Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Plant Cell Environ ; 47(7): 2443-2458, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38557938

ABSTRACT

The GSK3/SHAGGY-like kinase plays critical roles in plant development and response to stress, but its specific function remains largely unknown in wheat (Triticum aestivum L.). In this study, we investigated the function of TaGSK3, a GSK3/SHAGGY-like kinase, in wheat development and response to stress. Our findings demonstrated that TaGSK3 mutants had significant effects on wheat seedling development and brassinosteroid (BR) signalling. Quadruple and quintuple mutants showed amplified BR signalling, promoting seedling development, while a sextuple mutant displayed severe developmental defects but still responded to exogenous BR signals, indicating redundancy and non-BR-related functions of TaGSK3. A gain-of-function mutation in TaGSK3-3D disrupted BR signalling, resulting in compact and dwarf plant architecture. Notably, this mutation conferred significant drought and heat stress resistance of wheat, and enhanced heat tolerance independent of BR signalling, unlike knock-down mutants. Further research revealed that this mutation maintains a higher relative water content by regulating stomatal-mediated water loss and maintains a lower ROS level to reduces cell damage, enabling better growth under stress. Our study provides comprehensive insights into the role of TaGSK3 in wheat development, stress response, and BR signal transduction, offering potential for modifying TaGSK3 to improve agronomic traits and enhance stress resistance in wheat.


Subject(s)
Brassinosteroids , Plant Proteins , Signal Transduction , Stress, Physiological , Triticum , Triticum/genetics , Triticum/physiology , Triticum/growth & development , Brassinosteroids/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Droughts , Gene Expression Regulation, Plant , Seedlings/growth & development , Seedlings/physiology , Seedlings/genetics , Adaptation, Physiological/genetics , Mutation , Reactive Oxygen Species/metabolism
2.
Opt Express ; 32(10): 17535-17550, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858935

ABSTRACT

Physical processes in the Fourier domain play a crucial role in various applications such as spectroscopy, quantum technology, ranging, radio-astronomy, and telecommunications. However, the presence of stochastic noise poses a significant challenge in the detection of broadband spectral waveforms, especially those with limited power. In this study, we propose and experimentally demonstrate a cross-phase modulation (XPM) based spectral Talbot amplifier to recover the broadband spectral waveforms in high fidelity. Through the combination of spectral phase filtering and XPM nonlinear effect in an all-fiber configuration, we demonstrate spectral purification of THz-bandwidth spectral waveforms submerged in strong noise. The proposed spectral Talbot amplifier provides tunable amplification factors from 3 to 10, achieved by flexible control on the temporal waveform of the pump and the net dispersion. We demonstrate up to 10-dB remarkable improvement on optical signal-to-noise ratio (OSNR) while preserving the spectral envelope. Furthermore, our system allows frequency-selective reconstruction of noisy input spectra, introducing a new level of flexibility for spectral recovery and information extraction. We also evaluate numerically the impact of pump intensity deviation on the reconstructed spectral waveforms. Our all-optical approach presents a powerful means for effective recovery of broadband spectral waveforms, enabling information extraction from a noise-buried background.

3.
Opt Lett ; 49(9): 2377-2380, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691723

ABSTRACT

We demonstrate a multichannel entropy loading mechanism in an optical frequency comb-based coherent communication system. In high-capacity wavelength division multiplexing communications, the individual laser sources can be replaced by an optical frequency comb, thus reducing the complexity and energy consumption of the transmitter. However, the power variation among different comb lines will lead to performance discrepancies. Spectral flattening filters can be adopted to suppress the variation at the expense of an additional system loss. Alternatively, by applying probabilistic shaping, we have implemented multichannel entropy loading to facilitate a continuous adaptation of the source entropy. The data rate can be dynamically allocated according to the performance of each channel. Through the loading scheme, the non-uniform performances across the channels are effectively mitigated, achieving a capacity enhancement of 34.91 Gbit/s.

4.
J Org Chem ; 89(5): 3238-3250, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38351840

ABSTRACT

A Co(III)-catalyzed vinylene transfer reaction enabled by carboxylic acid is presented. This redox-neutral transformation tolerates various functional groups, including free hydroxyl groups, and features practicality. Five-step routes based on the vinylene transfer reaction and Heck annulation have been devised to the total synthesis of 8-oxodehydrodiscretamine and 2-demethyl-oxypalmatine without the protection of the free hydroxyl functionality.

5.
Angew Chem Int Ed Engl ; 62(30): e202306343, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37243485

ABSTRACT

A two-step sequential strategy involving a biocatalytic dehydrogenation/remote hydrofunctionalization, as a unified and versatile approach to selectively convert linear alkanes into a large array of valuable functionalized aliphatic derivatives is reported. The dehydrogenation is carried out by a mutant strain of a bacteria Rhodococcus and the produced alkenes are subsequently engaged in a remote functionalization through a metal-catalyzed hydrometalation/migration sequence that subsequently react with a large variety of electrophiles. The judicious implementation of this combined biocatalytic and organometallic approach enabled us to develop a high-yielding protocol to site-selectively functionalize unreactive primary C-H bonds.

6.
Opt Lett ; 47(12): 2987-2990, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35709032

ABSTRACT

We demonstrate the generation of optical frequency combs with tunable spacing at the hundred-GHz range in the 1550-nm window. The widely spaced combs are realized through silicon-based cross-phase modulation. The optical pump is prepared by multiplication of a 10-GHz train of 1.7-ps pedestal-free pulses. Energy-efficient temporal Talbot processing is used to multiply the repetition rate by a factor of up to 20. In our approach, the multiplication factor can be flexibly controlled by tuning the temporal dispersion inside an optical processor. Optical frequency combs with spacings ranging from 140 to 200 GHz have been successfully generated with a maximum carrier-to-noise suppression ratio of ∼45 dB.

7.
Bioorg Med Chem ; 76: 117086, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36455509

ABSTRACT

Introducing different functional groups into steroid can bring unexpected changes in biological activity of the steroid. Using estrone as a raw material, through the functional group conversion and modification of the 17-carbonyl, the structural fragments with selenocyano groups were instilled in the form of amide, ester, and oxime ester, respectively, and various 17-substituted estrone selenocyanate derivatives were synthesized. In addition, different 3-substituted estrone selenocyanate derivatives were synthesized by introducing different selenocyanoalkoxy fragments into the 3-position of estrone in the form of alkyl ether. Furthermore, the selenocyano-containing moieties were embedded into the 2-position of estrone by means of amide, affording diverse 2-selenocyanoamide-estrone derivatives. The antiproliferative activities of the target compounds were screened by selecting tumor cell lines related to the expression of human hormones. The results showed that the introduction of selenocyano group into estrone could endow estrone with significant biological activity of inhibiting the proliferation of tumor cells. Structure-activity relationship research showed that the cytotoxicity of 3-selenocyanoalkoxy-estrone was further increased with the extension of alkyl carbon-chain within 8 carbon chain lengths. In addition, the cytotoxicity of the products with selenocyano via the form of amide was stronger than that of ester or ether. Selenocyano moiety instilled at the 2-position of estrone in the form of amide was more cytotoxic than that of 17- or 3-position. Among them, compound 21a has better inhibitory activity on tested tumor cells than positive controls Abiraterone and 2-methoxyestradiol. Research showed that the compound 21c induced programmed apoptosis in Sk-Ov-3 cancer cells, and compound 17d inhibited significantly the growth of human cervical cancer zebrafish xenografts in vivo, offering useful insights into the synthesis of steroid antitumor drugs.


Subject(s)
Estrone , Ether , Humans , Animals , Estrone/pharmacology , Zebrafish , Structure-Activity Relationship , Amides , Esters , Carbon
8.
J Environ Sci Health B ; 57(7): 576-587, 2022.
Article in English | MEDLINE | ID: mdl-35611791

ABSTRACT

The controlled release formulations (CRFs) are considered an effective way to solve damage to the environment caused by traditional pesticide formulations. To change the defects of traditional neonicotinoid formulations that dissolve quickly in soil, three types of thiamethoxam (TM) CRFs microspheres with content of 20% TM were prepared using microcrystalline wax (MK) as the matrix, laurate acid tapioca starch ester (MSK) and stearyl dehydroabietic acid ester (MDK) as the regulators of ingredient release. The release behavior of CRFs microspheres in water and soil showed that the microspheres had superior stability and different TM sustained-release periods, and TM release of the microspheres in soil was faster than that in water. The release rate is TM/MDK > TM/MSK > TM/MK. In water, the release of thiamethoxam technical was finished after 38 hours. However, for TM/MK, the release rate was 94% after 240 hours, and the release time was extended by 6 times. Meanwhile, TM/MDK has a particular pH-responsive release. Research shows that using microcrystalline wax as the matrix, by adding MSK or MDK to adjust the release of ingredients, pesticide CRFs microspheres with different release periods can be prepared to achieve the purpose of controlling the release of pesticides.


Subject(s)
Manihot , Pesticides , Abietanes , Delayed-Action Preparations/chemistry , Esters , Microspheres , Soil , Starch , Thiamethoxam , Water
9.
Inorg Chem ; 58(8): 5126-5133, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30946583

ABSTRACT

The discrete supertetrahedral chalcogenido T n clusters can be regarded as a type of quantum dot (QD) with precise structure and uniform size. They were commonly studied in the solid state because of their poor solubility or highly negative charge that leads to instability in common solvents. These drawbacks limit their potential applications as efficient photocatalysts. Herein we first obtained a sulfide compound via an ionic-liquid-assisted precursor method, namely, (BMMim)9(Cd3In17S31Cl4) (T4-1, BMMim = 1-butyl-2,3-dimethylimidazolium). T4-1 is characteristic of the discrete anionic T4 cluster and is insoluble in common solvents. Introducing Se into the structure resulted in compounds (BMMim)9(Cd3In17S13Se18Cl4) (T4-2) and (BMMim)9(Cd3In17Se31Cl4)(4,4'-bpy) (T4-3) with narrower band gaps. Moreover, T4-2 and T4-3 were soluble in dimethyl sulfoxide (DMSO) probably because of weaker interactions between cations and anions than in T4-1. The solution stability of these clusters has been confirmed by mass spectrometry. Further characterization reveals that the highly dispersed T4 clusters exposed more active sites in solution, so their rates of relevant H2 production were improved to be ∼5 times that in the solid state. To our knowledge, this is the first time that highly dispersed T n clusters have been applied in photocatalytic H2 generation.

10.
Opt Express ; 25(11): 12601-12610, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28786615

ABSTRACT

We investigated the frequency noise in the distributed Bragg reflector single-frequency fiber laser (DBR-SFFL) theoretically and experimentally. A complete theoretical analysis is demonstrated by considering the energy-transfer upconversion (ETU) process and establishing linkages between the frequency noise and the relative intensity noise (RIN) of the DBR-SFFL. The experimental results of the diverse DBR-SFFLs in different working conditions are in good agreement with the theoretical analyses. These investigations are beneficial to optimizing frequency noise property to promote the wide application of the DBR-SFFLs. The proposed results can be generally applicable to the short-linear-cavity SFFL with centimeters order of the cavity length.

11.
Opt Express ; 25(2): 1535-1541, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28158035

ABSTRACT

Based on a self-injection locking scheme and the nonlinear amplification effect of a semiconductor optical amplifier, a low intensity noise amplified ultrashort cavity single-frequency fiber laser at 978 nm is demonstrated with a final output power of > 230 mW and a broad temperature range of > 15 °C for single-longitudinal-mode operation. The effective cavity length of the fiber oscillator is less than 6 mm, comprising a 3.5-mm-long highly Yb3+-doped phosphate fiber and a pair of fiber Bragg gratings. For the frequency range from 1.8 to 10 MHz, the relative intensity noise close to -150 dB/Hz is achieved. The signal-to-noise ratio of > 68 dB and the laser linewidth of < 10 kHz are obtained. Such narrow linewidth low noise 978 nm laser is promising, as the high-performance pump source or the efficient blue and UV light sources after nonlinear frequency conversion.

12.
Opt Express ; 24(4): 3162-7, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26906980

ABSTRACT

A linearly frequency-modulated, actively Q-switched, single-frequency ring fiber laser based on injection seeding from an ultra-short cavity is demonstrated at 1083 nm. A piezoelectric transducer is employed to obtain linearly frequency-modulating performance and over 1.05 GHz frequency-tuning range is achieved with a modulating frequency reaching tens of kilohertz. A maximum peak power of the stable output pulse is over 3.83 W during frequency-modulating process. This type of pulsed fiber laser provides a promising candidate for coherent LIDAR in the measurement of thermosphere.

13.
Opt Express ; 24(14): 16149-55, 2016 Jul 11.
Article in English | MEDLINE | ID: mdl-27410881

ABSTRACT

We propose a compact dual-wavelength Q-switched single-frequency fiber laser based on a 17-mm-long home-made highly Er3+/Yb3+ co-doped phosphate fiber (EYDPF) and a semiconductor saturable absorber mirror (SESAM). The short cavity length and a polarization-maintaining fiber Bragg grating (PM-FBG) ensure that only one longitudinal mode is supported by each reflection peak. The maximum pulse energy of more than 34.5 nJ was realized with the shortest pulse duration of 110.5 ns and the Q-switched fiber laser has a repetition rate reaching over 700 kHz with a temporal synchronization of pulses at two wavelengths. Besides, the optical signal-to-noise ratio (OSNR) of larger than 64.5 dB was achieved.

14.
Opt Express ; 24(10): 10956-61, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27409917

ABSTRACT

Based on heavily Tm-doped germanate glass fibers (TGFs), a short all-TGF MOPA laser system with uniform core parameters in each stage was demonstrated. An 11.7 W stable single-frequency laser at 1.95 µm with an optical-to-optical conversion efficiency of 20.4% is obtained from a homemade 31-cm-long double-cladding single-mode TGF. The estimated stimulated Brillouin scattering (SBS) threshold of 980 W and the measured relative intensity noise of < -130 dB/Hz for frequencies above 2 MHz are achieved in this MOPA system. Furthermore, the prospect for further power-scaling of such short MOPA laser is considered.

15.
Opt Express ; 24(23): 26209-26214, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27857357

ABSTRACT

An ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser based on self-injection locking has been demonstrated. By the use of a tunable narrow-band fiber Fabry-Perot interferometer, the laser wavelength could be flexibly tuned from 1527 to 1563 nm with linewidths of < 700 Hz. The laser frequency noise is less than 40 dB re Hz/Hz1/2 at low frequencies (< 100 Hz) and reaches -5 dB re Hz/Hz1/2 at around 25 kHz. The measured relative intensity noise (RIN) is less than -130 dB/Hz with regard to frequencies of over 3 MHz, while the obtained linear polarization extinction ratio (LPER) is higher than 28 dB. This ultra-narrow linewidth low-noise tunable single-frequency linear-polarization fiber laser provides a promising candidate for high-order quadrature amplitude modulation (QAM) optical communication system.

16.
Angew Chem Int Ed Engl ; 54(12): 3817-21, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25631325

ABSTRACT

A rhodium(III)-catalyzed carboxylic acid directed decarboxylative C-H/C-H cross-coupling of carboxylic acids with thiophenes has been developed. With a slight adjustment of the reaction conditions based on the nature of the substrates, aryl carboxylic acids with a variety of substituents could serve as suitable coupling partners, and a broad variety of functional groups were tolerated. This method provides straightforward access to biaryl scaffolds with diverse substitution patterns, many of which have conventionally been synthesized through lengthy synthetic sequences. An illustrative example is the one-step gram-scale synthesis of a biologically active 3,5-substituted 2-arylthiophene by way of the current method.

17.
J Agric Food Chem ; 72(7): 3374-3387, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38319593

ABSTRACT

The conversion of contact-killing pesticides into systemic pesticides can significantly enhance the bioavailability of pesticides, thereby reducing pesticide usage and environmental harm. A series of ß-cyclodextrin fatty acid esters with varying branch chains were synthesized and employed as carriers in nanoformulation of insecticide. The investigation revealed that nanoformulations prepared using ß-cyclodextrin octadecarboxylate (ß-CDs) exhibited superior stability and remarkable systemic translocation within plants. Six contact-killing insecticide nanoformulations were developed utilizing ß-CDs as carriers, and tests indicated that ß-CDs significantly enhanced the systemic translocation of insecticides in plants compared to carrier-free nanoformulations. It was found that ß-CDs increased the level of systemic translocation of insecticides by 5-12 times. Additionally, characterization results from λ-cyhalothrin-ß-CDs nanoformulation demonstrated their superior ability to improve photolysis resistance, prolong release time, and extend insecticidal duration. Consequently, ß-CDs can be utilized as a green additive in pesticide production to enhance the systemic translocation of pesticides in plants and increase their bioavailability.


Subject(s)
Insecticides , Pesticides , beta-Cyclodextrins
18.
J Org Chem ; 78(24): 12494-504, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24256374

ABSTRACT

CuI-catalyzed aerobic oxidative synthesis of imidazoheterocycles has been achieved. Four hydrogen atoms were removed in one step. This protocol was compatible with a broad range of functional groups, and it has been also successfully extended to unsaturated ketones, bringing about the formation of alkenyl-substituted imidazoheterocycles, which were difficult to prepare by previous means. Preliminary mechanistic studies indicated that this reaction was most likely to proceed through a catalytic Ortoleva-King reaction. By using this method, the marketed drug Zolimidine could be prepared with 90% yield on a gram scale from commercially available materials.


Subject(s)
Copper/chemistry , Heterocyclic Compounds/chemical synthesis , Imidazoles/chemical synthesis , Iodides/chemistry , Ketones/chemistry , Catalysis , Cyclization , Heterocyclic Compounds/chemistry , Imidazoles/chemistry , Molecular Structure , Oxidation-Reduction
19.
Math Biosci Eng ; 20(8): 14327-14352, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37679138

ABSTRACT

With the rapid development of smart campus, this paper studies the attitude tracking control of flexible manipulator (FM) in colleges and universities under elastic vibration and external disturbances. First, different from the traditional modeling based on ordinary differential equations (ODEs), the partial differential equations (PDEs) dynamic model of a manipulator system is established based on the Hamilton principle (HP). Second, the boundary control condition of the end system of the manipulator is introduced to adjust the vibration of the manipulator. Furthermore, a Proportional-Derivative (PD) boundary control (PDBC) strategy is proposed by the Lyapunov function to suppress the vibration of the manipulator. Finally, a numerical comparison simulation based on MATLAB/SIMULINK further verifies the robustness and anti-disturbance performance of the control method proposed in this paper.

20.
Int J Biol Macromol ; 240: 124450, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37060972

ABSTRACT

Controlled release formulations (CRFs) are a key technical approach for the sustainable development of pesticides. In this study, a CRF conjugate (emamectin-alkaline lignin, EB-AL) was successfully prepared using alkaline lignin as the substrate, with amide bond connecting emamectin and alkaline lignin. The structure and morphology of the conjugate were characterized using IR, 1HNMR, elemental analysis, SEM and TG. The release of EB-AL showed that the conjugate maintained its original structure when released in 50 % methanol-water and soil column, and the amide bond remained intact. The anti-photolysis test revealed that EB-AL had a 3.5 times higher photolysis half-life T0.5 than the general emamectin suspension concentrate (EB-SC). Bioactivity tests in the greenhouse demonstrated that EB-AL possessed a longer insecticidal duration and good biosafety. Ostrinia nubilalis lethality rate remained above 70 % for 19 days, while EB-EC, the control, had a rate of <50 % after 11 days of application. Additionally, EB-AL conjugate demonstrated excellent systemic translocation in plants, likely due to its ability to mediate alkaline lignin.


Subject(s)
Insecticides , Lignin , Lignin/pharmacology , Ivermectin/pharmacology , Ivermectin/chemistry , Insecticides/pharmacology , Amides
SELECTION OF CITATIONS
SEARCH DETAIL