Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Fluoresc ; 34(1): 159-167, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37166610

ABSTRACT

A fluorescent probe Y((1,1'-([1,1'-biphenyl]-4,4'-diylbis(3-(2-hydroxyphenyl)-4,5-dihydro-1H-pyrazole-5,1-diyl)) bis(ethan-1-one))) was designed and synthesized, which could be used to Cu2+ and Fe3+ sensors. Through the study of optical properties, the probe Y shows good selectivity and sensitivity to Cu2+ and Fe3+ in aqueous tetrahydrofuran solution [10.0 mM HEPES, pH 7.4, THF-H2O = 9:1(v/v)] with has excellent anti-interference performance, and its detection limits were 0.931 uΜ for Cu2+ and 0.401uΜ for Fe3+. The coordination mechanism of probe Y with Cu2+ and Fe3+ was speculated and verified at DFT level and HRNM. By Hela cytotoxicity and imaging tests, probe Y not only has good biocompatibility, but also can be used for sensing Cu2+ in cells.


Subject(s)
Copper , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , Copper/chemistry , Iron/chemistry , HeLa Cells , Optical Imaging , Spectrometry, Fluorescence
2.
J Fluoresc ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639858

ABSTRACT

Two fluorescent probes, Y1-2 were synthesized from 2-acetonaphthone, 4-acetylbiphenyl, and phenyl hydrazine by Vilsmeier-Haack reaction and Knoevenagel condensation. Their recognition efficacies for N2H4 were tested by UV-visible absorption spectroscopy and fluorescence emission spectroscopy. The recognition mechanism were studies by density-functional theory calculations, and the effect of pH on N2H4 recognition was also studied. The results showed that the probe Y1-2 has high selectivity and a low detection limit for N2H4, and the recognition of N2H4 can be accomplished at physiological pH. The probes have had obvious aggregation-induced luminescence effect, large Stokes shift, high sensitivity, and can be successfully applied to live cell imaging.

3.
J Fluoresc ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561367

ABSTRACT

Widely utilized in the chemical industry and agriculture, hydrazine is easily absorbed by living things and can cause physical harm when in touch for an extended period of time. As a result, a novel cinnamaldehyde chalcone C5 was produced by Friedel Crafts process and aldol condensation reaction. Triphenylamine was used as the raw material for hydrazine determination in both reactions. Chalcone C5 exhibits significant AIE behavior in a mixed mixture of ethanol and water in addition to having great selectivity and a low detection limit (0.119 nm) for hydrazine. The solvent effect test revealed a linear relationship between the Stokes shift of C5 in the solvent and the rise in solvent orientation polarization. It is important to note that C5 is not harmful to MCF-7 cells, mouse kidney cells, or pig kidney cells. Furthermore, research on cell imaging has demonstrated that probe C5 may be utilized to image the fluorescence of hydrazine in active MCF-7 cells.

4.
J Fluoresc ; 31(3): 807-815, 2021 May.
Article in English | MEDLINE | ID: mdl-33725275

ABSTRACT

Two triphenylamine chalcone derivatives 1 and 2 were synthesized through the Vilsmeier-Haack reaction and Claisen-Schmidt condensation reaction. Through ultraviolet absorption spectroscopy and fluorescence emission spectroscopy experiments, it was confirmed that these two compounds exhibited good aggregation-induced emission (AIE) behavior in ethanol/water mixtures. The solvent effect test showed with the increase of the orientation polarizability of the solvent, the Stokes shift in the solvent of compound 1 and compound 2 shows a linear change trend. Through solid state fluorescence test and universal density function theory (DFT), the existence of π-π stacking interaction in the solid state of the compound has been studied, resulting in weak fluorescence emission. pH has no effect on the fluorescence intensity of the aggregate state of excited state intramolecular proton transfer (ESIPT) molecules in an acidic environment, but greatly weakens its fluorescence intensity in an alkaline environment. Cyclic voltammetry (CV) test shows that compound 1 was more prone to oxidation reaction than compound 2. The results of thermal stability test show that the thermal stability of compound 1 was better than that of compound 2, indicating that triphenylamine chalcone derivatives can improve the thermal stability of compounds by increasing the number of branches.

5.
J Fluoresc ; 31(1): 29-38, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33048296

ABSTRACT

Firstly, a novel pyrazole-pyrazoline fluorescent probe was developed and synthesized. The probe can be used to determine Fe3+ ions in a series of cations in tetrahydrofuran aqueous solution with high selectivity and high sensitivity. After the addition of iron ions, the fluorescence intensity is significantly reduced, Its structure was characterized by 1H NMR, 13C NMR and HR-ESI-MS. UV absorption spectra and Fluorescence spectroscopy were used to study the selective recognition of probe M on metal ions. The probe M can selectivity and sensitivity to distinguish the target ion from other ions through different fluorescence phenomena. In addition, the binding modes of M with Fe3+ were proved to be 1:1 stoichiometry in the complexes by Job's plot, IR results. The combination of probe M and iron ions is 1:1, and the detection limit is 3.9 × 10-10 M. The binding mode and sensing mechanism of M with Fe3+ was verified by theoretical calculations using Gaussian 09 based on B3LYP/6-31G(d) basis.

6.
Phytopathology ; 110(8): 1419-1427, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32301678

ABSTRACT

Osmotin and osmotin-like proteins (OLPs) play important roles in plant defense responses. The full-length cDNA sequence of an OLP gene was cloned from Panax notoginseng using rapid amplification of cDNA-end technology and named PnOLP1. A quantitative reverse transcription-PCR analysis showed that the signaling molecules methyl jasmonate, salicylic acid, ethylene, and hydrogen peroxide induced PnOLP1 expression to different degrees. In addition, the expression level of PnOLP1 rapidly increased within 48 h of inoculating P. notoginseng with the root rot pathogen Fusarium solani. Subcellular localization revealed that PnOLP1 localized to the cell wall. A prokaryotic expression vector containing PnOLP1 was constructed and transformed into Escherichia coli BL21 (DE3), and in vitro antifungal assays were performed using the purified recombinant PnOLP1 protein. The recombinant PnOLP1 protein had strong inhibitory effects on the mycelial growth of F. oxysporum, F. graminearum, and F. solani. A plant PnOLP1-overexpression vector was constructed and transfected into tobacco, and the resistance of T2 transgenic tobacco against F. solani was significantly enhanced compared with wild-type tobacco. Moreover, a PnOLP1 RNAi vector was constructed and transferred to the P. notoginseng leaves for transient expression, and the decrease of PnOLP1 expression level in P. notoginseng leaves increased the susceptibility to F. solani. Thus, PnOLP1 is an important disease resistance gene involved in the defense responses of P. notoginseng to F. solani.


Subject(s)
Fusarium , Panax notoginseng , Cyclopentanes , Disease Resistance , Humans , Oxylipins , Plant Diseases
7.
J Med Virol ; 91(6): 941-948, 2019 06.
Article in English | MEDLINE | ID: mdl-30701562

ABSTRACT

Foot-and-mouth disease (FMD) is an acute and febrile infectious disease, which can cause great economic losses. Virus-like particles (VLPs) as an advantageous antigen can induce significant specific immune response. To improve immunity of VLPs, especially, make it induce persistent immune response, the hollow mesoporous silica nanoparticles (HMSNs) as a potential nano-adjuvant were synthesized and loaded the FMD virus (FMDV) VLPs. They were injected into guinea pigs and the specific immune response was detected. The results confirmed that HMSNs/VLPs can induce persistent humoral immunity with high-level antibody titer for more than three months. HMSNs also improve the T-lymphocyte proliferation and IFN-γ induced by FMDV VLPs, and provides the ideal protection against FMDV challenge. These consequences indicated that HMSNs were good protein delivery vehicle and potential nano-adjuvant of vaccines.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/blood , Foot-and-Mouth Disease/prevention & control , Nanoparticles/administration & dosage , Silicon Dioxide/administration & dosage , Viral Vaccines/immunology , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease Virus , Guinea Pigs , Immunity, Humoral , Nanoparticles/chemistry , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/administration & dosage
8.
J Environ Radioact ; 276: 107440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669858

ABSTRACT

The radiation dose of workers in underground uranium mines mainly comes from radon and radon progeny. To ensure a healthy and safe work environment, it is necessary and urgent to optimize the design of ventilation systems. As such, based on the simplified radon diffusion-advection migration model of the rocks, this paper proposes 1) two methods for determining the radon exhalation rate modified by pressure drop, 2) three methods for calculating radon activity concentration of single-branch, and 3) the novel adjustment algorithm and solving procedures for calculating and adjusting the radon activity concentration in ventilation networks by modifying the radon exhalation rate, demonstrated on a specific ventilation network in a simulated underground uranium mine with calculation and analysis via MATLAB. The results show that 1) the radon exhalation rate of different branches can be modified by their pressure drop, and 2) the proposed method can be used to reveal the influences of different ventilation methods and fan pressures on the radon activity concentration in the ventilation network and the radon release rate to the atmosphere.


Subject(s)
Air Pollutants, Radioactive , Mining , Models, Theoretical , Radiation Monitoring , Radon , Uranium , Ventilation , Radon/analysis , Uranium/analysis , Air Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Occupational Exposure/analysis
9.
Bioresour Technol ; 412: 131379, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39214182

ABSTRACT

Initiating aerobic fermentation under low temperature is the main challenge for winter livestock manure composting. This study aims to address this issue by applying black soldier fly larvae (BSFL) frass as a co-composting additive to enhance the low-temperature composting process. Specifically, this work explored the effects of chicken manure and BSFL frass co-composting on the temperature, humus content, and microorganisms with fresh weight ratio of 2:1, 1:1, 1:2 (w/w) at 6 °C. The result showed frass could rapidly rise the temperature to 50 °C and significantly increased the humus content by 15.6 % ∼ 26.3 %. Moreover, microbial analysis revealed that Sphingobacteriaceae accelerated temperature rise via low-temperature reproduction, creating proper temperature for thermophilic bacteria (Truepera and Georgia). Additionally, Cellulomonas and other bacteria promoted organic matter degradation and participated in humus formation. This study presents a novel solution for low-temperature composting, providing practical insights for improving manure management in winter.


Subject(s)
Composting , Larva , Manure , Animals , Composting/methods , Cold Temperature , Soil/chemistry , Diptera/physiology , Chickens , Temperature , Bacteria
10.
Multimed Tools Appl ; 82(12): 17715-17740, 2023.
Article in English | MEDLINE | ID: mdl-36250182

ABSTRACT

Classical one-dimensional chaotic map has many ideal characteristics which is quite suitable for many different kinds of scientific fields, especially cryptography. In this paper, we propose an idea of constructing high-dimensional (HD) cyclic symmetric chaotic maps by using one-dimensional (1D) chaotic map. Two constructed 3D cyclic symmetric chaotic maps are taken as the examples, named three-dimensional cyclic symmetric logistic map (3D-CSLM) and three-dimensional cyclic symmetric Chebyshev map (3D-CSCM), respectively. Numerical experiments show that the new maps possesses better dynamical performances, and their parameters have a wider range, compared with the original map. Furthermore, to verify its effect in image encryption, a novel image encryption algorithm based on 3D-CSLM and DNA coding is proposed. DNA method for image encryption can improve the efficiency of permutation and diffusion. Firstly, the algorithm uses 3D-CSLM to generate chaotic sequences for DNA operation rule selection and pixel permutation. Then through the DNA XOR operation to achieve diffusion, and finally form an encrypted image. Several simulation tests results indicate that the proposal has a promising security performance and strong anti-attack ability.

11.
Environ Sci Pollut Res Int ; 30(24): 66157-66169, 2023 May.
Article in English | MEDLINE | ID: mdl-37097572

ABSTRACT

The role of plant genotype in determining the assembly of soil microorganisms is widely accepted; however, the effects of cropping with different cultivars of perennial crop plants on the composition of soil microbial communities are not fully understood. In the current study, high-throughput amplicon sequencing and real-time PCR were used to investigate the major features of bacterial community composition, ecological networks, and soil physicochemical properties in three replicate pear orchards, each planted with monocultures of pear cultivars Hosui (HS) or Sucui (SC) of similar ages. A distinct difference in the composition of microbial communities was observed between soils of HS and SC orchards. A significantly greater relative abundance of Verrucomicrobia and Alphaproteobacteria whereas a significantly lower relative abundance of Betaproteobacteria were found in soils of HS cropped orchards than that in SC orchards. Sphingomonas sp., belonging to the Alphaproteobacteria, was recognized as a key species in the co-occurrence network of the microbial interactions. Moreover, redundancy analysis, the Mantel correlation test, and random forest analysis showed that soil pH was the dominant driver in determining microbial community composition in HS soils, whereas soil organic matter was the primary factor determining microbial community composition in SC soils. Altogether, we provide evidence that soils in HS orchards harbor unique microbial communities enriched with respect to microbial groups associated with nutrient cycling, whereas soils in SC orchards are dominated by a group of beneficial microbes exhibiting plant growth promotion. These findings have implications for science-based guidance for manipulation of the soil microbiome to achieve sustainable food production.


Subject(s)
Alphaproteobacteria , Microbiota , Pyrus , Soil/chemistry , Soil Microbiology , Plants
12.
Article in English | MEDLINE | ID: mdl-38012369

ABSTRACT

In this paper, four novel hydrazine fluorescent probes X1-X4 with bis-chalcone structure were designed and synthesized. Through the measurement of its optical properties, it is found that it can quickly identify hydrazine, high sensitivity, low detection limit, and good anti-interference ability. The recognition of hydrazine by probes X1-X4 is not affected in the pH range of 4-10, X2 has the highest sensitivity, and the detection limit is as low as 0.336 × 10-7 M. Through Gaussian quantization calculation of probe molecules and their reaction products with hydrazine, it is speculated that the recognition mechanism is the closure of intramolecular charge transfer effect. In addition, the cytotoxicity and imaging of HeLa cells were tested, which showed that probes X1-X4 could be used to detect hydrazine in cells.

13.
Bioresour Technol ; 366: 128185, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36307028

ABSTRACT

Using biogas slurry to cultivate microalgae can simultaneously obtain microalgal biomass and allow nutrient recovery. Mixotrophic microalgae are widely recognized for their high biomass accumulation and low light dependence, making it possible to overcome the drawbacks of photoautotrophy. In this study, three complete metabolic modes of photoautotrophy, heterotrophy, mixotrophy and two incomplete metabolic modes with the addition of diuron and rotenone were applied to investigate Chlorella pyrenoidosa growth in biogas slurry. The results showed that the mixotrophic group obtained 1.15 g/L biomass, 30 % starch content, 99.40 % ammonium removal and 81.69 % total phosphorus removal, which were highly promoted compared to the others. The decline in chlorophyll, the simultaneous downregulation of Rubisco and citrate synthase and the increase in the actual quantum yield of PSII under mixotrophy revealed a synergistic effect: the complementation of photophosphorylation and oxidative phosphorylation greatly contributed to maximizing energy metabolism efficiency and minimizing energy dissipation loss.


Subject(s)
Chlorella , Microalgae , Biomass , Biofuels , Chlorella/metabolism , Microalgae/metabolism , Nutrients
14.
Medicine (Baltimore) ; 100(51): e28399, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34941177

ABSTRACT

OBJECTIVE: We explored the patterns of long non-coding RNA (lncRNA) expression in peripheral blood mononuclear cells (PBMCs) from patients with non-segmental vitiligo. METHODS: We used high-throughput RNA sequencing technology to generate sequence data from five patients with non-segmental vitiligo alongside five normal healthy individuals, and then performed bioinformatics analyses to detect the differential expression of lncRNA in PBMCs. Gene Ontology (GO) and pathway analyses were performed for functional annotation, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify gene expression. Target miRNAs and mRNAs of differentially expressed lncRNAs were predicted using bioinformatics analysis. RESULTS: A total of 292 lncRNAs were differentially expressed in non-segmental vitiligo (fold change ≥ 2.0, P < .05), of which 171 were upregulated and 121 were downregulated. Six differentially expressed lncRNAs were selected, namely ENST00000460164.1, ENST00000393264.2, NR-046211.1, NR-135491.1, NR-135320.1, and ENST00000381108.3, for validation by qRT-PCR. The results showed that ENST00000460164.1 and NR-046211.1 were highly expressed in PBMCs of non-segmental vitiligo. An lncRNA-miRNA-mRNA network containing two lncRNAs, 17 miRNAs, and 223 mRNAs was constructed. CONCLUSION: Our results revealed patterns of differentially expressed lncRNAs in the PBMCs of non-segmental vitiligo individuals. ENST00000460164.1, and NR-046211.1 may be potential biomarkers and drug targets for the treatment of non-segmental vitiligo.


Subject(s)
Gene Expression Profiling , Leukocytes, Mononuclear/metabolism , RNA, Long Noncoding/genetics , Sequence Analysis, RNA , Vitiligo/genetics , Aged , Computational Biology , Female , Gene Regulatory Networks , Genetic Markers/genetics , Humans , Male , MicroRNAs , Middle Aged , RNA, Long Noncoding/blood , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Vitiligo/blood , Vitiligo/etiology
15.
Sci Rep ; 10(1): 519, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949222

ABSTRACT

Understanding and quantitative delineation of Portable X-Ray Fluorescence (PXRF) -quantified elements and soil properties spatial variability are important for healthy turf development for golf courses. In this study, PXRF-quantified elements and soil properties (except soil acidity and alkalinity (pH), electric conductivity (EC), and textures) of 200 soil samples were measured by PXRF analyzer at different golf courses in Lubbock, Amarillo, and Midland in Texas, and Hobbs in New Mexico. Furthermore, principal component analysis (PCA), empirical bayesian kriging (EBK) and the ordinary least square model (OLSM) were used in the study. Two kinds of components were extracted and interpreted by PCA, the results showed Zn, Ti, Fe, Rb, V, Mn and Zr were associated with the component 1, while Sr was associated with the component 2, the preliminary classification of PXRF-quantified elements was formed by PCA. The EBK approach was used to evaluate the spatial patterns of PXRF-quantified elements and soil properties. The OLSM model quantitatively related pH to EC, silt texture and the PXRF-quantified K, Ca and Sr. The integration of PCA, EBK and OLSM revealed quantitative links between soil pedogenesis and causes, spatial variability and couple relationships of PXRF-quantified elements and soil properties over golf courses.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 237: 118391, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32371353

ABSTRACT

A novel coumarin-derived acylhydrazone Schiff base fluorescent organogel (G1) was designed and synthesized. Gelator G1 can form stable organogels in isopropanol, tert-amyl alcohol, n-butanol and phenylamine. The organogel could be converted to solution by heating and the solution could be restored to gel state by cooling. The self-assemble mechanism of G1 was investigated by XRD, FT-IR and SEM techniques. The results indicated the intermolecular hydrogen bonding, Van der Waals interaction and π-π stacking are the forces for the self-assembly of the gelator to form the organogel. The optical properties of the compound were studied by UV-visible spectroscopy and fluorescence spectra. Further study presented that gelator G1 could selectively and sensitively response to Fe3+ only among tested cations. Beside the above functions, the organic gel factor G1 could also response to irradiation, heating and shaking, thus endowing the organogel with multi stimulus responsive properties.

17.
Article in English | MEDLINE | ID: mdl-30927572

ABSTRACT

Graphene quantum dots (GQDs) are synthesized by the method of high-temperature pyrolysis from marigold granules and subsequently nitrogen-doped graphene quantum dots (N-GQDs) are synthesized from ethylenediamine by hydrothermal treatment, which shows a strong blue emission with 7.84% quantum yield (QY). This will be used in detection of Fe3+ in water environments and the field of bioimaging.


Subject(s)
Biosensing Techniques/methods , Graphite/chemistry , Iron/analysis , Molecular Imaging/methods , Nitrogen/chemistry , Quantum Dots , Hydrogen-Ion Concentration , Spectrometry, Fluorescence
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 202-208, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29605784

ABSTRACT

A novel biphenyl-derived salicylhydrazone Schiff base (BSS) fluorescent probes for highly sensitive and selective identification of Cu2+ has been synthesized. In addition, the recognition has been proved experimentally. The results indicated that the complex forms a 1:1 complex with Cu2+ shows fluorescent quenching. Furthermore, the detection limit of 1.54×10-8M. More interesting, the probe BSS not only have a good biocompatibility in living cells, but also the sense behavior of Cu2+ in the cell nucleus.


Subject(s)
Biphenyl Compounds/chemistry , Copper/analysis , Fluorescent Dyes/chemistry , Hydrazones/chemistry , Salicylates/chemistry , Schiff Bases/chemistry , HeLa Cells , Humans , Limit of Detection , Spectrometry, Fluorescence
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 177: 147-152, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28153812

ABSTRACT

A new pyrazoline-based probe D was designed and synthesized, which can be used as a highly sensitive, selective and reversible recognizing fluorescent to detect Cu2+. The recognition properties of this compound was investigated by UV-vis absorption and fluorescence spectrophotometry. The results showed that the probe D forms a 1:1 complex with Cu2+ and displayed a linear fluorescence response to Cu2+ with a detection limit of 1.94×10-7M. In addition, the probe have a good biocompatibility in living cells.


Subject(s)
Copper/analysis , Fluorescent Dyes/chemistry , Pyrazoles/chemistry , Animals , Cell Death , Cell Line , Fluorescent Dyes/chemical synthesis , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
20.
PLoS One ; 9(11): e112713, 2014.
Article in English | MEDLINE | ID: mdl-25423032

ABSTRACT

This study provides a unique approach to activate caged small interfering RNAs (siRNAs) using indirect UV light emitted by the near-infrared (NIR)-to-UV upconversion process to achieve high spatial and temporal gene interference patterns. siRNA molecules against the anti-apoptotic gene survivin was caged by light-sensitive molecules (4,5-dimethoxy-2-nitroacetophenone, DMNPE), which rendered them temporarily non-functional. NIR-to-UV NaYF4:Yb,Tm upconversion nanoparticles (UCPs) served as delivery vehicles and activators of the caged siRNA molecules in murine bladder cancer cells (MB49 cell line). Upconverted UV light at 355 nm was emitted from the NIR-irradiated UCPs, which well coincided with the wavelength needed to uncage DMNPE. Consequently, UV light acted as a switch to uncage the delivered siRNA molecule, thereby rendering fully functional for exerting its therapeutic effect in the bladder cancer cells. To achieve the highest RNA interference efficiency, conditions such as time after cellular uptake, excitation time, UCPs concentration and laser power were optimized. Results showed that 200 µg/mL nanoparticle concentration combined with 12 h incubation with MB49 cells and excitation with NIR laser at 100 mW power for 15 min provided the ideal interference efficiency and strongest induction of MB49 cell death. Our findings demonstrate the potential biological application of UCPs in treating bladder cancer by a novel therapeutic approach.


Subject(s)
Cell Proliferation , Inhibitor of Apoptosis Proteins/genetics , Nanoparticles/chemistry , RNA, Small Interfering/genetics , Repressor Proteins/genetics , Urinary Bladder Neoplasms/metabolism , Animals , Cell Line, Tumor , Inhibitor of Apoptosis Proteins/metabolism , Mice , Nanoparticles/radiation effects , Nitrobenzenes/chemistry , RNA, Small Interfering/metabolism , Repressor Proteins/metabolism , Survivin , Ultraviolet Rays , Urinary Bladder Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL