Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Toxicol Appl Pharmacol ; 487: 116976, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777097

ABSTRACT

Staff and animals in livestock buildings are constantly exposed to fine particulate matter (PM2.5), which affects their respiratory health. However, its exact pathogenic mechanism remains unclear. Regulator of G-protein signaling 2 (RGS2) has been reported to play a regulatory role in pneumonia. The aim of this study was to explore the therapeutic potential of RGS2 in cowshed PM2.5-induced respiratory damage. PM2.5 was collected from a cattle farm, and the alveolar macrophages (NR8383) of the model animal rat were stimulated with different treatment conditions of cowshed PM2.5. The RGS2 overexpression vector was constructed and transfected it into cells. Compared with the control group, cowshed PM2.5 significantly induced a decrease in cell viability and increased the levels of apoptosis and proinflammatory factor expression. Overexpression of RGS2 ameliorated the above-mentioned cellular changes induced by cowshed PM2.5. In addition, PM2.5 has significantly induced intracellular Ca2+ dysregulation. Affinity inhibition of Gq/11 by RGS2 attenuated the cytosolic calcium signaling pathway mediated by PLCß/IP3R. To further investigate the causes and mechanisms of action of differential RGS2 expression, the possible effects of oxidative stress and TLR2/4 activation were investigated. The results have shown that RGS2 expression was not only regulated by oxidative stress-induced nitric oxide during cowshed PM2.5 cells stimulation but the activation of TLR2/4 had also an important inhibitory effect on its protein expression. The present study demonstrates the intracellular Ca2+ regulatory role of RGS2 during cellular injury, which could be a potential target for the prevention and treatment of PM2.5-induced respiratory injury.


Subject(s)
Macrophages, Alveolar , Particulate Matter , RGS Proteins , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , RGS Proteins/genetics , RGS Proteins/metabolism , Particulate Matter/toxicity , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Rats , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Cattle , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Cell Line , Calcium Signaling/drug effects , Calcium/metabolism , Apoptosis/drug effects , Air Pollutants/toxicity
2.
Ecotoxicol Environ Saf ; 278: 116381, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38676963

ABSTRACT

Bioaerosols produced during animal production have potential adverse effects on the health of workers and animals. Our objective was to investigate characteristics, antibiotic-resistance genes (ARGs), and health risks of bioaerosols in various animal barns. Poultry and swine barns had high concentrations of airborne bacteria (11156 and 10917 CFU/m3, respectively). Acinetobacter, Clostridium sensu stricto, Corynebacterium, Pseudomonas, Psychrobacter, Streptococcus, and Staphylococcus were dominant pathogenic bacteria in animal barns, with Firmicutes being the most abundant bacterial phylum. Based on linear discriminant analysis effect size (LEfSe), there were more discriminative biomarkers in cattle barns than in poultry or swine barns, although the latter had the highest abundance of bacterial pathogens and high abundances of ARGs (including tetM, tetO, tetQ, tetW sul1, sul2, ermA, ermB) and intI1). Based on network analyses, there were higher co-occurrence patterns between bacteria and ARGs in bioaerosol from swine barns. Furthermore, in these barns, relative abundance of bacteria in bioaerosol samples was greatly affected by environmental factors, mainly temperature, relative humidity, and concentrations of CO2, NH3, and PM2.5. This study provided novel data regarding airborne bio-contaminants in animal enclosures and an impetus to improve management to reduce potential health impacts on humans and animals.


Subject(s)
Aerosols , Air Microbiology , Bacteria , Animals , Aerosols/analysis , Swine , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Cattle , Environmental Monitoring , Animal Husbandry , Poultry , Housing, Animal , Humans , Particulate Matter/analysis , Drug Resistance, Microbial/genetics , Air Pollution, Indoor/analysis
3.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891899

ABSTRACT

In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.


Subject(s)
Carps , Fish Proteins , MicroRNAs , Poly I-C , Signal Transduction , Animals , Carps/genetics , Carps/immunology , Carps/virology , Carps/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Immunity, Innate/genetics , Janus Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Poly I-C/pharmacology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics
4.
Opt Express ; 31(10): 15836-15847, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157675

ABSTRACT

Metasurface is a kind of sub-wavelength artificial electromagnetic structure, which can resonate with the electric field and magnetic field of the incident light, promote the interaction between light and matter, and has great application value and potential in the fields of sensing, imaging, and photoelectric detection. Most of the metasurface-enhanced ultraviolet detectors reported so far are metal metasurfaces, which have serious ohmic losses, and studies on the use of all-dielectric metasurface-enhanced ultraviolet detectors are rare. The multilayer structure of the diamond metasurface-gallium oxide active layer-silica insulating layer-aluminum reflective layer was theoretically designed and numerically simulated. In the case of gallium oxide thickness of 20 nm, the absorption rate of more than 95% at the working wavelength of 200-220 nm is realized, and the working wavelength can be adjusted by changing the structural parameters. The proposed structure has the characteristics of polarization insensitivity and incidence angle insensitivity. This work has great potential in the fields of ultraviolet detection, imaging, and communications.

5.
Opt Express ; 31(21): 34252-34263, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859186

ABSTRACT

Circularly polarized light (CPL) finds diverse applications in fields such as quantum communications, quantum computing, circular dichroism (CD) spectroscopy, polarization imaging, and sensing. However, conventional techniques for detecting CPL face challenges related to equipment miniaturization, system integration, and high-speed operation. In this study, we propose a novel design that addresses these limitations by employing a quarter waveplate constructed from a diamond metasurface, in combination with a linear polarizer crafted from metallic aluminum. The diamond array, with specific dimensions (a = 84 nm, b = 52 nm), effectively transforms left-handed and right-handed circularly polarized light into two orthogonally linearly polarized beams who have a polarization degree of approximately 0.9. The aluminum linear polarizer then selectively permits the transmission of these transformed linearly polarized beams.Our proposed design showcases remarkable circular dichroism performance at a wavelength of 280 nm, concurrently maintaining high transmittance and achieving a substantial extinction ratio of 25. Notably, the design attains an ultraviolet wavelength transmission efficiency surpassing 80%. Moreover, our design incorporates a rotation mechanism that enables the differentiation of linearly polarized light and singly circularly polarized light. In essence, this innovative design introduces a fresh paradigm for ultraviolet circularly polarized light detection, offering invaluable insights and references for applications in polarization detection, imaging, biomedical diagnostics, and circular dichroic spectroscopy.

6.
Environ Res ; 217: 114963, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36471558

ABSTRACT

17ß-estradiol (E2) pollution has attracted much attention, and the existence of E2 poses certain risks to the environment and human health. However, the mechanism of microbial degradation of E2 remains unclear. In this study, the location of E2-degrading enzymes was investigated, and transcriptome analysis of Microbacterium resistens MZT7 (M. resistens MZT7) exposed to E2. The degradation of E2 by M. resistens MZT7 was via the biological action of E2-induced intracellular enzymes. With the RNA sequencing, we found 1109 differentially expressed genes (DEGs). Among them, 773 genes were up-regulated and 336 genes were down-regulated. The results of the RNA sequencing indicated the DEGs were related to transport, metabolism, and stress response. Genes for transport, transmembrane transport, oxidoreductase activity, ATPase activity, transporter activity and quorum sensing were up-regulated. Genes for the tricarboxylic acid cycle, ribosome, oxidative phosphorylation and carbon metabolism were down-regulated. In addition, heterologous expression of one enzymes efficiently degraded E2. These findings provide some new insights into the molecular mechanism of biotransformation of E2 by M. resistens MZT7.


Subject(s)
Estradiol , Gene Expression Profiling , Humans , Biotransformation , Oxidative Phosphorylation , Transcriptome
7.
Molecules ; 28(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37375254

ABSTRACT

We provide a method to regulate intramolecular charge transfer (ICT) through distorting fragment dipole moments based on molecular planarity and intuitively investigate the physical mechanisms of one-photon absorption (OPA), two-photon absorption (TPA), and electron circular dichroism (ECD) properties of the multichain 1,3,5 triazine derivatives o-Br-TRZ, m-Br-TRZ, and p-Br-TRZ containing three bromobiphenyl units. As the position of the C-Br bond on the branch chain becomes farther away, the molecular planarity is weakened, with the position of charge transfer (CT) on the branch chain of bromobiphenyl changing. The excitation energy of the excited states decreases, which leads to the redshift of the OPA spectrum of 1,3,5-triazine derivatives. The decrease in molecular plane results in a change in the magnitude and direction of the molecular dipole moment on the bromobiphenyl branch chain, which weakens the intramolecular electrostatic interaction of bromobiphenyl branch chain 1,3,5-triazine derivatives and weakens the charge transfer excitation of the second step transition in TPA, leading to an increase in the enhanced absorption cross-section. Furthermore, molecular planarity can also induce and regulate chiral optical activity through changing the direction of the transition magnetic dipole moment. Our visualization method helps to reveal the physical mechanism of TPA cross-sections generated via third-order nonlinear optical materials in photoinduced CT, which is of great significance for the design of large TPA molecules.

8.
Surg Endosc ; 36(6): 3721-3731, 2022 06.
Article in English | MEDLINE | ID: mdl-34398281

ABSTRACT

BACKGROUND: Laparoscopic surgery (LS) for hilar cholangiocarcinoma (HCCa) remains under development, and its feasibility and safety remain controversial. This study therefore evaluated the outcomes of this technique and compared them to those of open surgery (OS). METHODS: In total, 149 patients underwent surgical resection for HCCa at our center between February 2017 and September 2020. After screening and propensity score matching, 47 OS group patients and 20 LS group patients remained, and their baseline characteristics, pathologic findings, surgical outcomes, and long-term outcomes were compared. RESULT: The baseline characteristics and pathologic findings were comparable between the two groups. The mean incision length was longer in the OS group than in the LS group (21.0 cm vs. 13.2 cm, P < 0.001). No significant differences were observed in the other surgical outcomes between the two groups. Regarding long-term outcomes, the overall survival rate and disease-free survival rate of the OS group were significantly higher than those of the LS group (P = 0.0057, P = 0.043). However, the two groups had significantly different follow-up times (19.2 months vs. 14.7 months, P = 0.041). CONCLUSION: LS for HCCa is technically achievable, and our study revealed that it is equivalent to OS in terms of short-term outcomes but was poorer in terms of long-term outcomes.


Subject(s)
Bile Duct Neoplasms , Klatskin Tumor , Laparoscopy , Bile Duct Neoplasms/surgery , Humans , Klatskin Tumor/surgery , Laparoscopy/methods , Propensity Score , Retrospective Studies , Treatment Outcome
9.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144543

ABSTRACT

Estrogen contamination is widespread and microbial degradation is a promising removal method; however, unfavorable environments can hinder microbial function. In this study, a natural estrogen 17ß-estradiol (E2) was introduced as a degradation target, and a new combination of bacterial carrier was investigated. We found the best combination of polyvinyl alcohol (PVA) and sodium alginate (SA) was 4% total concentration, PVA:SA = 5:5, with nano-Fe3O4 at 2%, and maltose and glycine added to promote degradation, for which the optimal concentrations were 5 g·L-1 and 10 g·L-1, respectively. Based on the above exploration, the bacterial carrier was made, and the degradation efficiency of the immobilized bacteria reached 92.3% in 5 days. The immobilized bacteria were reused for three cycles, and the degradation efficiency of each round could exceed 94%. Immobilization showed advantages at pH 5, pH 11, 10 °C, 40 °C, and 40 g·L-1 NaCl, and the degradation efficiency of the immobilized bacteria was higher than 90%. In the wastewater, the immobilized bacteria could degrade E2 to about 1 mg·L-1 on the 5th day. This study constructed a bacterial immobilization carrier using a new combination, explored the application potential of the carrier, and provided a new choice of bacterial immobilization carrier.


Subject(s)
Polyvinyl Alcohol , Wastewater , Alginates/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Estradiol/metabolism , Estrogens/metabolism , Glycine/metabolism , Magnetic Phenomena , Maltose/metabolism , Sodium Chloride/metabolism
10.
Molecules ; 24(16)2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31408943

ABSTRACT

A multi-residue method for the determination of 107 pesticide residues in wolfberry has been developed and validated. Similar pretreatment approaches were compared, and the linearity, matrix effect, analysis limits, precision, stability and accuracy were validated, which verifies the satisfactory performance of this new method. The LODs and LOQs were in the range of 0.14-1.91 µg/kg and 0.46-6.37 µg/kg, respectively. The recovery of analytes at three fortification levels (10 µg/kg, 50 µg/kg, 100 µg/kg) ranged from 63.3-123.0%, 72.0-118.6% and 67.0-118.3%, respectively, with relative standard deviations (RSDs) below 15.0%. The proposed method was applied to the analysis of fifty wolfberry samples collected from supermarkets, pharmacies and farmers' markets in different cities of Shandong Province. One hundred percent of the samples analyzed included at least one pesticide, and a total of 26 pesticide residues was detected in fifty samples, which mainly were insecticides and bactericide. Several pesticides with higher detection rates were 96% for acetamiprid, 82% for imidacloprid, 54% for thiophanate-methyl, 50% for blasticidin-S, 42% for carbendazim, 42% for tebuconazole and 36% for difenoconazole in wolfberry samples. This study proved the adaptability of the developed method to the detection of multiple pesticide residues in wolfberry and provided basis for the research on the risks to wolfberry health.


Subject(s)
Liquid-Liquid Extraction/methods , Lycium/chemistry , Pesticide Residues/isolation & purification , Benzimidazoles/isolation & purification , Carbamates/isolation & purification , Chromatography, High Pressure Liquid/methods , Humans , Neonicotinoids/isolation & purification , Nitro Compounds/isolation & purification , Nucleosides/isolation & purification , Pesticide Residues/classification , Tandem Mass Spectrometry/methods , Thiophanate/isolation & purification , Triazoles/isolation & purification
11.
Plant Cell Rep ; 36(10): 1641-1653, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28741131

ABSTRACT

KEY MESSAGE: Cytological observations of microsporogenesis in the allotriploid lily cultivar 'Cocossa' showed that viable pollen production could be attributed mainly to disoriented spindles, abnormal cytokinesis, and cytomixis during male meiosis. To identify the reasons why the allotriploid lily cultivar 'Cocossa' can produce aneuploid and euploid functional male gametes and can be used as the paternal parent in lily introgression breeding, we performed a detailed investigation of microsporogenesis using the conventional cytological methods. The allotriploid not only produced single pollen grains with variable sizes but also produced adherent pollen grains. Pollen viability was estimated at 50.1% based on staining and 30.8% based on germination. Based on the chromosomal analysis of BC2 plants derived from Oriental cultivars (♀) crossed with the OOT cultivar 'Cocossa' (♂), it was concluded that the objective allotriploid contributed haploid (x), diploid (2x), and aneuploid chromosome complements. Common meiotic abnormalities were observed, indicating the high genetic imbalance of this allotriploid. In addition to normally oriented metaphase II spindles (linear and perpendicular), abnormal spindles, such as parallel, tripolar, fused, and multiple spindles, accounted for 6.21, 6.41, 14.27, and 1.17%, respectively. Tripolar and fused spindles resulted in the production of triads and dyads, which contributed to unreduced pollen production. Some microsporocytes exhibited complete or partial absence of cytokinesis, which led to relatively high frequencies of monads, dyads, and triads. Furthermore, the phenomenon of cytomixis during microsporogenesis occurred mainly in the first meiotic prophase and early development of pollen grains, which we assume is a possible cause of unreduced gamete generation. Our study offers a new resource for lily introgression breeding.


Subject(s)
Chromosomes, Plant/genetics , Gametogenesis, Plant/genetics , Lilium/genetics , Meiosis/genetics , Triploidy , Aneuploidy , Crosses, Genetic , Diploidy , Fertility/genetics , Haploidy , Hybridization, Genetic , Lilium/classification , Microscopy, Electron, Scanning , Plant Breeding , Pollen/genetics , Pollen/ultrastructure , Species Specificity
12.
Phys Chem Chem Phys ; 16(10): 4504-9, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24108011

ABSTRACT

We propose an effective strategy to enhance and modulate the photoluminescence (PL) of graphene quantum dots (GQDs) in the vicinity of a single silver nano-octahedron (SNO) utilizing three-dimensional finite-difference time-domain calculations. The SNO is designed to act as a multifrequency plasmonic antenna with multiple plasmon resonance modes covering multiple emission peaks of GQDs. The spectral modifications of spontaneous emission are investigated with the variations of the GQD's position and dipole moment orientation relative to the SNO. The PL colour of the GQD can be precisely adjusted between blue and green through the strong interaction with the designed antenna. The multicolour features of GQDs will also facilitate their potential applications as eco-friendly and multifunctional optical probes. The study contributes to a deeper understanding of the PL properties of GQDs near the metallic nanoparticles.

13.
J Nanosci Nanotechnol ; 14(5): 3412-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24734561

ABSTRACT

Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.


Subject(s)
Gold/chemistry , Graphite/chemistry , Metal Nanoparticles , Oxides/chemistry , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared
14.
J Ind Microbiol Biotechnol ; 41(8): 1227-35, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24947581

ABSTRACT

The transglutaminase (BTG) from Bacillus subtilis is considered to be a new type of transglutaminase for the food industry. Given that the BTG gene only encodes a mature peptide, the expression of BTG in heterologous microbial hosts could affect their normal growth due to BTG's typical transglutaminase activity which can catalyze cross-linking of proteins in the cells. Therefore, we developed a novel approach to suppress BTG activity and reduce the toxicity on microbial hosts, thus improving BTG yield. Genes encoding the respective regions of transglutaminase propeptide from seven species of Streptomyces were fused to the N-terminal of the BTG gene to produce fusion proteins. We found that all the fused propeptides could suppress BTG activity. Importantly, BTG activity could be completely restored after the removal of the propeptides by proteolytic cleavage. Of the seven propeptides tested, the propeptide proD from Streptomyces caniferus had the strongest suppressive effect on BTG activity (70 % of the activity suppressed). Moreover, fusion protein proD-BTG (containing proD) also exhibited the highest yield which was more than twofold of the expression level of BTG in an active form in Escherichia coli. Secretion expression of BTG and proD-BTG in Corynebacterium glutamicum further showed that our novel approach was suitable for the efficient BTG expression, thus providing a valuable platform for further optimization of large-scale BTG production.


Subject(s)
Bacillus subtilis/enzymology , Bioreactors , Enzyme Precursors/genetics , Recombinant Fusion Proteins/biosynthesis , Streptomyces/genetics , Transglutaminases/biosynthesis , Amino Acid Sequence , Corynebacterium glutamicum , Electrophoresis, Polyacrylamide Gel , Enzyme Precursors/metabolism , Escherichia coli , Industrial Microbiology/methods , Molecular Sequence Data , Plasmids/genetics , Rosaniline Dyes , Streptomyces/enzymology , Transglutaminases/antagonists & inhibitors , Transglutaminases/genetics
15.
Sci Rep ; 14(1): 10374, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710787

ABSTRACT

To elucidate the neurological features of Hansen disease. The medical records of patients with confirmed Hansen disease transferred from the neurology department were reviewed, and all medical and neurological manifestations of Hansen disease were assessed. Eleven patients with confirmed Hansen disease, 10 with newly detected Hansen disease and 1 with relapsed Hansen disease, who visited neurology departments were enrolled. The newly detected patients with Hansen disease were classified as having lepromatous leprosy (LL, n = 1), borderline lepromatous leprosy (BL, n = 2), borderline leprosy (BB, n = 2), borderline tuberculoid leprosy (BT, n = 1), tuberculoid leprosy (TT, n = 2), or pure neural leprosy (PNL, n = 2). All of the patients with confirmed Hansen were diagnosed with peripheral neuropathy (100.00%, 11/11). The symptoms and signs presented were mainly limb numbness (100.00%, 11/11), sensory and motor dysfunction (100.00%, 11/11), decreased muscle strength (90.90%, 10/11), and skin lesions (81.81%, 9/11). Nerve morphological features in nerve ultrasonography (US) included peripheral nerve asymmetry and segmental thickening (100.00%, 9/9). For neuro-electrophysiology feature, the frequency of no response of sensory nerves was significantly higher than those of motor nerves [(51.21% 42/82) vs (24.70%, 21/85)(P = 0.0183*)] by electrodiagnostic (EDX) studies. Nerve histological features in nerve biopsy analysis included demyelination (100.00%, 5/5) and axonal damage (60.00%, 3/5). In addition to confirmed diagnoses by acid-fast bacteria (AFB) staining (54.54%, 6/11) and skin pathology analysis (100.00%, 8/8), serology and molecular technology were positive in 36.36% (4/11) and 100.00% (11/11) of confirmed patients of Hansen disease, respectively. It is not uncommon for patients of Hansen disease to visit neurology departments due to peripheral neuropathy. The main pathological features of affected nerves are demyelination and axonal damage. The combination of nerve US, EDX studies, nerve biopsy, and serological and molecular tests can improve the diagnosis of Hansen disease.


Subject(s)
Leprosy , Peripheral Nervous System Diseases , Humans , Male , Female , Retrospective Studies , Adult , Middle Aged , Leprosy/pathology , Leprosy/diagnosis , Leprosy/complications , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/pathology , Aged , Young Adult
16.
Animals (Basel) ; 14(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38254454

ABSTRACT

The ubiquitous Gram-negative bacterial pathogen Aeromonas veronii (A. veronii) can easily cause inflammatory reactions in aquatic organisms, resulting in high mortality and huge economic losses. MicroRNAs (miRNAs) participate in immune regulation and have certain conserved properties. MiRNAs are involved in the immune responses of a variety of teleost fish infected with bacteria, whereas there is no related report in silver carp (Hypophthalmichthys molitrix). Therefore, we identified the expression profiles of miRNA in silver carp stimulated by A. veronii and LPS. Among them, the quantity of differentially expressed miRNAs (DEmiRNAs) obtained in the silver carp challenge group was 73 (A. veronii) and 90 (LPS). The GO enrichment and analysis of KEGG pathways have shown that the predicted target genes are mainly associated with lipid metabolism and the immune response in silver carp. This indicates the possibility that miRNAs play a role in regulating immune-related pathways. In addition, a total of eight DEmiRNAs validated the accuracy of the sequencing result via quantitative real-time PCR (qRT-PCR). Finally, we selected the silver carp head kidney macrophage cells (HKCs) as model cells and proved that miR-30b-5p can regulate the inflammatory response in silver carp HKCs. This study lays the foundation for exploring miRNA regulation in silver carp during pathogenic bacterial infection. In addition, it provides a reference for the future development of non-coding RNA antibacterial drugs.

17.
Toxicology ; 504: 153797, 2024 May.
Article in English | MEDLINE | ID: mdl-38583737

ABSTRACT

Particulate matter 2.5 (PM2.5) is a highly hazardous airborne particulate matter that poses a significant risk to humans and animals. Urban airborne particulate matter contributes to the increased incidence and mortality of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), in humans. However, the specific mechanism by which PM2.5 affects animals in barn environments is yet to be elucidated. In this study, we investigated the effect of exposure to cow barn PM2.5 on rat alveolar macrophages (NR8383) and found that it induced apoptosis via the miR-212-5p/RASSF1 pathway. We found that lnc-Clic5 expression was downregulated in NR8383 cells exposed to cow barn PM2.5. Lnc-Clic5 plays a competitive endogenous RNA (ceRNA) regulatory role by sponging miR-212-5p to attenuate the regulation of RASSF1. Moreover, lnc-Clic5 overexpression inhibited NR8383 apoptosis by targeting the miR-212-5p/RASSF1 pathway. Co-treatment with miR-212-5p and lnc-Clic5 in the presence of cow barn PM2.5 revealed that lnc-Clic5 reversed NR8383 cell apoptosis induced by PM2.5 when miR-212-5p was overexpressed. These findings contribute to the study of ncRNAs and ceRNAs regulating PM2.5-induced apoptosis in animal farms, provide therapeutic targets for lung macrophage apoptosis, and may be useful for further evaluating the toxicological effects of PM2.5 in farmhouses on the respiratory systems of humans and animals.


Subject(s)
Apoptosis , Macrophages, Alveolar , MicroRNAs , Particulate Matter , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Apoptosis/drug effects , Rats , Particulate Matter/toxicity , Cattle , Cell Line , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Air Pollutants/toxicity
18.
Biomolecules ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927097

ABSTRACT

MicroRNAs (miRNAs) are highly conserved endogenous single-stranded non-coding RNA molecules that play a crucial role in regulating gene expression to maintain normal physiological functions in fish. Nevertheless, the specific physiological role of miRNAs in lower vertebrates, particularly in comparison to mammals, remains elusive. Additionally, the mechanisms underlying the control of antiviral responses triggered by viral stimulation in fish are still not fully understood. In this study, we investigated the regulatory impact of miR-1388 on the signaling pathway mediated by IFN regulatory factor 3 (IRF3). Our findings revealed that following stimulation with the viral analog poly(I:C), the expression of miR-1388 was significantly upregulated in primary immune tissues and macrophages. Through a dual luciferase reporter assay, we corroborated a direct targeting relationship between miR-1388 and tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3). Furthermore, our study demonstrated a distinct negative post-transcriptional correlation between miR-1388 and TRAF3. We observed a significant negative post-transcriptional regulatory association between miR-1388 and the levels of antiviral genes following poly(I:C) stimulation. Utilizing reporter plasmids, we elucidated the role of miR-1388 in the antiviral signaling pathway activated by TRAF3. By intervening with siRNA-TRAF3, we validated that miR-1388 regulates the expression of antiviral genes and the production of type I interferons (IFN-Is) through its interaction with TRAF3. Collectively, our experiments highlight the regulatory influence of miR-1388 on the IRF3-mediated signaling pathway by targeting TRAF3 post poly(I:C) stimulation. These findings provide compelling evidence for enhancing our understanding of the mechanisms through which fish miRNAs participate in immune responses.


Subject(s)
Carps , MicroRNAs , Poly I-C , TNF Receptor-Associated Factor 3 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Poly I-C/pharmacology , Carps/genetics , Carps/metabolism , Carps/virology , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Gene Expression Regulation/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism , Signal Transduction
19.
Toxics ; 12(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38922066

ABSTRACT

It is well known that Particulate Matter2.5 (PM2.5) has a major adverse effect on the organism. However, the health hazards of livestock farm PM2.5 to humans and animals are not yet known, and the role of miRNAs in the cellular damage induced by livestock farm PM2.5 is also unclear. Therefore, our study used cowshed PM2.5 to stimulate rat alveolar macrophage NR8383 to construct an in vitro injury model to investigate the effect of miR-122-5p on PM2.5-induced apoptosis in the NR8383. The level of apoptosis was quantified by flow cytometry and Hoechst 33342/PI double staining. Furthermore, the potential target gene Collagen type IV alpha (COL4A1) of miR-122-5p was identified through the use of bioinformatics methods. The results demonstrated a decline in cell viability and an increase in apoptosis with rising PM2.5 concentrations and exposure durations. The transfection of miR-122-5p mimics resulted in an upregulation of the pro-apoptotic protein Bcl-xL/Bcl-2 and activation of cleaved caspase-3 while inhibiting the anti-apoptotic protein B-cell lymphoma-2. The experimental data indicate that miR-122-5p is involved in the apoptotic process by targeting COL4A1. Furthermore, the overexpression of COL4A1 was observed to enhance the PM2.5-activated PI3K/AKT/NF-κB signaling pathway, which contributed to the inhibition of apoptosis. This finding offers a promising avenue for the development of therapeutic strategies aimed at mitigating cellular damage induced by PM2.5 exposure.

20.
Food Chem ; 403: 134310, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36156398

ABSTRACT

The growing detection of emerging perfluoropolyether carboxylic acids (PFECAs) in food has raised considerable concerns about their high persistence, bioaccumulation, and toxicity. In this study, a pyridine-functionalized covalent organic framework (Py-COF) was synthesized by introducing basic pyridyl groups into Br-COF via Heck cross-coupling. According to density functional theory, PFECAs were adsorbed in the pore sites of Py-COF via O-···HN+ interaction, which was the stable and predominant adsorption configuration. After systematic characterization, Py-COF was used as the coating for solid-phase microextraction combined with high-performance liquid chromatography-tandem mass spectrometry (SPME-HPLC-MS/MS) for the efficient determination of PFECAs in food. Under the optimum conditions, the method showed satisfactory linearity (R2 ≥ 0.998), low limits of detection (0.001-0.004 ng g-1), and good relative recoveries (82.5 %-112 %). The established method was satisfactorily used for the analysis of trace PFECAs in food samples.


Subject(s)
Metal-Organic Frameworks , Solid Phase Microextraction , Solid Phase Microextraction/methods , Metal-Organic Frameworks/chemistry , Carboxylic Acids , Tandem Mass Spectrometry , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL