieties of wheat harbouring Rht-B1b or Rht-D1b usually produce smaller grain and require higher nitrogen fertilizer inputs to maintain their grain yields. Here we describe a strategy to design semi-dwarf wheat varieties without the need for Rht-B1b or Rht-D1b alleles. We discovered that absence of Rht-B1 and ZnF-B (encoding a RING-type E3 ligase) through a natural deletion of a haploblock of about 500 kilobases shaped semi-dwarf plants with more compact plant architecture and substantially improved grain yield (up to 15.2%) in field trials. Further genetic analysis confirmed that the deletion of ZnF-B induced the semi-dwarf trait in the absence of the Rht-B1b and Rht-D1b alleles through attenuating brassinosteroid (BR) perception. ZnF acts as a BR signalling activator to facilitate proteasomal destruction of the BR signalling repressor BRI1 kinase inhibitor 1 (TaBKI1), and loss of ZnF stabilizes TaBKI1 to block BR signalling transduction. Our findings not only identified a pivotal BR signalling modulator but also provided a creative strategy to design high-yield semi-dwarf wheat varieties by manipulating the BR signal pathway to sustain wheat production.


Subject(s)
Biomass , Brassinosteroids , Edible Grain , Signal Transduction , Triticum , Alleles , Brassinosteroids/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Gene Deletion , Genes, Plant , Gibberellins/metabolism , Phenotype , Triticum/classification , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Proteins/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38701415

ABSTRACT

N4-acetylcytidine (ac4C) is a modification found in ribonucleic acid (RNA) related to diseases. Expensive and labor-intensive methods hindered the exploration of ac4C mechanisms and the development of specific anti-ac4C drugs. Therefore, an advanced prediction model for ac4C in RNA is urgently needed. Despite the construction of various prediction models, several limitations exist: (1) insufficient resolution at base level for ac4C sites; (2) lack of information on species other than Homo sapiens; (3) lack of information on RNA other than mRNA; and (4) lack of interpretation for each prediction. In light of these limitations, we have reconstructed the previous benchmark dataset and introduced a new dataset including balanced RNA sequences from multiple species and RNA types, while also providing base-level resolution for ac4C sites. Additionally, we have proposed a novel transformer-based architecture and pipeline for predicting ac4C sites, allowing for highly accurate predictions, visually interpretable results and no restrictions on the length of input RNA sequences. Statistically, our work has improved the accuracy of predicting specific ac4C sites in multiple species from less than 40% to around 85%, achieving a high AUC > 0.9. These results significantly surpass the performance of all existing models.


Subject(s)
Cytidine , Cytidine/analogs & derivatives , RNA , Cytidine/genetics , RNA/genetics , RNA/chemistry , Humans , Computational Biology/methods , Animals , Software , Algorithms
3.
J Biol Chem ; 300(1): 105510, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042492

ABSTRACT

Tendinopathy is a disorder of musculoskeletal system that primarily affects athletes and the elderly. Current treatment options are generally comprised of various exercise and loading programs, therapeutic modalities, and surgical interventions and are limited to pain management. This study is to understand the role of TRIM54 (tripartite motif containing 54) in tendonitis through in vitro modeling with tendon-derived stem cells (TDSCs) and in vivo using rat tendon injury model. Initially, we observed that TRIM54 overexpression in TDSCs model increased stemness and decreased apoptosis. Additionally, it rescued cells from tumor necrosis factor α-induced inflammation, migration, and tenogenic differentiation. Further, through immunoprecipitation studies, we identified that TRIM54 regulates inflammation in TDSCs by binding to and ubiquitinating YOD1. Further, overexpression of TRIM54 improved the histopathological score of tendon injury as well as the failure load, stiffness, and young modulus in vivo. These results indicated that TRIM54 played a critical role in reducing the effects of tendon injury. Consequently, these results shed light on potential therapeutic alternatives for treating tendinopathy.


Subject(s)
Endopeptidases , Muscle Proteins , Tendinopathy , Thiolester Hydrolases , Aged , Animals , Humans , Rats , Apoptosis , Cell Differentiation/physiology , Endopeptidases/metabolism , Stem Cells , Tendinopathy/metabolism , Tendon Injuries/therapy , Tendon Injuries/metabolism , Tendons/metabolism , Thiolester Hydrolases/metabolism , Muscle Proteins/metabolism
4.
J Biol Chem ; 300(5): 107260, 2024 May.
Article in English | MEDLINE | ID: mdl-38582447

ABSTRACT

Thoracic aortic dissection (TAD) is a highly dangerous cardiovascular disorder caused by weakening of the aortic wall, resulting in a sudden tear of the internal face. Progressive loss of the contractile apparatus in vascular smooth muscle cells (VSMCs) is a major event in TAD. Exploring the endogenous regulators essential for the contractile phenotype of VSMCs may aid the development of strategies to prevent TAD. Krüppel-like factor 15 (KLF15) overexpression was reported to inhibit TAD formation; however, the mechanisms by which KLF15 prevents TAD formation and whether KLF15 regulates the contractile phenotype of VSMCs in TAD are not well understood. Therefore, we investigated these unknown aspects of KLF15 function. We found that KLF15 expression was reduced in human TAD samples and ß-aminopropionitrile monofumarate-induced TAD mouse model. Klf15KO mice are susceptible to both ß-aminopropionitrile monofumarate- and angiotensin II-induced TAD. KLF15 deficiency results in reduced VSMC contractility and exacerbated vascular inflammation and extracellular matrix degradation. Mechanistically, KLF15 interacts with myocardin-related transcription factor B (MRTFB), a potent serum response factor coactivator that drives contractile gene expression. KLF15 silencing represses the MRTFB-induced activation of contractile genes in VSMCs. Thus, KLF15 cooperates with MRTFB to promote the expression of contractile genes in VSMCs, and its dysfunction may exacerbate TAD. These findings indicate that KLF15 may be a novel therapeutic target for the treatment of TAD.


Subject(s)
Aortic Aneurysm, Thoracic , Dissection, Thoracic Aorta , Kruppel-Like Transcription Factors , Myocytes, Smooth Muscle , Transcription Factors , Animals , Humans , Male , Mice , Angiotensin II/metabolism , Angiotensin II/pharmacology , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phenotype , Transcription Factors/metabolism , Transcription Factors/genetics
5.
Nucleic Acids Res ; 51(11): 5547-5564, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37070185

ABSTRACT

Saccharomyces cerevisiae DNA polymerase IV (Pol4) like its homolog, human DNA polymerase lambda (Polλ), is involved in Non-Homologous End-Joining and Microhomology-Mediated Repair. Using genetic analysis, we identified an additional role of Pol4 also in homology-directed DNA repair, specifically in Rad52-dependent/Rad51-independent direct-repeat recombination. Our results reveal that the requirement for Pol4 in repeat recombination was suppressed by the absence of Rad51, suggesting that Pol4 counteracts the Rad51 inhibition of Rad52-mediated repeat recombination events. Using purified proteins and model substrates, we reconstituted in vitro reactions emulating DNA synthesis during direct-repeat recombination and show that Rad51 directly inhibits Polδ DNA synthesis. Interestingly, although Pol4 was not capable of performing extensive DNA synthesis by itself, it aided Polδ in overcoming the DNA synthesis inhibition by Rad51. In addition, Pol4 dependency and stimulation of Polδ DNA synthesis in the presence of Rad51 occurred in reactions containing Rad52 and RPA where DNA strand-annealing was necessary. Mechanistically, yeast Pol4 displaces Rad51 from ssDNA independent of DNA synthesis. Together our in vitro and in vivo data suggest that Rad51 suppresses Rad52-dependent/Rad51-independent direct-repeat recombination by binding to the primer-template and that Rad51 removal by Pol4 is critical for strand-annealing dependent DNA synthesis.


Subject(s)
DNA Polymerase beta , Rad51 Recombinase , Rad52 DNA Repair and Recombination Protein , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , DNA/metabolism , DNA Polymerase beta/genetics , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA Repair , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinational DNA Repair , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
6.
J Mol Cell Cardiol ; 192: 13-25, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38653384

ABSTRACT

The RNA-binding zinc finger protein 36 (ZFP36) family participates in numerous physiological processes including transition and differentiation through post-transcriptional regulation. ZFP36L1 is a member of the ZFP36 family. This study aimed to evaluate the role of ZFP36L1 in restenosis. We found that the expression of ZFP36L1 was inhibited in VSMC-phenotypic transformation induced by TGF-ß, PDGF-BB, and FBS and also in the rat carotid injury model. In addition, we found that the overexpression of ZFP36L1 inhibited the proliferation and migration of VSMCs and promoted the expression of VSMC contractile genes; whereas ZFP36L1 interference promoted the proliferation and migration of VSMCs and suppressed the expression of contractile genes. Furthermore, the RNA binding protein immunoprecipitation and double luciferase reporter gene experiments shows that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16. Finally, our research results in the rat carotid balloon injury animal model further confirmed that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16 and further plays a role in vascular injury and restenosis in vivo.


Subject(s)
Butyrate Response Factor 1 , Cell Proliferation , Kruppel-Like Transcription Factors , Muscle, Smooth, Vascular , Vascular System Injuries , Animals , Humans , Male , Rats , Butyrate Response Factor 1/metabolism , Butyrate Response Factor 1/genetics , Cell Movement/genetics , Disease Models, Animal , Gene Expression Regulation , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Rats, Sprague-Dawley , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vascular System Injuries/metabolism , Vascular System Injuries/genetics , Vascular System Injuries/pathology
7.
IUBMB Life ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551358

ABSTRACT

Mitoribosomes are essential for the production of biological energy. The Human Mitoribosomal Small Subunit unit (MRPS) family, responsible for encoding mitochondrial ribosomal small subunits, is actively engaged in protein synthesis within the mitochondria. Intriguingly, MRPS family genes appear to play a role in cancer. A multistep process was employed to establish a risk model associated with MRPS genes, aiming to delineate the immune and pharmacogenomic landscapes in clear cell renal cell carcinoma (ccRCC). MRPScores were computed for individual patients to assess their responsiveness to various treatment modalities and their susceptibility to different therapeutic targets and drugs. While MRPS family genes have been implicated in various cancers as oncogenes, our findings reveal a contrasting tumor suppressor role for MRPS genes in ccRCC. Utilizing an MRPS-related risk model, we observed its excellent prognostic capability in predicting survival outcomes for ccRCC patients. Remarkably, the subgroup with high MRPS-related scores (MRPScore) displayed poorer prognosis but exhibited a more robust response to immunotherapy. Through in silico screening of 2183 drug targets and 1646 compounds, we identified two targets (RRM2 and OPRD1) and eight agents (AZ960, carmustine, lasalocid, SGI-1776, AZD8055_1059, BPD.00008900_1998, MK.8776_2046, and XAV939_1268) with potential therapeutic implications for high-MRPScore patients. Our study represents the pioneering effort in proposing that molecular classification, diagnosis, and treatment strategies can be formulated based on MRPScores. Indeed, a high MRPScore profile appears to elevate the risk of tumor progression and mortality, potentially through its influence on immune regulation. This suggests that the MRPS-related risk model holds promise as a prognostic predictor and may offer novel insights into personalized therapeutic strategies.

8.
Mass Spectrom Rev ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37565588

ABSTRACT

The molecular composition of exhaled human breath can reflect various physiological and pathological conditions. Considerable progress has been achieved over the past decade in real-time analysis of exhaled human breath using direct mass spectrometry methods, including selected ion flow tube mass spectrometry, proton transfer reaction mass spectrometry, extractive electrospray ionization mass spectrometry, secondary electrospray ionization mass spectrometry, acetone-assisted negative photoionization mass spectrometry, atmospheric pressure photoionization mass spectrometry, and low-pressure photoionization mass spectrometry. Here, recent developments in direct mass spectrometry analysis of exhaled human breath are reviewed with regard to analytical performance (chemical sensitivity, selectivity, quantitative capabilities) and applications of the developed methods in disease diagnosis, targeted molecular detection, and real-time metabolic monitoring.

9.
Hepatology ; 77(5): 1722-1734, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36106666

ABSTRACT

BACKGROUND AND AIMS: HEV ORF2 antigen (Ag) in serum has become a tool for diagnosing current HEV infection. Particularly, urinary shedding of HEV Ag has been gaining increasing interest. We aim to uncover the origin, antigenicity, diagnostic performance, and diagnostic significance of Ag in urine in HEV infection. APPROACH AND RESULTS: Clinical serum and urine samples from patients with acute and chronic HEV infection were analyzed for their Ag levels. Ag in urine was analyzed by biochemical and proteomic approaches. The origin of urinary Ag and Ag kinetics during HEV infection was investigated in mouse and rabbit models, respectively. We found that both the Ag level and diagnostic sensitivity in urine were higher than in serum. Antigenic protein in urine was an E2s-like dimer spanning amino acids 453-606. pORF2 entered urine from serum in mice i.v. injected with pORF2. Ag in urine originated from the secreted form of pORF2 (ORF2 S ) that abundantly existed in hepatitis E patients' serum. HEV Ag was specifically taken up by renal cells and was disposed into urine, during which the level of Ag was concentrated >10-fold, resulting in the higher diagnosing sensitivity of urine Ag than serum Ag. Moreover, Ag in urine appeared 6 days earlier, lasted longer than viremia and antigenemia, and showed good concordance with fecal RNA in a rabbit model. CONCLUSIONS: Our findings demonstrated the origin and diagnostic value of urine Ag and provided insights into the disposal of exogenous protein of pathogens by the host kidney.


Subject(s)
Hepatitis E virus , Hepatitis E , Animals , Mice , Rabbits , Hepatitis E/diagnosis , Hepatitis E virus/genetics , Antigens, Viral , Proteomics , Feces , RNA, Viral
10.
Microb Pathog ; 188: 106560, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272327

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease caused by the destruction of the intestinal mucosal epithelium that affects a growing number of people worldwide. Although the etiology of IBD is complex and still elucidated, the role of dysbiosis and dysregulated proteolysis is well recognized. Various studies observed altered composition and diversity of gut microbiota, as well as increased proteolytic activity (PA) in serum, plasma, colonic mucosa, and fecal supernatant of IBD compared to healthy individuals. The imbalance of intestinal microecology and intestinal protein hydrolysis were gradually considered to be closely related to IBD. Notably, the pivotal role of intestinal microbiota in maintaining proteolytic balance received increasing attention. In summary, we have speculated a mesmerizing story, regarding the hidden role of PA and microbiota-derived PA hidden in IBD. Most importantly, we provided the diagnosis and therapeutic targets for IBD as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Proteolysis , Inflammatory Bowel Diseases/therapy , Intestines , Intestinal Mucosa , Dysbiosis
11.
BMC Cancer ; 24(1): 611, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773399

ABSTRACT

RNA interactomes and their diversified functionalities have recently benefited from critical methodological advances leading to a paradigm shift from a conventional conception on the regulatory roles of RNA in pathogenesis. However, the dynamic RNA interactomes in adenoma-carcinoma sequence of human CRC remain unexplored. The coexistence of adenoma, cancer, and normal tissues in colorectal cancer (CRC) patients provides an appropriate model to address this issue. Here, we adopted an RNA in situ conformation sequencing technology for mapping RNA-RNA interactions in CRC patients. We observed large-scale paired RNA counts and identified some unique RNA complexes including multiple partners RNAs, single partner RNAs, non-overlapping single partner RNAs. We focused on the antisense RNA OIP5-AS1 and found that OIP5-AS1 could sponge different miRNA to regulate the production of metabolites including pyruvate, alanine and lactic acid. Our findings provide novel perspectives in CRC pathogenesis and suggest metabolic reprogramming of pyruvate for the early diagnosis and treatment of CRC.


Subject(s)
Adenoma , Colorectal Neoplasms , MicroRNAs , Pyruvic Acid , RNA, Long Noncoding , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Pyruvic Acid/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Metabolic Reprogramming
12.
Ann Hematol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649594

ABSTRACT

Elderly patients with lymphoproliferative diseases (LPD) are vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we retrospectively described the clinical features and outcomes of the first time infection of Omicron SARS-CoV-2 in 364 elderly patients with lymphoma enrolled in Jiangsu Cooperative Lymphoma Group (JCLG) between November 2022 and April 2023 in China. Median age was 69 years (range 60-92). 54.4% (198/364) of patients were confirmed as severe and critical COVID-19 infection. In univariable analysis, Age > 70 years (OR 1.88, p = 0.003), with multiple comorbidities (OR 1.41, p = 0.005), aggressive lymphoma (OR 2.33, p < 0.001), active disease (progressive or relapsed/refractory, OR 2.02, p < 0.001), and active anti-lymphoma therapy (OR 1.90, p < 0.001) were associated with severe COVID-19. Multiple (three or more) lines of previous anti-lymphoma therapy (OR 3.84, p = 0.021) remained an adverse factor for severe COVID-19 in multivariable analysis. Moreover, CD20 antibody (Rituximab or Obinutuzumab)-based treatments within the last 6 months was associated with severe COVID-19 in the entire cohort (OR 3.42, p < 0.001). Continuous BTK inhibitors might be protective effect on the outcome of COVID-19 infection (OR 0.44, p = 0.043) in the indolent lymphoma cohort. Overall, 7.7% (28/364) of the patients ceased, multiple lines of previous anti-lymphoma therapy (OR 3.46, p = 0.016) remained an adverse factor for mortality.

13.
Langmuir ; 40(24): 12512-12525, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38833532

ABSTRACT

g-C3N4/Ag-ZnO (CAZ) composite photocatalysts were synthesized successfully by the hydrothermal method. The photocatalytic performance of photocatalysts was assessed through experiments measuring both hydrogen (H2) production and the degradation of methylene blue (MB). The H2 production rate of 60% CAZ reached 2.450 mmol·g-1·h-1, which was 8.5 times that of g-C3N4. 25% CAZ degraded 99.14% of MB dye within 40 min, and its degradation rate constant was 12.4 times that of g-C3N4. CAZ composite photocatalysts have good synergistic properties in degradation and hydrogen production and exhibit better photocatalytic performance. A Z-scheme photocatalytic system mechanism of CAZ has been proposed for the enhanced H2 production and photocatalytic degradation rate.

14.
Diabetes Obes Metab ; 26(5): 1593-1604, 2024 May.
Article in English | MEDLINE | ID: mdl-38302734

ABSTRACT

AIM: To provide a systematic overview of diabetes risk prediction models used for prediabetes screening to promote primary prevention of diabetes. METHODS: The Cochrane, PubMed, Embase, Web of Science and China National Knowledge Infrastructure (CNKI) databases were searched for a comprehensive search period of 30 August 30, 2023, and studies involving diabetes prediction models for screening prediabetes risk were included in the search. The Quality Assessment Checklist for Diagnostic Studies (QUADAS-2) tool was used for risk of bias assessment and Stata and R software were used to pool model effect sizes. RESULTS: A total of 29 375 articles were screened, and finally 20 models from 24 studies were included in the systematic review. The most common predictors were age, body mass index, family history of diabetes, history of hypertension, and physical activity. Regarding the indicators of model prediction performance, discrimination and calibration were only reported in 79.2% and 4.2% of studies, respectively, resulting in significant heterogeneity in model prediction results, which may be related to differences between model predictor combinations and lack of important methodological information. CONCLUSIONS: Numerous models are used to predict diabetes, and as there is an association between prediabetes and diabetes, researchers have also used such models for screening the prediabetic population. Although it is a new clinical practice to explore, differences in glycaemic metabolic profiles, potential complications, and methods of intervention between the two populations cannot be ignored, and such differences have led to poor validity and accuracy of the models. Therefore, there is no recommended optimal model, and it is not recommended to use existing models for risk identification in alternative populations; future studies should focus on improving the clinical relevance and predictive performance of existing models.


Subject(s)
Diabetes Mellitus , Hypertension , Prediabetic State , Humans , Prediabetic State/diagnosis , Prediabetic State/epidemiology , Prediabetic State/drug therapy , China
15.
Anal Bioanal Chem ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38981911

ABSTRACT

Rapid, efficient, versatile, easy-to-use, and non-expensive analytical approaches are globally demanded for food analysis. Many ambient ionization approaches based on electrospray ionization (ESI) have been developed recently for the rapid molecular characterization of food products. However, those approaches mainly suffer from insufficient signal duration for comprehensive chemical characterization by tandem MS analysis. Here, a commercially available disposable gel loading tip is used as a low-cost emitter for the direct ionization of untreated food samples. The most important advantages of our approach include high stability, and durability of the signal (> 10 min), low cost (ca. 0.1 USD per run), low sample and solvent consumption, prevention of tip clogging and discharge, operational simplicity, and potential for automation. Quantitative analysis of sulfapyridine, HMF (hydroxymethylfurfural), and chloramphenicol in real sample shows the limit-of-detection 0.1 µg mL-1, 0.005 µg mL-1, 0.01 µg mL-1; the linearity range 0.1-5 µg mL-1, 0.005-0.25 µg mL-1, 0.01-1 µg mL-1; and the linear fits R2 ≥ 0.980, 0.991, 0.986. Moreover, we show that tip-ESI can also afford sequential molecular ionization of untreated viscous samples, which is difficult to achieve by conventional ESI. We conclude that tip-ESI-MS is a versatile analytical approach for the rapid chemical analysis of untreated food samples.

16.
Exp Cell Res ; 431(1): 113716, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37488006

ABSTRACT

Papillary thyroid cancer (PTC) has seen a worldwide expansion in incidence in the past three decades. Tumor-derived exosomes have been associated with the metastasis of cancer cells and are present within the local hypoxic tumor microenvironment, where they mediate intercellular communication by transferring molecules including microRNAs (miRNAs) between cells. Although miRNAs have been shown to serve as non-invasive biomarkers for cancer diagnosis, the role of hypoxia-induced tumor-derived exosomes in PTC progression remains unclear. Herein, we investigated the differentially expressed miRNA expression profiles from GEO datasets (GSE191117 and GSE151180) by using the DESeq package in R and identified a novel role for miR-221-3p as an oncogene in PTC development. In vivo and in vitro loss and gain assays were used to clarify the mechanism of hypoxic PTC cells derived exosomal-miR-221-3p in PTC. miR-221-3p was upregulated in human PTC plasma exosomes, tissues and cell lines. We found that hypoxic PTC cells derived exosomal-miR-221-3p promoted normoxic PTC cells proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro, while inhibition of miR-221-3p limited PTC tumor growth in our PTC xenograft model in nude mice. We finally identified ZFAND5, to be a miR-221-3p target. Mechanistically, hypoxic PTC cell lines-derived exosomes carrying miR-221-3p promoted PTC tumorigenesis by regulating ZFAND5. Our findings further the understanding of the underlying mechanisms associated with PTC progression and identify exosomal-miR-221-3p as a potential biomarker for the diagnosis and prognosis of PTC patients. Our study also suggests that miR-221-3p inhibitors could be a potential treatment strategy for PTC.


Subject(s)
Exosomes , MicroRNAs , Thyroid Neoplasms , Animals , Mice , Humans , Thyroid Cancer, Papillary/pathology , Exosomes/metabolism , Mice, Nude , MicroRNAs/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Thyroid Neoplasms/pathology , Hypoxia/genetics , Hypoxia/metabolism , Cell Movement/genetics , Gene Expression Regulation, Neoplastic/genetics , Tumor Microenvironment
17.
Environ Res ; 258: 119488, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925468

ABSTRACT

Medical waste incineration fly ash (MWI FA) is classified as a hazardous solid waste. Therefore, the development of recycling technologies to convert MWI FA into useful products is necessary and challenging. In this study, we developed a sustainable approach for preparing a catalyst through the pyrolysis of water-washed MWI FA (WW FA-x, where x corresponds to the pyrolysis temperature). Subsequently, it was applied as a potent peroxydisulfate (PDS) activator to remove tetracycline (TC) from water. The results showed that the WW FA-800 exhibited remarkable adsorption performance as well as highly efficient catalytic activation of PDS, with a 115 mg/g maximum TC adsorption capacity and 93.5% (reaction kinetic rate = 315 µmol/g/h) TC removal within 60 min. A synergistic effect was achieved by adsorption and PDS activation. TC degradation was primarily driven by non-radical (1O2 and electron transfer) processes. WW FA-800 possesses multiple active sites, including defects, π-π*, O-CO groups, Fe0, and Cu(I). Three possible pathways for TC decomposition have been proposed, with the majority of intermediates exhibiting less toxicity than TC. Furthermore, the WW FA/PDS system exhibited an excellent anti-interference ability, and universality in the degradation of various organic contaminants. Notably, energy consumption was minimal, approximately 2.80 kWh/(g·TC), and the leachability of heavy metals in the WW FA-800 was within acceptable limits. This study provides a MWI FA recycling route for the development of highly active catalysts.

18.
Antonie Van Leeuwenhoek ; 117(1): 46, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427093

ABSTRACT

The fast-growing rhizobia-like strains S101T and S153, isolated from root nodules of soybean (Glycine max) in Sichuan, People's Republic of China, underwent characterization using a polyphasic taxonomy approach. The strains exhibited growth at 20-40 °C (optimum, 28 °C), pH 4.0-10.0 (optimum, pH 7.0) and up to 2.0% (w/v) NaCl (optimum, 0.01%) on Yeast Mannitol Agar plates. The 16S rRNA gene of strain S101T showed 98.4% sequence similarity to the closest type strain, Ciceribacter daejeonense L61T. Major cellular fatty acids in strain S101T included summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. The predominant quinone was ubiquinone-10. The polar lipids of strain S101T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethyl ethanolamine, phosphatidyl ethanolamine, amino phospholipid, unidentified phosphoglycolipid and unidentified amino-containing lipids. The DNA G + C contents of S101T and S153 were 61.1 and 61.3 mol%, respectively. Digital DNA-DNA hybridization relatedness and average nucleotide identity values between S101T and C. daejeonense L61T were 46.2% and 91.4-92.2%, respectively. In addition, strain S101T promoted the growth of soybean and carried nitrogen fixation genes in its genome, hinting at potential applications in sustainable agriculture. We propose that strains S101T and S153 represent a novel species, named Ciceribacter sichuanensis sp. nov., with strain S101T as the type strain (= CGMCC 1.61309 T = JCM 35649 T).


Subject(s)
Glycine max , Phospholipids , Humans , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phylogeny , DNA, Bacterial/genetics , Phospholipids/chemistry , Fatty Acids/chemistry , Ethanolamines , China , Bacterial Typing Techniques
19.
J Nanobiotechnology ; 22(1): 224, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702709

ABSTRACT

Poorly identified tumor boundaries and nontargeted therapies lead to the high recurrence rates and poor quality of life of prostate cancer patients. Near-infrared-II (NIR-II) fluorescence imaging provides certain advantages, including high resolution and the sensitive detection of tumor boundaries. Herein, a cyanine agent (CY7-4) with significantly greater tumor affinity and blood circulation time than indocyanine green was screened. By binding albumin, the absorbance of CY7-4 in an aqueous solution showed no effects from aggregation, with a peak absorbance at 830 nm and a strong fluorescence emission tail beyond 1000 nm. Due to its extended circulation time (half-life of 2.5 h) and high affinity for tumor cells, this fluorophore was used for primary and metastatic tumor diagnosis and continuous monitoring. Moreover, a high tumor signal-to-noise ratio (up to ~ 10) and excellent preferential mitochondrial accumulation ensured the efficacy of this molecule for photothermal therapy. Therefore, we integrated NIR-II fluorescence-guided surgery and intraoperative photothermal therapy to overcome the shortcomings of a single treatment modality. A significant reduction in recurrence and an improved survival rate were observed, indicating that the concept of intraoperative combination therapy has potential for the precise clinical treatment of prostate cancer.


Subject(s)
Carbocyanines , Mitochondria , Neoplasm Recurrence, Local , Photothermal Therapy , Prostatic Neoplasms , Male , Prostatic Neoplasms/diagnostic imaging , Photothermal Therapy/methods , Humans , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Carbocyanines/chemistry , Optical Imaging/methods , Mice , Surgery, Computer-Assisted/methods , Fluorescent Dyes/chemistry , Mice, Nude , Mice, Inbred BALB C , Infrared Rays , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology
20.
Skeletal Radiol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466412

ABSTRACT

Schwannomatosis is characterized by the development of multiple schwannomas without evidence of vestibular tumors. Segmental schwannomatosis is defined as being limited to one limb or five or fewer contiguous segments of the spine. We report a case of a 20-year-old male with the painful masses of the left upper extremity with associated numbness and paresthesia in the ulnar nerve distribution. The high-frequency ultrasound showed that the ulnar nerve fascicles were enlarged and expanded with beadlike growth. The patient underwent surgery twice and all the tumors were pathologically confirmed to be schwannomas. Together, the medical history, imaging, and pathology findings indicated the diagnosis of segmental schwannomatosis. By the imaging diagnostic tools, MRI is the most commonly used in assistance with diagnosis of segmental schwannomatosis while high-frequency ultrasonography is rare. In this paper, we discuss the value of high-frequency ultrasonography in the diagnosis of this rare disease. This case report provides a deeper understanding of segmental schwannomatosis and may help improve the accuracy of preoperative diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL