Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 588(7838): 419-423, 2020 12.
Article in English | MEDLINE | ID: mdl-33328665

ABSTRACT

A quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has a quantized Hall resistance of h/(Ce2) and vanishing longitudinal resistance under zero magnetic field (where h is the Planck constant, e is the elementary charge, and the Chern number C is an integer)1,2. The QAH effect has been realized in magnetic topological insulators3-9 and magic-angle twisted bilayer graphene10,11. However, the QAH effect at zero magnetic field has so far been realized only for C = 1. Here we realize a well quantized QAH effect with tunable Chern number (up to C = 5) in multilayer structures consisting of alternating magnetic and undoped topological insulator layers, fabricated using molecular beam epitaxy. The Chern number of these QAH insulators is determined by the number of undoped topological insulator layers in the multilayer structure. Moreover, we demonstrate that the Chern number of a given multilayer structure can be tuned by varying either the magnetic doping concentration in the magnetic topological insulator layers or the thickness of the interior magnetic topological insulator layer. We develop a theoretical model to explain our experimental observations and establish phase diagrams for QAH insulators with high, tunable Chern number. The realization of such insulators facilitates the application of dissipationless chiral edge currents in energy-efficient electronic devices, and opens up opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.

2.
Proc Natl Acad Sci U S A ; 119(27): e2116197119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35767643

ABSTRACT

The majority of viruses within the gut are obligate bacterial viruses known as bacteriophages (phages). Their bacteriotropism underscores the study of phage ecology in the gut, where they modulate and coevolve with gut bacterial communities. Traditionally, these ecological and evolutionary questions were investigated empirically via in vitro experimental evolution and, more recently, in vivo models were adopted to account for physiologically relevant conditions of the gut. Here, we probed beyond conventional phage-bacteria coevolution to investigate potential tripartite evolutionary interactions between phages, their bacterial hosts, and the mammalian gut mucosa. To capture the role of the mammalian gut, we recapitulated a life-like gut mucosal layer using in vitro lab-on-a-chip devices (to wit, the gut-on-a-chip) and showed that the mucosal environment supports stable phage-bacteria coexistence. Next, we experimentally coevolved lytic phage populations within the gut-on-a-chip devices alongside their bacterial hosts. We found that while phages adapt to the mucosal environment via de novo mutations, genetic recombination was the key evolutionary force in driving mutational fitness. A single mutation in the phage capsid protein Hoc-known to facilitate phage adherence to mucus-caused altered phage binding to fucosylated mucin glycans. We demonstrated that the altered glycan-binding phenotype provided the evolved mutant phage a competitive fitness advantage over its ancestral wild-type phage in the gut-on-a-chip mucosal environment. Collectively, our findings revealed that phages-in addition to their evolutionary relationship with bacteria-are able to evolve in response to a mammalian-derived mucosal environment.


Subject(s)
Bacteria , Bacteriophages , Gastrointestinal Tract , Mucous Membrane , Animals , Bacteria/virology , Bacteriophages/genetics , Bacteriophages/physiology , Capsid Proteins/genetics , Gastrointestinal Tract/virology , Mucous Membrane/virology , Mucus , Mutation , Symbiosis
3.
Mol Cancer ; 23(1): 59, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38515149

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are crucial in the targeted treatment of advanced colorectal cancer (CRC). Anlotinib, a multi-target TKI, has previously been demonstrated to offer therapeutic benefits in previous studies. Circular RNAs (circRNAs) have been implicated in CRC progression and their unique structural stability serves as promising biomarkers. The detailed molecular mechanisms and specific biomarkers related to circRNAs in the era of targeted therapies, however, remain obscure. METHODS: The whole transcriptome RNA sequencing and function experiments were conducted to identify candidate anlotinib-regulated circRNAs, whose mechanism was confirmed by molecular biology experiments. CircHAS2 was profiled in a library of patient-derived CRC organoids (n = 22) and patient-derived CRC tumors in mice. Furthermore, a prospective phase II clinical study of 14 advanced CRC patients with anlotinib-based therapy was commenced to verify drug sensitivity (ClinicalTrials.gov identifier: NCT05262335). RESULTS: Anlotinib inhibits tumor growth in vitro and in vivo by downregulating circHAS2. CircHAS2 modulates CCNE2 activation by acting as a sponge for miR-1244, and binding to USP10 to facilitate p53 nuclear export as well as degradation. In parallel, circHAS2 serves as a potent biomarker predictive of anlotinib sensitivity, both in patient-derived organoids and xenograft models. Moreover, the efficacy of anlotinib inclusion into the treatment regimen yields meaningful clinical responses in patients with high levels of circHAS2. Our findings offer a promising targeted strategy for approximately 52.9% of advanced CRC patients who have high circHAS2 levels. CONCLUSIONS: CircHAS2 promotes cell proliferation via the miR-1244/CCNE2 and USP10/p53/CCNE2 bidirectional axes. Patient-derived organoids and xenograft models are employed to validate the sensitivity to anlotinib. Furthermore, our preliminary Phase II clinical study, involving advanced CRC patients treated with anlotinib, confirmed circHAS2 as a potential sensitivity marker.


Subject(s)
Colorectal Neoplasms , Indoles , MicroRNAs , Quinolines , Humans , Animals , Mice , RNA, Circular/genetics , Tumor Suppressor Protein p53 , Prospective Studies , MicroRNAs/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cell Proliferation/genetics , Biomarkers , Ubiquitin Thiolesterase/metabolism , Cyclins/metabolism
4.
Small ; 20(24): e2308956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38183403

ABSTRACT

The present study proposes a novel engineering concept for the customization of functionality and construction of superstructure to fabricate 2D monolayered N-doped carbon superstructure electrocatalysts decorated with Co single atoms or Co2P nanoparticles derived from 2D bimetallic ZnCo-ZIF superstructure precursors. The hierarchically porous carbon superstructure maximizes the exposure of accessible active sites, enhances electron/mass transport efficiency, and accelerates reaction kinetics simultaneously. Consequently, the Co single atoms embedded N-doped carbon superstructure (Co-NCS) exhibits remarkable catalytic activity toward oxygen reduction reaction, achieving a half-wave potential of 0.886 V versus RHE. Additionally, the Co2P nanoparticles embedded N-doped carbon superstructure (Co2P-NCS) demonstrates high activity for both oxygen evolution reaction and hydrogen evolution reaction, delivering low overpotentials of 292 mV at 10 mA cm-2 and 193 mV at 10 mA cm-2 respectively. Impressively, when employed in an assembled rechargeable Zn-air battery, the as-prepared 2D carbon superstructure electrocatalysts exhibit exceptional performance with a peak power density of 219 mW cm-2 and a minimal charge/discharge voltage gap of only 1.16 V at 100 mA cm-2. Moreover, the cell voltage required to drive an overall water-splitting electrolyzer at a current density of 10 mA cm-2 is merely 1.69 V using these catalysts as electrodes.

5.
Biol Reprod ; 110(3): 509-520, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38123510

ABSTRACT

Granulosa cell tumors are relatively rare, posing challenges for comprehension and therapeutic development due to limited cases and preclinical models. Metabolic reprogramming, a hallmark of cancer, manifests in granulosa cell tumors with notable lipid accumulation and increased expression of peroxisome proliferator-activated receptor gamma (PPARγ), a key lipid metabolism regulator. The roles of these features, however, remain unclear. In our previous work, we established a granulosa cell tumor model in mice by introducing a constitutively active Pik3ca mutant in oocytes, enabling the study of predictable tumor patterns from postnatal day 50. In this study, we characterized metabolic alterations during tumorigenesis (postnatal day 8 to day 50) and tumor growth (day 50 to day 65) in this model and explored the impact of PPARγ antagonism on human granulosa cell tumor proliferation. The tumor exhibited significant lipid accumulation, with PPARγ and the proliferation marker Ki67 co-localizing at postnatal day 65. Transcriptome analysis demonstrates that pathways for lipid metabolism and mitochondrial oxidation are promoted during tumorigenesis and tumor growth, respectively. Overlappingly upregulated genes during tumorigenesis and tumor growth are associated with lipid metabolism pathways. Correspondingly, mouse granulosa cell tumor shows overexpression of peroxisome proliferator-activated receptor gamma and DGAT2 proteins at postnatal day 65. Furthermore, GW9662 reduces the proliferation of KGN human granulosa cell tumor cells and decreases the phosphorylation of AKT and SMAD3. Our findings identify metabolic abnormalities in ooPIK3CA* granulosa cell tumor model and suggest peroxisome proliferator-activated receptor gamma as a potential driver for primary granulosa cell tumor growth.


Subject(s)
Granulosa Cell Tumor , Ovarian Neoplasms , Female , Humans , Animals , Mice , Granulosa Cell Tumor/genetics , Granulosa Cell Tumor/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Carcinogenesis , Lipids
6.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35514183

ABSTRACT

Human Leukocyte Antigen (HLA) is a type of molecule residing on the surfaces of most human cells and exerts an essential role in the immune system responding to the invasive items. The T cell antigen receptors may recognize the HLA-peptide complexes on the surfaces of cancer cells and destroy these cancer cells through toxic T lymphocytes. The computational determination of HLA-binding peptides will facilitate the rapid development of cancer immunotherapies. This study hypothesized that the natural language processing-encoded peptide features may be further enriched by another deep neural network. The hypothesis was tested with the Bi-directional Long Short-Term Memory-extracted features from the pretrained Protein Bidirectional Encoder Representations from Transformers-encoded features of the class I HLA (HLA-I)-binding peptides. The experimental data showed that our proposed HLAB feature engineering algorithm outperformed the existing ones in detecting the HLA-I-binding peptides. The extensive evaluation data show that the proposed HLAB algorithm outperforms all the seven existing studies on predicting the peptides binding to the HLA-A*01:01 allele in AUC and achieves the best average AUC values on the six out of the seven k-mers (k=8,9,...,14, respectively represent the prediction task of a polypeptide consisting of k amino acids) except for the 9-mer prediction tasks. The source code and the fine-tuned feature extraction models are available at http://www.healthinformaticslab.org/supp/resources.php.


Subject(s)
Histocompatibility Antigens Class I , Peptides , Amino Acids/metabolism , HLA Antigens/chemistry , HLA Antigens/genetics , HLA-A Antigens/metabolism , Histocompatibility Antigens Class I/chemistry , Humans , Peptides/chemistry , Protein Binding
7.
Psychol Med ; 54(2): 409-418, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37365781

ABSTRACT

BACKGROUND: Preterm birth is a global health problem and associated with increased risk of long-term developmental impairments, but findings on the adverse outcomes of prematurity have been inconsistent. METHODS: Data were obtained from the baseline session of the ongoing longitudinal Adolescent Brain and Cognitive Development (ABCD) Study. We identified 1706 preterm children and 1865 matched individuals as Control group and compared brain structure (MRI data), cognitive function and mental health symptoms. RESULTS: Results showed that preterm children had higher psychopathological risk and lower cognitive function scores compared to controls. Structural MRI analysis indicated that preterm children had higher cortical thickness in the medial orbitofrontal cortex, parahippocampal gyrus, temporal and occipital gyrus; smaller volumes in the temporal and parietal gyrus, cerebellum, insula and thalamus; and smaller fiber tract volumes in the fornix and parahippocampal-cingulum bundle. Partial correlation analyses showed that gestational age and birth weight were associated with ADHD symptoms, picvocab, flanker, reading, fluid cognition composite, crystallized cognition composite and total cognition composite scores, and measures of brain structure in regions involved with emotional regulation, attention and cognition. CONCLUSIONS: These findings suggest a complex interplay between psychopathological risk and cognitive deficits in preterm children that is associated with changes in regional brain volumes, cortical thickness, and structural connectivity among cortical and limbic brain regions critical for cognition and emotional well-being.


Subject(s)
Premature Birth , Child , Female , Adolescent , Infant, Newborn , Humans , Brain/pathology , Cognition/physiology , Infant, Premature , Longitudinal Studies , Magnetic Resonance Imaging/methods
8.
Cereb Cortex ; 33(18): 10087-10097, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37522299

ABSTRACT

Pediatric overweight/obesity can lead to sleep-disordered breathing (SDB), abnormal neurological and cognitive development, and psychiatric problems, but the associations and interactions between these factors have not been fully explored. Therefore, we investigated the associations between body mass index (BMI), SDB, psychiatric and cognitive measures, and brain morphometry in 8484 children 9-11 years old using the Adolescent Brain Cognitive Development dataset. BMI was positively associated with SDB, and both were negatively correlated with cortical thickness in lingual gyrus and lateral orbitofrontal cortex, and cortical volumes in postcentral gyrus, precentral gyrus, precuneus, superior parietal lobule, and insula. Mediation analysis showed that SDB partially mediated the effect of overweight/obesity on these brain regions. Dimensional psychopathology (including aggressive behavior and externalizing problem) and cognitive function were correlated with BMI and SDB. SDB and cortical volumes in precentral gyrus and insula mediated the correlations between BMI and externalizing problem and matrix reasoning ability. Comparisons by sex showed that obesity and SDB had a greater impact on brain measures, cognitive function, and mental health in girls than in boys. These findings suggest that preventing childhood obesity will help decrease SDB symptom burden, abnormal neurological and cognitive development, and psychiatric problems.


Subject(s)
Pediatric Obesity , Sleep Apnea Syndromes , Male , Female , Adolescent , Humans , Child , Body Mass Index , Overweight , Polysomnography/methods , Sleep Apnea Syndromes/diagnostic imaging , Sleep Apnea Syndromes/complications , Brain/diagnostic imaging
9.
Cereb Cortex ; 33(10): 6335-6344, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36573454

ABSTRACT

To investigate the neural mechanisms underlying the association between poorer working memory performance and higher body mass index (BMI) in children. We employed structural-(sMRI) and functional magnetic resonance imaging (fMRI) with a 2-back working memory task to examine brain abnormalities and their associations with BMI and working memory performance in 232 children with overweight/obesity (OW/OB) and 244 normal weight children (NW) from the Adolescent Brain Cognitive Development dataset. OW/OB had lower working memory accuracy, which was associated with higher BMI. They showed smaller gray matter (GM) volumes in the left superior frontal gyrus (SFG_L), dorsal anterior cingulate cortex, medial orbital frontal cortex, and medial superior frontal gyrus, which were associated with lower working memory accuracy. During the working memory task, OW/OB relative to NW showed weaker activation in the left superior temporal pole, amygdala, insula, and bilateral caudate. In addition, caudate activation mediated the relationship between higher BMI and lower working memory accuracy. Higher BMI is associated with smaller GM volumes and weaker brain activation in regions involved with working memory. Task-related caudate dysfunction may account for lower working memory accuracy in children with higher BMI.


Subject(s)
Gray Matter , Memory, Short-Term , Adolescent , Humans , Child , Gray Matter/diagnostic imaging , Gray Matter/pathology , Memory, Short-Term/physiology , Body Mass Index , Brain/diagnostic imaging , Brain/pathology , Obesity , Magnetic Resonance Imaging/methods , Overweight/pathology , Memory Disorders/pathology , Cognition
10.
Cereb Cortex ; 33(7): 3674-3682, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35989308

ABSTRACT

Childhood obesity has become a global health problem. Previous studies showed that childhood obesity is associated with brain structural differences relative to controls. However, few studies have been performed with longitudinal evaluations of brain structural developmental trajectories in childhood obesity. We employed voxel-based morphometry (VBM) analysis to assess gray matter (GM) volume at baseline and 2-year follow-up in 258 obese children (OB) and 265 normal weight children (NW), recruited as part of the National Institutes of Health Adolescent Brain and Cognitive Development study. Significant group × time effects on GM volume were observed in the prefrontal lobe, thalamus, right precentral gyrus, caudate, and parahippocampal gyrus/amygdala. OB compared with NW had greater reductions in GM volume in these regions over the 2-year period. Body mass index (BMI) was negatively correlated with GM volume in prefrontal lobe and with matrix reasoning ability at baseline and 2-year follow-up. In OB, Picture Test was positively correlated with GM volume in the left orbital region of the inferior frontal gyrus (OFCinf_L) at baseline and was negatively correlated with reductions in OFCinf_L volume (2-year follow-up vs. baseline). These findings indicate that childhood obesity is associated with GM volume reduction in regions involved with reward evaluation, executive function, and cognitive performance.


Subject(s)
Gray Matter , Pediatric Obesity , Adolescent , Humans , Child , Gray Matter/diagnostic imaging , Longitudinal Studies , Pediatric Obesity/diagnostic imaging , Cerebral Cortex , Brain/diagnostic imaging , Magnetic Resonance Imaging
11.
Cereb Cortex ; 33(5): 2037-2047, 2023 02 20.
Article in English | MEDLINE | ID: mdl-35580853

ABSTRACT

Habenular (Hb) processes negative emotions that may drive compulsive food-intake. Its functional changes were reported following laparoscopic-sleeve-gastrectomy (LSG). However, structural connectivity (SC) of Hb-homeostatic/hedonic circuits after LSG remains unclear. We selected regions implicated in homeostatic/hedonic regulation that have anatomical connections with Hb as regions-of-interest (ROIs), and used diffusion-tensor-imaging with probabilistic tractography to calculate SC between Hb and these ROIs in 30 obese participants before LSG (PreLSG) and at 12-month post-LSG (PostLSG12) and 30 normal-weight controls. Three-factor-eating-questionnaire (TFEQ) and Dutch-eating-behavior-questionnaire (DEBQ) were used to assess eating behaviors. LSG significantly decreased weight, negative emotion, and improved self-reported eating behavior. LSG increased SC between the Hb and homeostatic/hedonic regions including hypothalamus (Hy), bilateral superior frontal gyri (SFG), left amygdala (AMY), and orbitofrontal cortex (OFC). TFEQ-hunger negatively correlated with SC of Hb-Hy at PostLSG12; and increased SC of Hb-Hy correlated with reduced depression and DEBQ-external eating. TFEQ-disinhibition negatively correlated with SC of Hb-bilateral SFG at PreLSG. Increased SC of Hb-left AMY correlated with reduced DEBQ-emotional eating. Higher percentage of total weight-loss negatively correlated with SC of Hb-left OFC at PreLSG. Enhanced SC of Hb-homeostatic/hedonic regulatory regions post-LSG may contribute to its beneficial effects in improving eating behaviors including negative emotional eating, and long-term weight-loss.


Subject(s)
Laparoscopy , Obesity, Morbid , Humans , Feeding Behavior/physiology , Obesity, Morbid/psychology , Obesity, Morbid/surgery , Emotions , Gastrectomy , Weight Loss/physiology , Treatment Outcome
12.
Nutr Neurosci ; : 1-9, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808700

ABSTRACT

OBJECTIVE: Vitamin D is thought to be deficient in patients with bipolar disorder. The purpose of this study is to use latent profile analysis to identify the patterns of vitamin D levels in patients with episodes of bipolar depression, and to examine the relationship among these latent profiles and demographic and clinical characteristics. METHODS: A total of 149 patients diagnosed with bipolar depression were selected in Guangzhou, China. Depression was evaluated by Zung Self-Rating Depression Scale. Serum 25-hydroxyvitamin D levels tested at baseline and after two weeks of psychiatric treatment were included in the latent profile analysis to identify subgroups. P-trend analysis was used to assess the association between subgroups and depression improvement. Multinomial logistic regression analysis was used to assess the influencing factors of subgroups. RESULTS: A three-profiles solution was found to demonstrate the best fit [low-level profile (32.9%), medium-level profile (51.0%), and high-level profile (16.1%)]. There was a significant nonlinear relationship between depression improvement and vitamin D high-level profile, compared to medium-level profile (P for trend <0.05). In multinomial logistic regression analysis, baseline and post-treatment SDS scores, admission season, age, and body mass index significantly affect the profile membership. CONCLUSIONS: This study found that individuals with high levels of vitamin D showed a significant improvement in depression severity. However, those with low levels of vitamin D remained deficient, indicating a need for targeted vitamin D supplementation. Our findings may provide valuable insights for designing tailored vitamin D supplement interventions to address vitamin D deficiency in bipolar depression.

13.
J Environ Manage ; 351: 119892, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176380

ABSTRACT

Mangrove is one of the most productive and sensitive ecosystems in the world. Due to the complexity and specificity of mangrove habitat, the development of mangrove is regulated by several factors. Species distribution models (SDMs) are effective tools to identify the potential habitats for establishing and regenerating the ecosystem. Such models usually include exclusively environmental factors. Nevertheless, recent studies have challenged this notion and highlight the importance of including biotic interactions. Both factors are necessary for a mechanistic understanding of the mangrove distribution in order to promote the protection and restoration of mangroves. Thus, we present a novel approach of combining environmental factors and interactions with salt marsh for projecting mangrove distributions at the global level and within latitudinal zones. To test the salt marsh interaction, we fit the MaxEnt model with two predicting sets: (1) environments only and (2) environments + salt marsh interaction index (SII). We found that both sets of models had good predictive ability, although the SII improved model performance slightly. Potential distribution areas of mangrove decrease with latitudes, and are controlled by biotic and abiotic factors. Temperature, precipitation and wind speed are generally critical at both global scale and ecotones along latitudes. SII is important on global scale, with a contribution of 5.9%, ranking 6th, and is particularly critical in the 10-30°S and 20-30°N zone. Interactions with salt marsh, including facilitation and competition, are shown to affect the distribution of mangroves at the zone of coastal ecotone, especially in the latitudinal range from 10° - 30°. The contribution of SII to mangrove distribution increases with latitudes due to the difference in the adaptive capacity of salt marsh plants and mangroves to environments. Totally, this study identified and quantified the effects of salt marsh on mangrove distribution by establishing the SII. The results not only facilitate to establish a more accurate mangrove distribution map, but also improve the efficiency of mangrove restoration by considering the salt marsh interaction in the mangrove management projects. In addition, the method of incorporating biotic interaction into SDMs through establish the biotic interaction index has contributed to the development of SDMs.


Subject(s)
Avicennia , Wetlands , Ecosystem , Climate Change , Temperature
14.
Anal Chem ; 95(48): 17622-17628, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37997359

ABSTRACT

Short-chain fatty acids (SCFAs), as the main metabolites of gut microbiota, are recognized as crucial players in the host's inflammatory response and metabolic disease. Imaging the spatial distributions and calculating the accurate contents of SCFAs in the heterogeneous intestinal tissue are critical to reveal their biological functions. Here, we develop an isotope-coded on-tissue derivatization method combined with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to map the spatial expressions of SCFAs in the colon tissue based on pair-labeled N,N,N-trimethyl-2-(piperazin-1-yl)ethan-1-aminium iodide (TMPA) and D3-TMPA. A noticeable increase in the MALDI-MSI sensitivity of SCFAs was achieved after on-tissue derivatization, which enables the visualization of acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, hydroxy acetic acid, and hydroxy propionic acid in the colon tissue. Moreover, the introduction of D3-TMPA-tagged SCFAs as internal standards can significantly reduce quantitation deviation from the matrix effects, ensuring the quantitative MALDI-MSI of SCFAs. We further used this method to characterize the spatial alterations of SCFAs in the colon tissues of mice with enterocolitis. The development of this strategy provides a reliable approach to image the spatial expressions of SCFAs in tissues and paves an insight way to study the roles of SCFAs in the gut microbiota and disease.


Subject(s)
Fatty Acids, Volatile , Propionates , Mice , Animals , Fatty Acids, Volatile/analysis , Acetic Acid , Isotopes , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Butyric Acid
15.
Biochem Biophys Res Commun ; 641: 177-185, 2023 01 22.
Article in English | MEDLINE | ID: mdl-36535076

ABSTRACT

Tumor microenvironment (TME) (e.g., stromal cells) has been closely related to the pathological process of colorectal cancer (CRC). In TME, tumor-associated fibroblasts (CAFs) are the main stromal cells. The studies have showed that CAFs promoted tumor growth and metastasis in CRC and led to poor prognosis. Mounting evidence indicates that CAFs-mediated exosomes regulate the pathological process of neighboring tumor cells through the transmission of miRNAs. In our study, we aimed to explore the function of CAFs-derived exosome miR-181b-3p in CRC. First, the expression of miR-181b-3p in CRC was found to be up-regulated and its expression was dramatically up-regulated in CRC cells after co-incubation of CAFs-mediated exosomes with CRC cells. Then, it was found that the CAFs-derived exosomes were markedly enhanced the proliferation and migration of the CRC cells, and substantially reduced apoptosis. To elucidate the influence of CAFs-derived exosome miR-181b-3p on CRC, we overexpressed and knocked down the miR-181b-3p expression in CAFs, respectively. It was found that miR-181b-3p significantly increased the proliferation and migration of CRC cells. Furthermore, we conducted in vivo experiments. Finally, we demonstrated that CAF-derived exosome miR-181b-3p regulated sorting nexin 2 (SNX2) expression in CRC cells by bioinformatics prediction combined with luciferase reporter assay. Further cellular and animal experiments jointly elucidated that miR-181b-3p promoted the pathological process of CRC by SNX2 expression. In brief, our results demonstrated that CAFs-derived exosome miR-181b-3p promoted the pathogenesis of CRC by regulating SNX2 expression, which provides a novel idea for CRC treatment.


Subject(s)
Cancer-Associated Fibroblasts , Colorectal Neoplasms , Exosomes , MicroRNAs , Animals , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Microenvironment , Sorting Nexins/metabolism
16.
Plant Physiol ; 189(1): 301-314, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35171294

ABSTRACT

Trichomes, the hair-like structures located on aerial parts of most vascular plants, are associated with a wide array of biological processes and affect the economic value of certain species. The processes involved in unicellular trichome formation have been well-studied in Arabidopsis (Arabidopsis thaliana). However, our understanding of the morphological changes and the underlying molecular processes involved in multicellular trichome development is limited. Here, we studied the dynamic developmental processes involved in glandular and nonglandular multicellular trichome formation in cucumber (Cucumis sativus L.) and divided these processes into five sequential stages. To gain insights into the underlying mechanisms of multicellular trichome formation, we performed a time-course transcriptome analysis using RNA-sequencing analysis. A total of 711 multicellular trichome-related genes were screened and a model for multicellular trichome formation was developed. The transcriptome and co-expression datasets were validated by reverse transcription-quantitative PCR and in situ hybridization. In addition, virus-induced gene silencing analysis revealed that CsHOMEOBOX3 (CsHOX3) and CsbHLH1 are involved in nonglandular trichome elongation and glandular trichome formation, respectively, which corresponds with the transcriptome data. This study presents a transcriptome atlas that provides insights into the molecular processes involved in multicellular trichome formation in cucumber and can be an important resource for future functional studies.


Subject(s)
Arabidopsis , Cucumis sativus , Arabidopsis/genetics , Cucumis sativus/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome/genetics , Trichomes/genetics
17.
Mol Reprod Dev ; 90(3): 153-165, 2023 03.
Article in English | MEDLINE | ID: mdl-36775976

ABSTRACT

Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) regulates mammalian ovarian follicle growth and maturation; however, its effect on luteinized granulosa cells (LGCs) in sheep ovarian follicles remains unknown. Here we explored the regulatory role of LGC functions and steroid hormone synthesis by BAMBI. Multiple sequence alignment revealed that the sheep BAMBI gene sequence was relatively conserved. Sheep LGCs were strongly positive for BAMBI. LGC proliferation increased when BAMBI was silenced and decreased when BAMBI was overexpressed. After BAMBI overexpression, the expression of CASP3, CASP8, CASP9, and BAX significantly increased, whereas that of BCL2 and the ratio of BCL2/BAX expression decreased. The opposite was observed after BAMBI silencing. CDKN1A, CCND1, and CCND2 were downregulated with BAMBI overexpression and upregulated with BAMBI silencing. Expression of steroid hormone-related genes (CYP11A1, STAR, and 3BHSD), except CYP19A1, significantly increased after BAMBI overexpression. Moreover, estrogen and progesterone secretion increased after BAMBI overexpression and decreased after BAMBI interference. The effect of the exogenous addition of bone morphogenetic protein 2 (BMP2) on GCs was similar to that of BAMBI overexpression. In conclusion, BAMBI can regulate the proliferation and steroid hormone synthesis of sheep LGCs, and BMP2 can affect LGCs as an activator of BAMBI. These findings provide a basis for further research on the physiological role of BAMBI.


Subject(s)
Granulosa Cells , Steroids , Female , Animals , Sheep , bcl-2-Associated X Protein/metabolism , Cells, Cultured , Granulosa Cells/metabolism , Steroids/metabolism , Progesterone/metabolism , Cell Proliferation , Mammals
18.
Phys Rev Lett ; 131(19): 191601, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38000413

ABSTRACT

We prove by construction that all tree-level amplitudes in pure (super)gravity can be expressed as termwise, gauge-invariant double copies of those of pure (super-)Yang-Mills obtained via on-shell recursion. These representations are far from unique: varying the recursive scheme leads to a wide variety of distinct but equally valid representations of gravitational amplitudes, all realized as double copies.

19.
Cell Commun Signal ; 21(1): 359, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38111040

ABSTRACT

RNA methylation modification plays a crucial role as an epigenetic regulator in the oncogenesis of hepatocellular carcinoma (HCC). Numerous studies have investigated the molecular mechanisms underlying the methylation of protein-coding RNAs in the progression of HCC. Beyond their impact on mRNA, methylation modifications also influence the biological functions of non-coding RNAs (ncRNAs). Here, we present an advanced and comprehensive overview of the interplay between methylation modifications and ncRNAs in HCC, with a specific focus on their potential implications for the tumor immune microenvironment. Moreover, we summarize promising therapeutic targets for HCC based on methylation-related proteins. In the future, a more profound investigation is warranted to elucidate the effects of ncRNA methylation modifications on HCC pathogenesis and devise valuable intervention strategies. Video Abstract.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , RNA Methylation , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Methylation , RNA/metabolism , Tumor Microenvironment
20.
Mol Pharm ; 20(6): 3187-3201, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37167021

ABSTRACT

Mesoporous silica nanoparticles (MSNs) are widely used in the biomedical field because of their unique and excellent properties. However, the potential toxicity of different shaped MSNs via injection has not been fully studied. This study aims to systematically explore the impact of shape and shear stress on the toxicity of MSNs after injection. An in vitro blood flow model was developed to investigate the cytotoxicity and the underlying mechanisms of spherical MSNs (S-MSN) and rodlike MSNs (R-MSN) in human umbilical vein endothelial cells (HUVECs). The results suggested that the interactions between MSNs and HUVECs under the physiological flow conditions were significantly different from that under static conditions. Whether under static or flow conditions, R-MSN showed better cellular uptake and less oxidative damage than S-MSN. The main mechanism of cytotoxicity induced by R-MSN was due to shear stress-dependent mechanical damage of the cell membrane, while the toxicity of S-MSN was attributed to mechanical damage and oxidative damage. The addition of fetal bovine serum (FBS) alleviated the toxicity of S-MSN by reducing cellular uptake and oxidative stress under static and flow conditions. Moreover, the in vivo results showed that both S-MSN and R-MSN caused cardiovascular toxicity in zebrafish and mouse models due to the high shear stress, especially in the heart. S-MSN led to severe oxidative damage at the accumulation site, such as liver, spleen, and lung in mice, while R-MSN did not cause significant oxidative stress. The results of in vitro blood flow and in vivo models indicated that particle shape and shear stress are crucial to the biosafety of MSNs, providing new evidence for the toxicity mechanisms of the injected MSNs.


Subject(s)
Nanoparticles , Silicon Dioxide , Mice , Humans , Animals , Porosity , Silicon Dioxide/toxicity , Endothelial Cells , Zebrafish , Nanoparticles/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL