Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Environ Sci Technol ; 58(10): 4571-4580, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38430186

ABSTRACT

Exposure to atmospheric particulate matter (PM) has been found to accelerate the onset of neurological disorders via the induction of detrimental neuroinflammatory responses. To reveal how astrocytes respond to urban atmospheric PM stimulation, a commercially available standard reference material (SRM1648a) was tested in this study on the activation of rat cortical astrocytes. The results showed that SRM1648a stimulation induced both A1 and A2 phenotypes in astrocytes, as characterized by the exposure concentration-dependent increases in Fkbp5, Sphk1, S100a10, and Il6 mRNA levels. Studying the functional alterations of astrocytes indicated that the neurotrophic factors of Gdnf and Ngf were transcriptionally upregulated due to astrocytic A2-type activation. SRM1648a also promoted autonomous motility of astrocytes and elevated the expressions of chemokines. The aryl hydrocarbon receptor (AhR) agonistic components, such as polycyclic aromatic hydrocarbons (PAHs), were recognized to greatly contribute to SRM1648a-induced effects on astrocytes, which was confirmed by the attenuation of PM-disturbed astrocytic effects via AhR blockage. This study, for the first time, uncovered the direct regulation of urban atmospheric PM on astrocytic activation and function and traced the containing bioactive components (e.g., PAHs) with AhR agonistic activity. The findings provided new knowledge on understanding the ambiguous neurological disturbance from ambient fine PM pollution.


Subject(s)
Particulate Matter , Polycyclic Aromatic Hydrocarbons , Rats , Animals , Particulate Matter/toxicity , Phenotype , Receptors, Aryl Hydrocarbon/genetics
2.
BMC Ophthalmol ; 24(1): 202, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38684968

ABSTRACT

BACKGROUND: Several epidemiological studies have investigated the association between ambient air pollution and age-related macular degeneration (AMD). However, a consensus has not yet been reached. Our meta-analysis aimed to clarify this association. METHODS: Databases, including PubMed, EMBASE, and Web of Science, were searched for relevant studies from 01 January 2000 to 30 January 2024. English-language, peer-reviewed studies using cross-sectional, prospective, or retrospective cohorts and case-control studies exploring this relationship were included. Two authors independently extracted data and assessed study quality. A random-effects model was used to calculate pooled covariate-adjusted odds ratios. Heterogeneity across studies was also tested. RESULTS: We identified 358 relevant studies, of which eight were included in the meta-analysis. Four studies evaluated the association between particulate matter less than 2.5 µm in diameter (PM2.5) and AMD, and three studies explored the relationship between nitrogen dioxide (NO2) or ozone (O3) and AMD. The pooled odds ratios were 1.16 (95% confidence interval [CI]: 1.11-1.21), 1.17 (95% CI: 1.09-1.25), and 1.06 (95% CI: 1.05-1.07), respectively. CONCLUSION: Current evidence suggests a concomitant positive but not causal relationship between PM2.5, NO2, or O3 and AMD risk.


Subject(s)
Air Pollution , Macular Degeneration , Humans , Macular Degeneration/epidemiology , Macular Degeneration/etiology , Air Pollution/adverse effects , Particulate Matter/adverse effects , Risk Factors , Air Pollutants/adverse effects , Odds Ratio , Ozone/adverse effects , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Environmental Exposure/adverse effects
3.
Article in English | MEDLINE | ID: mdl-38183644

ABSTRACT

BACKGROUND: Zanthoxylum bungeanum (Sichuan pepper; in Chinese) is used as a spice worldwide and is a potentially life-threatening allergenic food source, as first reported by our team in 2005. However, its allergen components are unknown. OBJECTIVE: We aim to identify and characterize its major allergen and determine its cross-reactivities with citrus seeds, pistachios, and cashew seeds. METHODS: Ionic exchange and molecular exclusion chromatography were used to isolate the protein components from Sichuan pepper seed. A protein fraction was characterized by SDS-PAGE, analytical ultracentrifugation, mass spectrometry, and circular dichroism spectroscopy. The coding region of it was amplified from the genome. ELISA and competitive ELISA assays were used to investigate the allergenicity and cross-reactivity of allergens. RESULTS: This protein allergen was around 14 kDa. It was a 2S albumin similar to an α-Amylase inhibitor (AAI) domain-containing protein of Citrus sinensis. Circular dichroism spectroscopy showed its thermal stability was high. A 303 bps DNA sequence of the AAI domain was cloned from the genome of the Sichuan pepper. Competitive ELISA assays showed positive cross-reactivities between this allergen and citrus seeds, pistachios, and cashew seeds. CONCLUSION: A major allergen of around 14 kDa from Sichuan pepper seed was confirmed, which belongs to the 2S albumin of plant seed storage proteins. Based on the nomenclature of the IUIS Subcommittee for Allergen Nomenclature, this allergen is designated as Zan b 1.01. The cross-reactivities were demonstrated between Zan b 1.01 and citrus seeds, pistachios, and cashew seeds.

4.
Plant Physiol Biochem ; 210: 108653, 2024 May.
Article in English | MEDLINE | ID: mdl-38670029

ABSTRACT

Edible plant seeds provide a relatively inexpensive source of protein and make up a large part of nutrients for humans. Plant seeds accumulate storage proteins during seed development. Seed storage proteins act as a reserve of nutrition for seed germination and seedling growth. However, seed storage proteins may be allergenic, and the prevalence of food allergy has increased rapidly in recent years. The 11S globulins account for a significant number of known major food allergens. They are of interest to the public and the agricultural industry because of food safety concerns and the need for crop enhancement. We sought to determine the crystal structure of Cor a 9, the 11 S storage protein of hazelnut and a food allergen. The structure was refined to 1.92 Å, and the R and Rfree for the refined structure are 17.6% and 22.5%, respectively. The structure of Cor a 9 showed a hetero hexamer of an 11S seed storage protein for the first time. The hexamer was two trimers associated back-to-back. Two long alpha helixes at the C-terminal end of the acidic domain of one of the Cor a 9 isoforms lay at the trimer-trimer interface's groove. These data provided much-needed information about the allergenicity of the 11S seed proteins. The information may also facilitate a better understanding of the folding and transportation of 11S seed storage proteins.


Subject(s)
Corylus , Seed Storage Proteins , Corylus/chemistry , Corylus/metabolism , Seed Storage Proteins/chemistry , Seed Storage Proteins/metabolism , Crystallography, X-Ray , Seeds/metabolism , Seeds/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Globulins/chemistry , Globulins/metabolism , Amino Acid Sequence , Protein Multimerization , Models, Molecular
5.
J Hazard Mater ; 466: 133511, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38262316

ABSTRACT

Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Humans , Quality of Life , Environmental Pollution , Body Burden , Chronic Disease , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
6.
Nutr Diabetes ; 14(1): 5, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413565

ABSTRACT

OBJECTIVE: To investigate the association of timing, frequency, and food quality of night eating with all-cause, cancer, and diabetes mortality. METHODS: This study included 41,744 participants from the US National Health and Nutrition Examination Survey (2002-2018). Night eating information was collected by 24-h dietary recall and the exposures were timing, frequency, and food quality of night eating. Food quality was assessed by latent class analysis. The outcomes were all-cause, cancer, and diabetes mortality, which were identified by the National Death Index and the International Classification of Diseases 10th Revision. Adjusted hazard ratios [aHR] with 95% confidence intervals [CI] were computed by Cox regression. RESULTS: During a median follow-up of 8.7 years, 6066 deaths were documented, including 1381 from cancer and 206 from diabetes. Compared with no night eating (eating before 22:00), the later timing of night eating was associated with higher risk of all-cause and diabetes mortality (each P-trend <0.05) rather than cancer mortality, with the highest risk of eating being 00:00-1:00 (aHR 1.38, 95% CI 1.02-1.88) and being 23:00-00:00 (aHR 2.31, 95% CI 1.21-4.40), respectively. However, the increased risks were not observed for 22:00-23:00. Likewise, one time or over frequency of night eating was associated with higher all-cause and diabetes mortality (each P < 0.05). That risks were further observed in high-dietary-energy-density group of night eating (all-cause mortality: aHR 1.21 [95% CI 1.06-1.38]; diabetes mortality: aHR 1.97 [95% CI 1.13-3.45]), but not in low-dietary-energy-density group. Finally, correlation analysis found positive associations of night eating with glycohemoglobin, fasting glucose, and OGTT. CONCLUSIONS: Night eating was associated with increased all-cause, cancer and diabetes mortality; however, reduction of excess mortality risk was observed when eating before 23:00 or low-dietary-energy-density foods.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Neoplasms , Humans , Cardiovascular Diseases/etiology , Nutrition Surveys , Neoplasms/complications , Diabetes Mellitus/epidemiology , Food Quality
7.
Nanomaterials (Basel) ; 14(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39057881

ABSTRACT

A Mo-Ni/C catalyst was developed and assessed in terms of the decomposition of ethanol to produce multi-wall carbon nanotubes (MWCNTs) and hydrogen. The catalyst utilized different molar ratios of Mo:Ni (1:9, 2:8, and 3:7), with Mo acting as a dopant to enhance the MWCNT yield and Ni acting as the primary active phase for MWCNT formation. Among the tested ratios, the 2:8 Mo:Ni ratio exhibited the optimal performance, yielding 86% hydrogen and high-quality MWCNTs. In addition to hydrogen, the process also generated CO, CH4, and CO2. Gas chromatography (GC) was employed to analyze the influence of the Mo:Ni ratio on gas production and selectivity, while the quality of the resulting MWCNTs was evaluated using SEM, Raman spectroscopy, and TEM analyses.

8.
Gastroenterol Rep (Oxf) ; 12: goae031, 2024.
Article in English | MEDLINE | ID: mdl-38628397

ABSTRACT

The low incidence of combined hepatocellular cholangiocarcinoma (cHCC-CCA) is an important factor limiting research progression. Our study extensively included nearly three decades of relevant literature and assembled the most comprehensive database comprising 5,742 patients with cHCC-CCA. We summarized the characteristics, tumor markers, and clinical features of these patients. Additionally, we present the evolution of cHCC-CCA classification and explain the underlying rationale for these classification standards. We reviewed cHCC-CCA diagnostic advances using imaging features, tumor markers, and postoperative pathology, as well as treatment options such as surgical, adjuvant, and immune-targeted therapies. In addition, recent advances in more effective chemotherapeutic regimens and immune-targeted therapies were explored. Furthermore, we described the molecular mutation features and potential specific markers of cHCC-CCA. The prognostic value of Nestin has been proven, and we speculate that Nestin will also play a role in classification and diagnosis. However, further research is needed. Moreover, we believe that the possibility of using machine learning liquid biopsy for preoperative diagnosis and establishing a scoring system are directions for future research.

9.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790626

ABSTRACT

Rice (Oryza sativa L.) is one of the most important food crops worldwide. However, during direct seeding, rice is extremely vulnerable to flooding stress, which impairs rice's emergence and seedling growth and results in a significant yield loss. According to our research, chitosan oligosaccharides have the potential to be a chemical seed-soaking agent that greatly increases rice's resistance to flooding. Chitosan oligosaccharides were able to enhance seed energy supply, osmoregulation, and antioxidant capacity, according to physiological index assessments. Using transcriptome and metabolomic analysis, we discovered that important differential metabolites and genes were involved in the signaling pathway for hormone synthesis and antioxidant capacity. Exogenous chitosan oligosaccharides specifically and significantly inhibit genes linked to auxin, jasmonic acid, and abscisic acid. This suggested that applying chitosan oligosaccharides could stabilize seedling growth and development by controlling associated hormones and reducing flooding stress by enhancing membrane stability and antioxidant capacity. Finally, we verified the effectiveness of exogenous chitosan oligosaccharides imbibed in seeds by field validation, demonstrating that they can enhance rice seedling emergence and growth under flooding stress.

10.
J Vis Exp ; (203)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38314805

ABSTRACT

Over the years, the oblique lateral interbody fusion (OLIF) technique has gained significant recognition for treating various spinal conditions in lumbar segments L2-L5. However, the adoption of OLIF for the L5-S1 segment has not been widely embraced by the spinal surgery community, given that significant concerns remain regarding the applicability of OLIF for lumbosacral fusion. In this study, a cohort of 20 patients underwent interbody fusion at the L5-S1 level using the OLIF technique through a single retroperitoneal oblique approach positioned between the Psoas muscle and the great vessels. The procedure involved discectomy and endplate preparation accomplished through a surgical window created on the anterolateral side of the L5-S1 disc. For secure interbody fusion cage placement, a supplementary cage insertion approach was employed. All patients were followed up for a minimum of 12 months. The mean preoperative visual analog scale (VAS) score for lower back pain was 6.3 ± 1.5 and experienced a significant reduction to 1.2 ± 0.8 at 12 months. The VAS score for lower limb pain significantly decreased from 5.6 ± 1.4 preoperatively to 0.8 ± 0.3 at 12 months after the surgery. Furthermore, the preoperative Oswestry disability index (ODI) improved from 82.4% ± 16.2% to 8.1% ± 2.0% at 12 months. Radiographic evaluations after surgery confirmed improved lumbosacral junction reconstruction for all patients. At the final follow-up, successful bony fusion was observed in all cases. Based on these findings, the OLIF technique for L5-S1 fusion represents an attainable approach for lumbosacral reconstruction. The procedure's success hinges on a comprehensive preoperative plan and precise intraoperative techniques.


Subject(s)
Low Back Pain , Spinal Fusion , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Psoas Muscles/diagnostic imaging , Psoas Muscles/surgery , Lumbosacral Region , Spinal Fusion/methods , Retrospective Studies , Treatment Outcome
11.
Front Med (Lausanne) ; 11: 1410051, 2024.
Article in English | MEDLINE | ID: mdl-39175820

ABSTRACT

Background: Alterations in metabolites and metabolic pathways are thought to be important triggers of idiopathic pulmonary fibrosis (IPF), but our lack of a comprehensive understanding of this process has hampered the development of IPF-targeted drugs. Methods: To fully understand the metabolic profile of IPF, C57BL/6 J male mice were injected intratracheally with bleomycin so that it could be used to construct a mouse model of IPF, and lung tissues from 28-day and control IPF mice were analyzed by pathology and immunohistochemistry. In addition, serum metabolites from IPF mice were examined using LC-ESI-MS/MS, and the differential metabolites were analyzed for KEGG metabolic pathways and screened for biomarkers using machine learning algorithms. Results: In total, the levels of 1465 metabolites were detected, of which 104 metabolites were significantly altered after IPF formation. In IPF mouse serum, 52% of metabolite expression was downregulated, with lipids (e.g., GP, FA) and organic acids and their derivatives together accounting for more than 70% of the downregulated differentially expressed metabolites. In contrast, FA and oxidised lipids together accounted for 60% of the up-regulated differentially expressed metabolites. KEGG pathway enrichment analyses of differential metabolites were mainly enriched in the biosynthesis of unsaturated fatty acids, pentose phosphate pathway, and alanine, aspartate, and glutamate metabolism. Seven metabolites were screened by machine learning LASSO models and evaluated as ideal diagnostic tools by receiver operating characteristic curves (ROCs). Discussion: In conclusion, the serum metabolic disorders found to be associated with pulmonary fibrosis formation will help to deepen our understanding of the pathogenesis of pulmonary fibrosis.

12.
J Biomol Struct Dyn ; : 1-8, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38361286

ABSTRACT

Ubiquitin-specific protease 7 (USP7) is a promising prognostic and druggable target for cancer therapy. Inhibition of USP7 can activate the MDM2-P53 signaling pathway, thereby promoting cancer cell apoptosis. This study based on watvina molecular docking of virtual screening method and biological evaluation found the new USP7 inhibitors targeting catalytic active site. Three hits were screened from 3760 natural products and validated as USP7 inhibitors by enzymatic and kinetic assays. The IC50 values of scutellarein (Scu), semethylzeylastera (DML) and salvianolic acid C (SAC) were 3.017, 6.865 and 8.495 µM, respectively. Further, we reported that the hits could downregulate MDM2 and activate p53 signal pathway in HCT116 cells. Molecular dynamics simulation was used to investigate the binding mechanism of USP7 to Scu, the compound with the best performance, which formed stable contact with Val296, Gln297, Phe409, Tyr465 and Tyr514. These interactions are essential for maintaining the biological activity of Scu. Three natural products are suitable as lead compounds for the development of novel USP7 inhibitors, especially anti-colon cancer drugs.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL