Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMC Plant Biol ; 23(1): 355, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37434130

ABSTRACT

BACKGROUND: China is the largest producer of sweet potato in the world, accounting for 57.0% of the global output. Germplasm resources are the basis for promoting innovations in the seed industry and ensuring food security. Individual and accurate identification of sweet potato germplasm is an important part of conservation and efficient utilization. RESULTS: In this study, nine pairs of simple sequence repeat molecular markers and 16 morphological markers were used to construct genetic fingerprints for sweet potato individual identification. Combined with basic information, typical phenotypic photographs, genotype peak graphs, and a two-dimensional code for detection and identification were generated. Finally, a genetic fingerprint database containing 1021 sweet potato germplasm resources in the "National Germplasm Guangzhou Sweet Potato Nursery Genebank in China" was constructed. Genetic diversity analysis of the 1021 sweet potato genotypes using the nine pairs of simple sequence repeat markers revealed a narrow genetic variation range of Chinese native sweet potato germplasm resources, and Chinese germplasm was close to that from Japan and the United States, far from that from the Philippines and Thailand, and the furthest from that from Peru. Sweet potato germplasm resources from Peru had the richest genetic diversity, supporting the view that Peru is the center of origin and domestication of sweet potato varieties. CONCLUSIONS: Overall, this study provides scientific guidance for the conservation, identification, and utilization of sweet potato germplasm resources and offers a reference to facilitate the discovery of important genes to boost sweet potato breeding.


Subject(s)
Dioscorea , Ipomoea batatas , Ipomoea batatas/genetics , Plant Breeding , China , Genetic Variation
2.
Plant Mol Biol ; 109(1-2): 115-133, 2022 May.
Article in English | MEDLINE | ID: mdl-35338442

ABSTRACT

Cross-incompatibility, frequently happening in intraspecific varieties, has seriously restricted sweetpotato breeding. However, the mechanism of sweetpotato intraspecific cross-incompatibility (ICI) remains largely unexplored, especially for molecular mechanism. Treatment by inducible reagent developed by our lab provides a method to generate material for mechanism study, which could promote incompatible pollen germination and tube growth in the ICI group. Based on the differential phenotypes between treated and untreated samples, transcriptome and metabolome were employed to explore the molecular mechanism of sweetpotato ICI in this study, taking varieties 'Guangshu 146' and 'Shangshu 19', a typical incompatible combination, as materials. The results from transcriptome analysis showed oxidation-reduction, cell wall metabolism, plant-pathogen interaction, and plant hormone signal transduction were the essential pathways for sweetpotato ICI regulation. The differentially expressed genes (DEGs) enriched in these pathways were the important candidate genes to response ICI. Metabolome analysis showed that multiple differential metabolites (DMs) involved oxidation-reduction were identified. The most significant DM identified in comparison between compatible and incompatible samples was vitexin-2-O-glucoside, a flavonoid metabolite. Corresponding to it, cytochrome P450s were the most DEGs identified in oxidation-reduction, which were implicated in flavonoid biosynthesis. It further suggested oxidation-reduction play an important role in sweetpotato ICI regulation. To validate function of oxidation-reduction, reactive oxygen species (ROS) was detected in compatible and incompatible samples. The green fluorescence was observed in incompatible but not in compatible samples. It indicated ROS regulated by oxidation-reduction is important pathway to response sweetpotato ICI. The results in this study would provide valuable insights into molecular mechanisms for sweetpotato ICI.


Subject(s)
Ipomoea batatas , Transcriptome , Flavonoids/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Metabolome , Plant Breeding , Reactive Oxygen Species/metabolism
3.
Molecules ; 27(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35630594

ABSTRACT

Leafy sweet potato (Ipomoea batatas L.) is an excellent source of nutritious greens and natural antioxidants, but reports on antioxidants content and activity at buds, leaves, petioles, and stems are scarce. Therefore, the total phenolics content (TPC), total anthocyanins content (TAC), and antioxidant activity (assessed by DPPH and ABTS radical scavenging activities and ferric reducing antioxidant power (FRAP)) were investigated in four aerial parts of 11 leafy sweet potato varieties. The results showed that varieties with pure green aerial parts, independently of the part analyzed, had higher TPC, FRAP, and ABTS radical scavenging activities. The green-purple varieties had a significantly higher TAC, while variety GS-17-22 had the highest TAC in apical buds and leaves, and variety Ziyang in petioles and stems. Among all parts, apical buds presented the highest TPC and antioxidant capacity, followed by leaves, petioles, and stems, while the highest TAC level was detected in leaves. The TPC was positively correlated with ABTS radical scavenging activity and FRAP in all parts studied, whereas the TAC was negatively correlated with DPPH radical scavenging activity. Collectively, the apical buds and leaves of sweet potato had the higher levels of nutritional values. These results would provide reference values for further breeding of leafy sweet potatoes.


Subject(s)
Ipomoea batatas , Anthocyanins/chemistry , Antioxidants/chemistry , Ipomoea batatas/chemistry , Phenols/chemistry , Plant Breeding , Plant Leaves/chemistry
4.
BMC Plant Biol ; 15: 180, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26174091

ABSTRACT

BACKGROUND: The tuberous root of sweetpotato is undisputedly an important organ from agronomic and biological perspectives. Little is known regarding the regulatory networks programming tuberous root formation and development. RESULTS: Here, as a first step toward understanding these networks, we analyzed and characterized the genome-wide transcriptional profiling and dynamics of sweetpotato root in seven distinct developmental stages using a customized microarray containing 39,724 genes. Analysis of these genes identified temporal programs of gene expression, including hundreds of transcription factor (TF) genes. We found that most genes active in roots were shared across all developmental stages, although significant quantitative changes in gene abundance were observed for 5,368 (including 435 TFs) genes. Clustering analysis of these differentially expressed genes pointed out six distinct expression patterns during root development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that genes involved in different processes were enriched at specific stages of root development. In contrast with the large number of shared expressed genes in root development, each stage or period of root development has only a small number of specific genes. In total, 712 (including 27 TFs) and 1,840 (including 115 TFs) genes were identified as root-stage and root-period specific, respectively at the level of microarray. Several of the specific TF genes are known regulators of root development, including DA1-related protein, SHORT-ROOT and BEL1-like. The remaining TFs with unknown roles would also play critical regulatory roles during sweetpotato tuberous root formation and development. CONCLUSIONS: The results generated in this study provided spatiotemporal patterns of root gene expression in support of future efforts for understanding the underlying molecular mechanism that control sweetpotato yield and quality.


Subject(s)
Gene Expression Regulation, Plant , Ipomoea batatas/growth & development , Ipomoea batatas/genetics , Gene Expression Regulation, Developmental , Ipomoea batatas/metabolism , Oligonucleotide Array Sequence Analysis , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Transcriptome
5.
Ear Nose Throat J ; : 1455613221100030, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35730630

ABSTRACT

A thyroglossal duct cyst is the most common congenital disease in the neck. There are two age groups usually associated with thyroglossal duct cysts: 1-11 years in children and 30-60 years in adults. These midline neck masses are typically located anteriorly in the neck, inferior to the hyoid bone. We report an extremely rare case of an intralaryngeal thyroglossal duct cyst without a neck mass, presenting with hoarseness as the sole symptom. A 64-year-old man presented with a 3-month history of hoarseness. On physical examination, no neck mass or swelling was observed during cervical palpation. Laryngostroboscopy revealed a large submucosal mass in the right glottis and supraglottis, and mobility of the right vocal cord was restricted. Surgery was performed via an external approach to completely resect the cyst, together with the middle part of the hyoid bone. Histopathologic examination of the cyst led to a diagnosis of thyroglossal duct cyst. The patient recovered well and his voice returned to normal. Attention should be paid to the occurrence of rare types of thyroglossal duct cyst in unusual clinical sites. Adequate radiological examinations should be performed, and reading the computed tomography or magnetic resonance imaging scans carefully before surgery is important to avoid misdiagnosis.

6.
BMC Plant Biol ; 11: 139, 2011 Oct 20.
Article in English | MEDLINE | ID: mdl-22011271

ABSTRACT

BACKGROUND: Currently there exists a limited availability of genetic marker resources in sweetpotato (Ipomoea batatas), which is hindering genetic research in this species. It is necessary to develop more molecular markers for potential use in sweetpotato genetic research. With the newly developed next generation sequencing technology, large amount of transcribed sequences of sweetpotato have been generated and are available for identifying SSR markers by data mining. RESULTS: In this study, we investigated 181,615 ESTs for the identification and development of SSR markers. In total, 8,294 SSRs were identified from 7,163 SSR-containing unique ESTs. On an average, one SSR was found per 7.1 kb of EST sequence with tri-nucleotide motifs (42.9%) being the most abundant followed by di- (41.2%), tetra- (9.2%), penta- (3.7%) and hexa-nucleotide (3.1%) repeat types. The top five motifs included AG/CT (26.9%), AAG/CTT (13.5%), AT/TA (10.6%), CCG/CGG (5.8%) and AAT/ATT (4.5%). After removing possible duplicate of published EST-SSRs of sweetpotato, a total of non-repeat 7,958 SSR motifs were identified. Based on these SSR-containing sequences, 1,060 pairs of high-quality SSR primers were designed and used for validation of the amplification and assessment of the polymorphism between two parents of one mapping population (E Shu 3 Hao and Guang 2k-30) and eight accessions of cultivated sweetpotatoes. The results showed that 816 primer pairs could yield reproducible and strong amplification products, of which 195 (23.9%) and 342 (41.9%) primer pairs exhibited polymorphism between E Shu 3 Hao and Guang 2k-30 and among the 8 cultivated sweetpotatoes, respectively. CONCLUSION: This study gives an insight into the frequency, type and distribution of sweetpotato EST-SSRs and demonstrates successful development of EST-SSR markers in cultivated sweetpotato. These EST-SSR markers could enrich the current resource of molecular markers for the sweetpotato community and would be useful for qualitative and quantitative trait mapping, marker-assisted selection, evolution and genetic diversity studies in cultivated sweetpotato and related Ipomoea species.


Subject(s)
Expressed Sequence Tags , Genome, Plant , Ipomoea batatas/genetics , Microsatellite Repeats , DNA Primers/genetics , DNA, Plant/genetics , Genetic Markers , Genotype
7.
Mitochondrial DNA B Resour ; 6(3): 968-969, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33796701

ABSTRACT

The complete chloroplast genome of a novel chlorophyll-deficient mutant (clm) and its wild type (WT) in sweetpotato (Ipomoea batatas L.) was sequenced. The complete chloroplast genome of clm and WT was 161,393 bp and 161,429 bp in length, containing a large single copy (LSC) region of 87,561 bp and 87,597 bp, respectively, a small single copy (SSC) region with the same length of 30,890 bp and a pair of inverted repeat regions (IRs) with the same length of 12,052 bp. Both of them contained 132 genes including 87 protein-coding sequences, 37 tRNA, and eight rRNA. Comparing to the WT, four SNPs and three INDELs were detected and only one INDEL in the exon affecting the translation of rpoA gene. Phylogenetic analysis showed that clm and WT were closely related to Ipomoea tabascana. The complete chloroplast genome of clm and its WT will play a role in understanding the molecular mechanism of chlorophyll deficiency and developing molecular markers in sweetpotato.

8.
BMC Genomics ; 11: 726, 2010 Dec 24.
Article in English | MEDLINE | ID: mdl-21182800

ABSTRACT

BACKGROUND: The tuberous root of sweet potato is an important agricultural and biological organ. There are not sufficient transcriptomic and genomic data in public databases for understanding of the molecular mechanism underlying the tuberous root formation and development. Thus, high throughput transcriptome sequencing is needed to generate enormous transcript sequences from sweet potato root for gene discovery and molecular marker development. RESULTS: In this study, more than 59 million sequencing reads were generated using Illumina paired-end sequencing technology. De novo assembly yielded 56,516 unigenes with an average length of 581 bp. Based on sequence similarity search with known proteins, a total of 35,051 (62.02%) genes were identified. Out of these annotated unigenes, 5,046 and 11,983 unigenes were assigned to gene ontology and clusters of orthologous group, respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 17,598 (31.14%) unigenes were mapped to 124 KEGG pathways, and 11,056 were assigned to metabolic pathways, which were well represented by carbohydrate metabolism and biosynthesis of secondary metabolite. In addition, 4,114 cDNA SSRs (cSSRs) were identified as potential molecular markers in our unigenes. One hundred pairs of PCR primers were designed and used for validation of the amplification and assessment of the polymorphism in genomic DNA pools. The result revealed that 92 primer pairs were successfully amplified in initial screening tests. CONCLUSION: This study generated a substantial fraction of sweet potato transcript sequences, which can be used to discover novel genes associated with tuberous root formation and development and will also make it possible to construct high density microarrays for further characterization of gene expression profiles during these processes. Thousands of cSSR markers identified in the present study can enrich molecular markers and will facilitate marker-assisted selection in sweet potato breeding. Overall, these sequences and markers will provide valuable resources for the sweet potato community. Additionally, these results also suggested that transcriptome analysis based on Illumina paired-end sequencing is a powerful tool for gene discovery and molecular marker development for non-model species, especially those with large and complex genome.


Subject(s)
DNA, Complementary/genetics , Gene Expression Profiling/methods , Ipomoea batatas/genetics , Minisatellite Repeats/genetics , Plant Roots/genetics , Sequence Analysis, DNA/methods , Arabidopsis/genetics , Base Sequence , Databases, Genetic , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genetic Markers , Molecular Sequence Annotation , Molecular Sequence Data , Regulatory Sequences, Nucleic Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL