Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
Add more filters

Publication year range
1.
Mol Cell ; 65(2): 296-309, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-28065600

ABSTRACT

In mammalian cells, histone deacetylase (HDAC) and Sirtuin (SIRT) are two families responsible for removing acetyl groups from acetylated proteins. Here, we describe protein deacetylation coupled with deacetylimination as a function of lysyl oxidase (LOX) family members. LOX-like 3 (Loxl3) associates with Stat3 in the nucleus to deacetylate and deacetyliminate Stat3 on multiple acetyl-lysine sites. Surprisingly, Loxl3 N-terminal scavenger receptor cysteine-rich (SRCR) repeats, rather than the C-terminal oxidase catalytic domain, represent the major deacetylase/deacetyliminase activity. Loxl3-mediated deacetylation/deacetylimination disrupts Stat3 dimerization, abolishes Stat3 transcription activity, and restricts cell proliferation. In Loxl3-/- mice, Stat3 is constitutively acetylated and naive CD4+ T cells are potentiated in Th17/Treg cell differentiation. When overexpressed, the SRCR repeats from other LOX family members can catalyze protein deacetylation/deacetylimination. Thus, our findings delineate a hitherto-unknown mechanism of protein deacetylation and deacetylimination catalyzed by lysyl oxidases.


Subject(s)
Amino Acid Oxidoreductases/metabolism , CD4-Positive T-Lymphocytes/enzymology , Colitis/enzymology , Protein Processing, Post-Translational , STAT3 Transcription Factor/metabolism , Acetylation , Amino Acid Oxidoreductases/deficiency , Amino Acid Oxidoreductases/genetics , Animals , CD4-Positive T-Lymphocytes/immunology , Catalysis , Cell Differentiation , Cell Nucleus/enzymology , Cell Proliferation , Colitis/genetics , Colitis/immunology , Disease Models, Animal , Genotype , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Protein Domains , Protein Multimerization , RNA Interference , STAT3 Transcription Factor/genetics , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/enzymology , Th17 Cells/immunology , Transcription, Genetic , Transfection
2.
J Med Genet ; 61(8): 750-758, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38816193

ABSTRACT

BACKGROUND AND AIMS: Variants in ZFYVE19 underlie a disorder characterised by progressive portal fibrosis, portal hypertension and eventual liver decompensation. We aim to create an animal model to elucidate the pathogenic mechanism. METHODS: Zfyve19 knockout (Zfyve19-/- ) mice were generated and exposed to different liver toxins. Their livers were characterised at the tissue, cellular and molecular levels. Findings were compared with those in wild-type mice and in ZFYVE19-deficient patients. ZFYVE19 knockout and knockdown retinal pigment epithelial-1 cells and mouse embryonic fibroblasts were generated to study cell division and cell death. RESULTS: The Zfyve19-/- mice were normal overall, particularly with respect to hepatobiliary features. However, when challenged with α-naphthyl isothiocyanate, Zfyve19-/- mice developed changes resembling those in ZFYVE19-deficient patients, including elevated serum liver injury markers, increased numbers of bile duct profiles with abnormal cholangiocyte polarity and biliary fibrosis. Failure of cell division, centriole and cilia abnormalities, and increased cell death were observed in knockdown/knockout cells. Increased cell death and altered mRNA expression of cell death-related signalling pathways was demonstrated in livers from Zfyve19-/- mice and patients. Transforming growth factor-ß (TGF-ß) and Janus kinase-Signal Transducer and Activator of Transcription 3 (JAK-STAT3) signalling pathways were upregulated in vivo, as were chemokines such as C-X-C motif ligands 1, 10 and 12. CONCLUSIONS: Our findings demonstrated that ZFYVE19 deficiency is a ciliopathy with novel histological features. Failure of cell division with ciliary abnormalities and cell death activates macrophages and may thus lead to biliary fibrosis via TGF-ß pathway in the disease.


Subject(s)
Cell Death , Ciliopathies , Mice, Knockout , Animals , Humans , Mice , Cell Death/genetics , Cell Division/genetics , Cilia/pathology , Cilia/genetics , Cilia/metabolism , Ciliopathies/genetics , Ciliopathies/pathology , Disease Models, Animal , Liver/pathology , Liver/metabolism , Signal Transduction/genetics
3.
Am J Geriatr Psychiatry ; 32(8): 1014-1027, 2024 08.
Article in English | MEDLINE | ID: mdl-38521736

ABSTRACT

OBJECTIVE: Converging evidence indicates that subjective cognitive decline (SCD) could be an early indicator of dementia. The hippocampus is the earliest affected region during the progression of cognitive impairment. However, little is known about whether and how acupuncture change the hippocampal structure and function of SCD individuals. METHODS: Here, we used multi-modal MRI to reveal the mechanism of acupuncture in treating SCD. Seventy-two older participants were randomized into acupuncture or sham acupuncture group and treated for 12 weeks. RESULTS: At the end of the intervention, compared to sham acupuncture, participants with acupuncture treatment showed improvement in composite Z score from multi-domain neuropsychological tests, as well as increased hippocampal volume and functional connectivity. Moreover, the greater white matter integrity of the fornix, which is the major output tract of the hippocampus, was shown in the acupuncture group. CONCLUSION: These findings suggest that acupuncture may improve the cognitive function of SCD individuals, and increase hippocampal volume on the regional level and enhance the structural and functional connectivity of hippocampus on the connective level.


Subject(s)
Acupuncture Therapy , Cognitive Dysfunction , Hippocampus , Magnetic Resonance Imaging , Humans , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/physiopathology , Acupuncture Therapy/methods , Male , Female , Cognitive Dysfunction/therapy , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Aged , Neuropsychological Tests , White Matter/diagnostic imaging , White Matter/pathology , Middle Aged
4.
Environ Sci Technol ; 58(12): 5483-5490, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38484382

ABSTRACT

Polychlorinated dibenzo-p-dioxins (PCDDs), comprising 75 congeners, have gained considerable attention from the general public and the scientific community owing to their high toxic potential. The base-catalyzed hydrolysis of PCDDs is crucial for the assessment of their environmental persistence. Nonetheless, owing to the substantial number of congeners and low hydrolysis rates of PCDDs, conducting hydrolysis experiments proves to be exceedingly time-consuming and financially burdensome. Herein, density functional theory and transition state theory were employed to predict the base-catalyzed hydrolysis of PCDDs in aquatic environments. Findings reveal that PCDDs undergo base-catalyzed hydrolysis in aquatic environments with two competing pathways: prevailing dioxin ring-opening and reduced reactivity in the hydrolytic dechlorination pathway. The resultant minor products include hydroxylated PCDDs, which exhibit thermodynamic stability surpassing that of the principal product, chlorinated hydroxydiphenyl ethers. The half-lives (ranging from 17.10 to 1.33 × 1010 h at pH = 8) associated with the base-catalyzed hydrolysis of PCDDs dissolved in water were shorter compared to those within the water-sediment environmental system. This observation implies that hydroxide ions can protect aquatic environments from PCDD contamination. Notably, this study represents the first attempt to predict the base-catalyzed hydrolysis of PCDDs by using quantum chemical methods.


Subject(s)
Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Polychlorinated Dibenzodioxins/toxicity , Density Functional Theory , Hydrolysis , Water , Catalysis , Dibenzofurans, Polychlorinated
5.
Environ Sci Technol ; 58(12): 5578-5588, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38477971

ABSTRACT

The removal of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) using sulfate anion radical (SO4•-)-based advanced oxidation processes has gained considerable attention recently. However, immense uncertainties persist in technology transfer. Particularly, the impact of dichlorine radical (Cl2•-) generation during SO4•--mediated disinfection on ARB/ARGs removal remains unclear, despite the Cl2•- concentration reaching levels notably higher than those of SO4•- in certain SO4•--based procedures applied to secondary effluents, hospital wastewaters, and marine waters. The experimental results of this study reveal a detrimental effect on the disinfection efficiency of tetracycline-resistant Escherichia coli (Tc-ARB) during SO4•--mediated treatment owing to Cl2•- generation. Through a comparative investigation of the distinct inactivation mechanisms of Tc-ARB in the Cl2•-- and SO4•--mediated disinfection processes, encompassing various perspectives, we confirm that Cl2•- is less effective in inducing cellular structural damage, perturbing cellular metabolic activity, disrupting antioxidant enzyme system, damaging genetic material, and inducing the viable but nonculturable state. Consequently, this diminishes the disinfection efficiency of SO4•--mediated treatment owing to Cl2•- generation. Importantly, the results indicate that Cl2•- generation increases the potential risk associated with the dark reactivation of Tc-ARB and the vertical gene transfer process of tetracycline-resistant genes following SO4•--mediated disinfection. This study underscores the undesired role of Cl2•- for ARB/ARGs removal during the SO4•--mediated disinfection process.


Subject(s)
Bacteria , Sulfates , Water Purification , Bacteria/genetics , Genes, Bacterial , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Disinfection/methods , Anti-Bacterial Agents/pharmacology , Tetracycline , Water Purification/methods
6.
Environ Res ; 256: 119060, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38751001

ABSTRACT

Black phosphorus nanosheets (BPNs)/CdS heterostructure was successfully synthesized via hydrothermal method. The experimental results indicated that BPNs modified the surface of CdS nanoparticles uniformly. Meanwhile, the BPNs/CdS heterostructure exhibited a distinguished high rate of photocatalytic activity for Tetrabromobisphenol A (TBBPA) degradation under visible light irradiation (λ > 420 nm), the kinetic constant of TBBPA degradation reached 0.0261 min-1 was approximately 5.68 and 9.67 times higher than that of CdS and P25, respectively. Moreover, superoxide radical (•O2-) is the main active component in the degradation process of TBBPA (the relative contribution is 91.57%). The photocatalytic mechanism and intermediates of the TBBPA was clarified, and a suitable model and pathway for the degradation of TBBPA were proposed. The results indicated that the toxicities of some intermediates were higher than the parent pollutant. This research provided an efficient approach by a novel photocatalyst for the removal of TBBPA from wastewater, and the appraisal methods for the latent risks from the intermediates were reported in this paper.


Subject(s)
Phosphorus , Polybrominated Biphenyls , Polybrominated Biphenyls/chemistry , Polybrominated Biphenyls/radiation effects , Phosphorus/chemistry , Cadmium Compounds/chemistry , Sulfides/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Catalysis , Photolysis
7.
J Nanobiotechnology ; 22(1): 330, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862987

ABSTRACT

The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.


Subject(s)
Cryopreservation , Ovary , Cryopreservation/methods , Female , Humans , Animals
8.
Appl Opt ; 63(4): 959-966, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38437392

ABSTRACT

In this paper, a highly sensitive ammonia (N H 3) sensor based on a polymethyl methacrylate/polyaniline (PMMA/PANI) microwire structure is designed and implemented. First, a micron-sized PMMA microwire was fabricated and connected with two tapered single-mode fibers to form a coupling structure; thus, the Mach-Zehnder (MZ) interference was successfully excited due to the good light conductivity of the PMMA. It was demonstrated that the coupling structure behaved with a high refractive index detection sensitivity of 3044 nm/RIU. To make it sensitive to N H 3, the PANI was selected to mix with PMMA and then formed a micron-level PMMA/PANI fiber. The experimental results showed that the PMMA/PANI fiber can selectively sense N H 3 with a high sensitivity of 65.3 pm/ppm. This proposed N H 3 sensor not only solves the problem of sensitive film shedding, but also possesses the advantages of good integration, high sensitivity, good selectivity, and short response time.

9.
Pestic Biochem Physiol ; 203: 106005, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084800

ABSTRACT

Odorant-binding proteins (OBPs) play key roles in host plant location by insects, and can accordingly serve as important targets for the development of attractants. In this study, we detected the high expression of SlitOBP34 in male antennae of Spodoptera litura. Subsequently, the fluorescence competitive binding experiments displayed that the SlitOBP34 protein has binding affinity for different ligands. Then, protein-ligand interaction analyses found the presence of six amino acid residues may serve as key recognition sites. Further electroantennographic and biobehavioral assessments revealed that the electrophysiological responses of male antennae were evoked in response to stimulation with the six identified host volatiles, and that these volatiles attracted male moths to varying extents. Notably, low concentrations of benzaldehyde, 1-hexanol, and cis-3-hexenyl acetate were found to have significant attractant effects on male moths, thereby identifying these three host volatiles as potential candidates for the development of male attractants. These findings advance our current understanding of the olfactory-encoded mechanisms of host plants selection in S. litura and have enabled us to develop novel adult attractants for controlling the pest in the future.


Subject(s)
Arthropod Antennae , Insect Proteins , Receptors, Odorant , Spodoptera , Volatile Organic Compounds , Animals , Spodoptera/drug effects , Male , Receptors, Odorant/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology , Arthropod Antennae/metabolism , Hexanols/pharmacology , Hexanols/metabolism , Acetates/metabolism , Acetates/pharmacology , Benzaldehydes
10.
Pestic Biochem Physiol ; 201: 105874, 2024 May.
Article in English | MEDLINE | ID: mdl-38685243

ABSTRACT

In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.


Subject(s)
Insect Proteins , Pheromones , Animals , Pheromones/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Male , Female , Protein Binding , Heteroptera/metabolism , Heteroptera/genetics
11.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2178-2187, 2024 Apr.
Article in Zh | MEDLINE | ID: mdl-38812233

ABSTRACT

This paper aims to explore the effect of Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern on cerebral ischemic injury and angiogenesis in the rat model of acute cerebral infarction. SD rats were randomized into 6 groups: sham group, model group, low-, medium-, and high-dose(5.13, 10.26, and 20.52 g·kg~(-1), respectively) Xuming Decoction groups, and butylphthalide(0.06 g·kg~(-1)) group. After the successful establishment of the rat model by middle cerebral artery occlusion(MCAO), rats in the sham and model groups were administrated with distilled water and those in other groups with corresponding drugs for 7 consecutive days. After the neurological function was scored, all the rats were sacrificed, and the brain tissue samples were collected. The degree of cerebral ischemic injury was assessed by the neurological deficit score and staining with 2,3,5-triphenyltetrazolium chloride. Hematoxylin-eosin staining was performed to observe the pathological changes in the brain. Transmission electron microscopy was employed to observe the ultrastructures of neurons and microvascular endothelial cells(ECs) on the ischemic side of the brain tissue. Immunofluorescence assay was employed to detect the expression of von Willebrand factor(vWF) and hematopoietic progenitor cell antigen CD34(CD34) in the ischemic brain tissue. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of Runt-related transcription factor 1(RUNX1), vascular endothelial growth factor(VEGF), angiopoietin-1(Ang-1), angiopoietin-2(Ang-2), and VEGF receptor 2(VEGFR2) in the ischemic brain tissue. The results showed that compared with the sham group, the model group showed increased neurological deficit score and cerebral infarction area(P<0.01), pathological changes, and damaged ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Furthermore, the modeling up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.05 or P<0.01). Compared with the model group, high-dose Xuming Decoction and butylphthalide decreased the neurological deficit score and cerebral infarction area(P<0.01) and alleviated the pathological changes and damage of the ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Moreover, they up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01). The results suggest that Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern can promote the angiogenesis and collateral circulation establishment to alleviate neurological dysfunction of the ischemic brain tissue in MCAO rats by regulating the RUNX1/VEGF pathway.


Subject(s)
Brain Ischemia , Cerebral Infarction , Disease Models, Animal , Drugs, Chinese Herbal , Rats, Sprague-Dawley , Animals , Rats , Male , Drugs, Chinese Herbal/pharmacology , Cerebral Infarction/drug therapy , Cerebral Infarction/metabolism , Cerebral Infarction/genetics , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/genetics , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Physiologic/drug effects , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Angiogenesis
12.
J Am Chem Soc ; 145(16): 8954-8964, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37029734

ABSTRACT

Mechanical interactions between cells and extracellular matrix (ECM) are critical for stem cell fate decision. Synthetic models of ECM, such as hydrogels, can be used to precisely manipulate the mechanical properties of the cell niche and investigate how mechanical signals regulate the cell behavior. However, it has long been a great challenge to tune solely the ECM-mimic hydrogels' mechanical signals since altering the mechanical properties of most materials is usually accompanied by chemical and topological changes. Here, we employ DNA and its enantiomers to prepare a series of hydrogels with univariate stiffness regulation, which enables a precise interpretation of the fate decision of neural progenitor cells (NPCs) in a three-dimensional environment. Using single-cell RNA sequencing techniques, Monocle pseudotime trajectory and CellphoneDB analysis, we demonstrate that the stiffness of the hydrogel alone does not influence the differentiation of NPCs, but the degradation of the hydrogel that enhances cell-cell interactions is possibly the main reason. We also find that ECM remodeling facilitates cells to sense mechanical stimuli.


Subject(s)
Hydrogels , Transcriptome , Hydrogels/chemistry , Extracellular Matrix/metabolism , Stem Cells , DNA/metabolism
13.
Anal Chem ; 95(2): 872-880, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36442150

ABSTRACT

A high-sensitive optical fiber hydrogen (H2) sensor with Vernier effect by cascading three Fabry-Perot interferometers (FPIs) has been proposed. It is prepared by welding three sections of a single-mode fiber with a lateral offset structure and coating polydimethylsiloxane (PDMS) at the offset part to form three cascaded FPIs and generate a Vernier envelope spectrum. To realize H2 sensing, the hydrogen-sensitive material Pd/WO3 is fabricated and coated on the outside of the PDMS. Pd/WO3 will generate local heat when in contact with H2, which will cause the thermal expansion and refractive index change of PDMS and finally lead to the Vernier envelope wavelength shifting with the change of H2 concentration. Due to the Vernier effect, the H2 sensor can achieve a linear measurement sensitivity of 6.214 nm/% in the concentration range of 0-1%, which is 16.11 times that of a single FPI. The proposed H2 sensor possesses advantages of high sensitivity, easy preparation, compact structure, low cost, and easy long-distance transmission.

14.
J Virol ; 96(6): e0148021, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35107379

ABSTRACT

In our previous study, we found that a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) is still infectious in BHK-21 cells and demonstrated its potential as a live attenuated vaccine candidate. However, the low yield as well as the disability to propagate in vaccine production cell line Vero of ΔC-CHIKV are not practical for commercial vaccine development. In this study, we not only achieved the successful propagation of the viral particle in Vero cells, but significantly improved its yield through construction of a chimeric VEEV-ΔC-CHIKV and extensive passage in Vero cells. Mechanistically, high production of VEEV-ΔC-CHIKV is due to the improvement of viral RNA packaging efficiency conferred by adaptive mutations, especially those in envelope proteins. Similar to ΔC-CHIKV, the passaged VEEV-ΔC-CHIKV is safe, immunogenic, and efficacious, which protects mice from CHIKV challenge after only one shot of immunization. Our study demonstrates that the utilization of infectious capsidless viral particle of CHIKV as a vaccine candidate is a practical strategy for the development of alphavirus vaccine. IMPORTANCE Chikungunya virus (CHIKV) is one of important emerging alphaviruses. Currently, there are no licensed vaccines against CHIKV infection. We have previously found a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) as a live attenuated vaccine candidate that is not suitable for commercial vaccine development with the low viral titer production. In this study, we significantly improved its production through construction of a chimeric VEEV-ΔC-CHIKV. Our results proved the utilization of infectious capsidless viral particle of CHIKV as a safe and practical vaccine candidate.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viral Vaccines , Virus Cultivation , Animals , Capsid Proteins/genetics , Chikungunya Fever/prevention & control , Chikungunya virus/genetics , Chlorocebus aethiops , Mice , Vaccine Development , Vaccines, Attenuated/genetics , Vero Cells , Viral Vaccines/genetics , Virus Cultivation/methods
15.
Opt Lett ; 48(4): 952-955, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790983

ABSTRACT

In this Letter, an in-fiber dual-channel surface plasmon resonance (SPR) sensor is reported that uses polydimethylsiloxane (PDMS)-filled C-type microstructured optical fiber (COF). The COF is made of HF-acid-etched single-sided hole optical fiber (SSHF), and its inner and outer sides are coated with gold film to stimulate SPR. The inner channel is filled with PDMS and acts as the temperature measurement channel, and the outer channel is directly in contact with the salt solution and acts as the salinity measurement channel. Experiments show that the sensor is qualified to detect salinity and temperature simultaneously, and it exhibits a salinity sensitivity of 0.296 nm/‰ in the salinity range of 0-153.32‰ and a high temperature sensitivity of -2.4 nm/°C in the temperature range of 22-44°C. Furthermore, the sensor also enjoys good hysteresis, repeatability, and reversibility in salinity detection. In a word, the high sensitivity, simple preparation, and good integration of the proposed sensor endow it with the potential for deep-sea exploration.

16.
Reprod Biomed Online ; 46(6): 1005-1016, 2023 06.
Article in English | MEDLINE | ID: mdl-37085428

ABSTRACT

RESEARCH QUESTION: What are the different features of the vaginal microbiome (VMB) between patients with polycystic ovary syndrome (PCOS) and healthy women? DESIGN: A cross-sectional study was conducted at a single academic university-affiliated centre. A total of 1446 participants were recruited (PCOS group, n =713, control group, n = 733). Vaginal swabs were analysed using 16S rRNA gene sequencing. The diversity and composition of the microbiome were compared between the PCOS group and the control group. Microbial interaction networks and functional prediction were investigated. RESULTS: The PCOS group had a higher alpha diversity than the control group (Shannon P = 0.03, Simpson P = 0.02), and higher intra-group variability was observed in PCOS group (P < 2.2E-16). At the genus level, the proportion of Lactobacillus decreased (85.1% versus 89.3%, false discovery rate [FDR] = 0.02), whereas the proportion of Gardnerella vaginalis and Ureaplasma increased in the PCOS group (5.1% versus 3.3%, FDR = 0.006; 1.2% versus 0.6%, FDR = 0.002, respectively). Lactobacillus acidophilus, Prevotella buccalis and G. vaginalis were identified as the main differential species. L. acidophilus was positively correlated with serum levels of anti-Müllerian hormone (AMH), and triglyceride (P = 2.01E-05, P = 0.004, respectively). P. buccalis was negatively correlated with serum levels of AMH and testosterone (P = 0.002, P = 0.003, respectively). G. vaginalis was positively correlated with serum levels of AMH, oestradiol and progesterone (P = 0.004, P = 0.005, P = 0.03, respectively). The VMB interaction network indicated that Lactobacillus crispus, Prevotella timonensis, and P. buccalis could be key drivers in the PCOS group. Overall, 55 predicted genes were found to be differentially abundant between PCOS and the control (FDRs < 0.25). CONCLUSIONS: The PCOS group had a higher diversity of vaginal microbiome and showed an enhanced level of heterogeneity. The proportion of Lactobacillus in the PCOS group decreased, whereas the proportions of Gardnerella and Ureaplasma increased. These results warrant further research that can validate the correlation between PCOS and VMB.


Subject(s)
Microbiota , Polycystic Ovary Syndrome , Female , Humans , Cross-Sectional Studies , RNA, Ribosomal, 16S/genetics , Anti-Mullerian Hormone
17.
J Nanobiotechnology ; 21(1): 391, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37884969

ABSTRACT

Depression is a severe mental disorder among public health issues. Researchers in the field of mental health and clinical psychiatrists have long been faced with difficulties in slow treatment cycles, high recurrence rates, and lagging efficacy. These obstacles have forced us to seek more advanced and effective treatments. Research has shown that novel drug delivery strategies for natural medicinal plants can effectively improve the utilization efficiency of the active molecules in these plants and therefore improve their efficacy. Currently, with the development of treatment technologies and the constant updating of novel drug delivery strategies, the addition of natural medicinal antidepressant therapy has given new significance to the study of depression treatment against the background of novel drug delivery systems. Based on this, this review comprehensively evaluates and analyses the research progress in novel drug delivery systems, including nanodrug delivery technology, in intervention research strategies for neurological diseases from the perspective of natural medicines for depression treatment. This provided a new theoretical foundation for the development and application of novel drug delivery strategies and drug delivery technologies in basic and clinical drug research fields.


Subject(s)
Plants, Medicinal , Humans , Drug Delivery Systems , Antidepressive Agents/therapeutic use
18.
J Nanobiotechnology ; 21(1): 9, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609374

ABSTRACT

As one of the most significant imaging modalities currently available, magnetic resonance imaging (MRI) has been extensively utilized for clinically accurate cancer diagnosis. However, low signal-to-noise ratio (SNR) and low specificity for tumors continue to pose significant challenges. Inspired by the distance-dependent magnetic resonance tuning (MRET) phenomenon, the tumor microenvironment (TME)-activated off-on T1-T2 dual-mode MRI nanoswitch is presented in the current study to realize the sensitive early diagnosis of tumors. The tumor-specific nanoswitch is designed and manufactured on the basis of PDGFB-conjugating ferroferric oxide coated by Mn-doped silica (PDGFB-FMS), which can be degraded under the high-concentration GSH and low pH in TME to activate the T1-T2 dual-mode MRI signals. The tumor-specific off-on dual-mode MRI nanoswitch can significantly improve the SNR and is used successfully for the accurate diagnosis of early-stage tumors, particularly for orthotopic prostate cancer. In addition, the systemic delivery of the nanoswitch did not cause blood or tissue damage, and it can be excreted out of the body in a timely manner, demonstrating excellent biosafety. Overall, the strategy is a significant step in the direction of designing off-on dual-mode MRI nanoprobes to improve imaging accuracy, which opens up new avenues for the development of new MRI probes.


Subject(s)
Contrast Media , Neoplasms , Male , Humans , Proto-Oncogene Proteins c-sis , Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Silicon Dioxide , Tumor Microenvironment
19.
J Nanobiotechnology ; 21(1): 59, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36810074

ABSTRACT

Chemodynamic therapy of cancer is limited by insufficient endogenous H2O2 generation and acidity in the tumor microenvironment (TME). Herein, we developed a biodegradable theranostic platform (pLMOFePt-TGO) involving composite of dendritic organosilica and FePt alloy, loaded with tamoxifen (TAM) and glucose oxidase (GOx), and encapsulated by platelet-derived growth factor-B (PDGFB)-labeled liposomes, that effectively uses the synergy among chemotherapy, enhanced chemodynamic therapy (CDT), and anti-angiogenesis. The increased concentration of glutathione (GSH) present in the cancer cells induces the disintegration of pLMOFePt-TGO, releasing FePt, GOx, and TAM. The synergistic action of GOx and TAM significantly enhanced the acidity and H2O2 level in the TME by aerobiotic glucose consumption and hypoxic glycolysis pathways, respectively. The combined effect of GSH depletion, acidity enhancement, and H2O2 supplementation dramatically promotes the Fenton-catalytic behavior of FePt alloys, which, in combination with tumor starvation caused by GOx and TAM-mediated chemotherapy, significantly increases the anticancer efficacy of this treatment. In addition, T2-shortening caused by FePt alloys released in TME significantly enhances contrast in the MRI signal of tumor, enabling a more accurate diagnosis. Results of in vitro and in vivo experiments suggest that pLMOFePt-TGO can effectively suppress tumor growth and angiogenesis, thus providing an exciting potential strategy for developing satisfactory tumor theranostics.


Subject(s)
Ferroptosis , Neoplasms , Humans , Cell Line, Tumor , Tumor Microenvironment , Hydrogen Peroxide/metabolism , Neoplasms/drug therapy , Apoptosis , Glucose Oxidase/metabolism
20.
J Assist Reprod Genet ; 40(3): 567-576, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36689045

ABSTRACT

PURPOSE: To analyze the level of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in follicle fluid (FF) and granulosa cells (GCs) derived from young patients with low prognosis for in vitro fertilization and embryo transfer (IVF-ET) treatment. METHODS: A prospective cohort study was carried out by enrolling 52 young patients with low prognosis according to the POSEIDON classification group 3 (low prognosis group) and 51 young patients with normal ovarian reserve (control group). The concentration of the GDF9 and BMP15 proteins in FF was determined by enzyme-linked immunosorbent assay. The mRNA level of the GDF9 and BMP15 in the GCs was measured by quantitative real-time PCR. RESULTS: The concentration of GDF9 (1026.72 ± 159.12 pg/mL vs. 1298.06 ± 185.41 pg/mL) and BMP15 (685.23 ± 143.91 pg/mL vs. 794.37 ± 81.79 pg/mL) in FF and the mRNA level of GDF9 and BMP15 in the GCs and the live birth rate per treatment cycle started (30.77% vs. 50.98%) and oocytes retrieved (4.25 ± 1.91 vs.12.04 ± 4.24) were significantly lower, whereas the canceled cycle rate was significantly higher (9.62% vs. 0) in the low prognosis group compared with the control group (P < 0.05). The expression of GDF9 and BMP15 in the ovary was positively correlated with live birth (P < 0.05). CONCLUSION: The expression of GDF9 and BMP15 in the ovary was decreased in young patients with low prognosis accompanied by a poorer outcome of IVF-ET treatment. TRIAL REGISTRATION: ChiCTR1800016107 (Chinese Clinical Trial Registry), May 11, 2018. ( http://www.chictr.org.cn/edit.aspx?pid=27216&htm=4 ).


Subject(s)
Bone Morphogenetic Protein 15 , Growth Differentiation Factor 9 , Animals , Female , Bone Morphogenetic Protein 15/genetics , Fertilization in Vitro , Granulosa Cells/metabolism , Growth Differentiation Factor 9/genetics , Growth Differentiation Factor 9/metabolism , Oocytes/metabolism , Prognosis , Prospective Studies , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL