Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38342683

ABSTRACT

Postictal generalized electroencephalographic suppression is a possible electroencephalographic marker for sudden unexpected death in epilepsy. We aimed to investigate the cortical surface area abnormalities in epilepsy patients with postictal generalized electroencephalographic suppression. We retrospectively included 30 epilepsy patients with postictal generalized electroencephalographic suppression (PGES+), 21 epilepsy patients without postictal generalized electroencephalographic suppression (PGES-), and 30 healthy controls. Surface-based analysis on high-resolution T1-weighted images was conducted and cortical surface areas were compared among the three groups, alongside correlation analyses with seizure-related clinical variables. Compared with PGES- group, we identified reduced surface area in the bilateral insula with more extensive distribution in the right hemisphere in PGES+ group. The reduced right insular surface area was associated with younger seizure-onset age. When compared with healthy controls, PGES- group presented reduced surface area in the left caudal middle frontal gyrus; PGES+ group presented more widespread surface area reductions in the right posterior cingulate gyrus, left postcentral gyrus, middle frontal gyrus, and middle temporal gyrus. Our results suggested cortical microstructural impairment in patients with postictal generalized electroencephalographic suppression. The significant surface area reductions in the insular cortex supported the autonomic network involvement in the pathology of postictal generalized electroencephalographic suppression, and its right-sided predominance suggested the potential shared abnormal brain network for postictal generalized electroencephalographic suppression and sudden unexpected death in epilepsy.


Subject(s)
Epilepsy , Sudden Unexpected Death in Epilepsy , Humans , Retrospective Studies , Epilepsy/diagnostic imaging , Electroencephalography/methods , Seizures , Death, Sudden
2.
Nano Lett ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621360

ABSTRACT

Anodic dendrite formation is a critical issue in rechargeable batteries and often leads to poor cycling stability and quick capacity loss. Prevailing strategies for dendrite suppression aim at slowing down the growth rate kinetically but still leaving possibilities for dendrite evolution over time. Herein, we report a complete dendrite elimination strategy using a mesoporous ferroelectric polymer membrane as the battery separator. The dendrite suppression is realized by spontaneously reversing the surface energetics for metal ion reduction at the protrusion front, where a positive piezoelectric polarization is generated and superimposed as the protrusion compresses the separator. This effect is demonstrated first in a Zn electroplating process, and further in Zn-Zn symmetric cells and Zn-NaV3O8·1.5H2O full cells, where the dendritic Zn anode surfaces are completely turned into featureless flat surfaces. Consequently, a substantially longer charging/discharging cycle is achieved. This study provides a promising pathway toward high-performance dendrite-free rechargeable batteries.

3.
J Am Chem Soc ; 146(12): 8206-8215, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38412246

ABSTRACT

Spin-crossover (SCO) materials exhibit remarkable potential as bistable switches in molecular devices. However, the spin transition temperatures (Tc) of known compounds are unable to cover the entire ambient temperature spectrum, largely limiting their practical utility. This study reports an exemplary two-dimensional SCO solid solution system, [FeIII(H0.5LCl)2-2x(H0.5LF)2x]·H2O (H0.5LX = 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, X = F or Cl, x = 0 to 1), in which the adjacent layers are adhered via hydrogen bonding. Notably, the Tc of this system can be fine-tuned across 90 K (227-316 K) in a linear manner by modulating the fraction x of the LF ligand. Elevating x results in strengthened hydrogen bonding between adjacent layers, which leads to enhanced intermolecular interactions between adjacent SCO molecules. Single-crystal diffraction analysis and periodic density functional theory calculations revealed that such a special kind of alteration in interlayer interactions strengthens the FeIIIN2O2S2 ligand field and corresponding SCO energy barrier, consequently resulting in increased Tc. This work provides a new pathway for tuning the Tc of SCO materials through delicate manipulation of molecular interactions, which could expand the application of bistable molecular solids to a much wider temperature regime.

4.
J Hepatol ; 80(6): 834-845, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331323

ABSTRACT

BACKGROUND & AIMS: Accumulating evidence has indicated the presence of mature microRNAs (miR) in the nucleus, but their effects on steatohepatitis remain elusive. We have previously demonstrated that the intranuclear miR-204-3p in macrophages protects against atherosclerosis, which shares multiple risk factors with metabolic dysfunction-associated steatotic liver disease (MASLD). Herein, we aimed to explore the functional significance of miR-204-3p in steatohepatitis. METHODS: miR-204-3p levels and subcellular localization were assessed in the livers and peripheral blood mononuclear cells of patients with MASLD. Wild-type mice fed high-fat or methionine- and choline-deficient diets were injected with an adeno-associated virus system containing miR-204-3p to determine the effect of miR-204-3p on steatohepatitis. Co-culture systems were applied to investigate the crosstalk between macrophages and hepatocytes or hepatic stellate cells (HSCs). Multiple high-throughput epigenomic sequencings were performed to explore miR-204-3p targets. RESULTS: miR-204-3p expression decreased in livers and macrophages in mice and patients with fatty liver. In patients with MASLD, miR-204-3p levels in peripheral blood mononuclear cells were inversely related to the severity of hepatic inflammation and damage. Macrophage-specific miR-204-3p overexpression reduced steatohepatitis in high-fat or methionine- and choline-deficient diet-fed mice. miR-204-3p-overexpressing macrophages inhibited TLR4/JNK signaling and pro-inflammatory cytokine release, thereby limiting fat deposition and inflammation in hepatocytes and fibrogenic activation in HSCs. Epigenomic profiling identified miR-204-3p as a specific regulator of ULK1 expression. ULK1 transcription and VPS34 complex activation by intranuclear miR-204-3p improved autophagic flux, promoting the anti-inflammatory effects of miR-204-3p in macrophages. CONCLUSIONS: miR-204-3p inhibits macrophage inflammation, coordinating macrophage actions on hepatocytes and HSCs to ameliorate steatohepatitis. Macrophage miR-204-3p may be a therapeutic target for MASLD. IMPACT AND IMPLICATIONS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic inflammatory disease ranging from simple steatosis to steatohepatitis. However, the molecular mechanisms underlying the progression of MASLD remain incompletely understood. Here, we demonstrate that miR-204-3p levels in circulating peripheral blood mononuclear cells are negatively correlated with disease severity in patients with MASLD. Nuclear miR-204-3p activates ULK1 transcription and improves autophagic flux, limiting macrophage activation and hepatic steatosis. Our study provides a novel understanding of the mechanism of macrophage autophagy and inflammation in steatohepatitis and suggests that miR-204-3p may act as a potential therapeutic target for MASLD.


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Humans , Male , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/etiology , Macrophages/metabolism , Mice, Inbred C57BL , Hepatocytes/metabolism , Liver/metabolism , Liver/pathology , Diet, High-Fat/adverse effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Disease Models, Animal , Autophagy-Related Protein-1 Homolog
5.
J Transl Med ; 22(1): 300, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521905

ABSTRACT

BACKGROUND: Crohn's disease (CD) is a disease characterized by intestinal immune dysfunction, often accompanied by metabolic abnormalities. Disturbances in lactate metabolism have been found in the intestine of patients with CD, but studies on the role of lactate and related Lactylation in the pathogenesis of CD are still unknown. METHODS: We identified the core genes associated with Lactylation by downloading and merging three CD-related datasets (GSE16879, GSE75214, and GSE112366) from the GEO database, and analyzed the functions associated with the hub genes and the correlation between their expression levels and immune infiltration through comprehensive analysis. We explored the Lactylation levels of different immune cells using single-cell data and further analyzed the differences in Lactylation levels between inflammatory and non-inflammatory sites. RESULTS: We identified six Lactylation-related hub genes that are highly associated with CD. Further analysis revealed that these six hub genes were highly correlated with the level of immune cell infiltration. To further clarify the effect of Lactylation on immune cells, we analyzed single-cell sequencing data of immune cells from inflammatory and non-inflammatory sites in CD patients and found that there were significant differences in the levels of Lactylation between different types of immune cells, and that the levels of Lactylation were significantly higher in immune cells from inflammatory sites. CONCLUSIONS: These results suggest that Lactylation-related genes and their functions are closely associated with changes in inflammatory cells in CD patients.


Subject(s)
Crohn Disease , Humans , Crohn Disease/genetics , Databases, Factual , Lactic Acid , Sequence Analysis, RNA
6.
J Transl Med ; 22(1): 547, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849954

ABSTRACT

BACKGROUND: Enhancers are important gene regulatory elements that promote the expression of critical genes in development and disease. Aberrant enhancer can modulate cancer risk and activate oncogenes that lead to the occurrence of various cancers. However, the underlying mechanism of most enhancers in cancer remains unclear. Here, we aim to explore the function and mechanism of a crucial enhancer in melanoma. METHODS: Multi-omics data were applied to identify an enhancer (enh17) involved in melanoma progression. To evaluate the function of enh17, CRISPR/Cas9 technology were applied to knockout enh17 in melanoma cell line A375. RNA-seq, ChIP-seq and Hi-C data analysis integrated with luciferase reporter assay were performed to identify the potential target gene of enh17. Functional experiments were conducted to further validate the function of the target gene ETV4. Multi-omics data integrated with CUT&Tag sequencing were performed to validate the binding profile of the inferred transcription factor STAT3. RESULTS: An enhancer, named enh17 here, was found to be aberrantly activated and involved in melanoma progression. CRISPR/Cas9-mediated deletion of enh17 inhibited cell proliferation, migration, and tumor growth of melanoma both in vitro and in vivo. Mechanistically, we identified ETV4 as a target gene regulated by enh17, and functional experiments further support ETV4 as a target gene that is involved in cancer-associated phenotypes. In addition, STAT3 acts as a transcription factor binding with enh17 to regulate the transcription of ETV4. CONCLUSIONS: Our findings revealed that enh17 plays an oncogenic role and promotes tumor progression in melanoma, and its transcriptional regulatory mechanisms were fully elucidated, which may open a promising window for melanoma prevention and treatment.


Subject(s)
Cell Proliferation , Disease Progression , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Melanoma , Humans , Melanoma/genetics , Melanoma/pathology , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Animals , Oncogenes/genetics , CRISPR-Cas Systems/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Base Sequence , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics
7.
Cardiovasc Diabetol ; 23(1): 47, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302966

ABSTRACT

BACKGROUND: To investigate the association between gestational diabetes mellitus (GDM) without subsequent overt diabetes and long-term all-cause and cardiac mortality. METHODS: This prospective cohort study included 10,327 women (weighted population: 132,332,187) with a pregnancy history from the National Health and Nutrition Examination Survey (2007 to 2018). Participants were divided into three groups (GDM alone, overt diabetes, and no diabetes). Mortality data was linked from the National Death Index up to December 31, 2019. Multivariable Cox regression analysis was performed to examine the association between GDM alone and overt diabetes with all-cause mortality and cardiac mortality. Data analysis was performed from October 2022 to April 2023. RESULTS: Among the participants, 510 (weighted 5.3%) had GDM alone and 1862 (weighted 14.1%) had overt diabetes. Over a median follow-up period of 6.7 years (69,063 person-years), there were 758 deaths. The GDM group did not show an increased risk of all-cause mortality (hazard ratio [HR] 0.67; 95% CI, 0.25-1.84), while the overt diabetes group had a significantly higher risk (HR 1.95; 95% CI, 1.62-2.35). Similarly, the GDM group did not exhibit an elevated risk of cardiac mortality (HR 1.48; 95% CI, 0.50-4.39), whereas the overt diabetes group had a significantly higher risk (HR 2.37; 95% CI, 1.69-3.32). Furthermore, sensitivity analysis focusing on women aged 50 or above showed that the HR of GDM history for all-cause mortality was 1.14 (95% CI, 0.33-3.95) and the HR for cardiac mortality was 1.74 (95% CI, 0.49-6.20). CONCLUSIONS: GDM alone was not associated with an increased risk of all-cause and cardiac mortality, while overt diabetes was significantly associated with both types of mortality.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Pregnancy , Humans , Female , Diabetes, Gestational/diagnosis , Prospective Studies , Nutrition Surveys , Risk Factors , Heart
8.
Inorg Chem ; 63(12): 5365-5377, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38466201

ABSTRACT

Herein, Bi3+/Mn4+ doped Ca2LaTaO6 phosphors with a double-perovskite structure were successfully synthesized with solid-state reaction at high temperature. The photoluminescence (PL) performances were investigated in detail. The blue radiation (∼465 nm) from the Bi3+ ion and the red radiation (∼686 nm) originating from the Mn4+ ion were obtained under 313 nm excitation. Especially, the pathway of energy transfer (Bi3+ → Mn4+) contributes to enhance the red emission intensity (Mn4+: ∼686 nm) in Ca2LaTaO6:Bi3+/Mn4+ system. The PL mechanism of Ca2LaTaO6:Bi3+/Mn4+ was analyzed through luminescence lifetimes and PL spectra. Moreover, the emitting bands of Ca2LaTaO6:Bi3+/Mn4+ were primarily matched with the absorbing bands of carotenoids and phytochrome PFR on behalf of plant growth, so the phosphors were suitable for the design of a plant growth light under near-ultraviolet to blue excitation. At last, the optical temperature dependent performances of the Ca2LaTaO6:Bi3+/Mn4+ were analyzed with luminescence intensity ratio technology. The sample has presented excellent temperature measuring relative sensitivity (SR = 2.106% K-1). The results illustrated that the Ca2LaTaO6:Bi3+/Mn4+ phosphor also can be used to develop an optical temperature sensor.

9.
Nanotechnology ; 35(22)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387098

ABSTRACT

BiFeO3is one of the star materials in the field of ferroelectric photovoltaic for its relatively narrow bandgap (2.2-2.7 eV) and better visible light absorption. However, a high temperature over 600 °C is indispensable in the usual BiFeO3growth process, which may lead to impure phase, interdiffusion of components near the interface, oxygen vacancy and ferrous iron ions, which will result in large leakage current and greatly aggravate the ferroelectricity and photoelectric response. Here we prepared Sm, Nd doped epitaxial BiFeO3film via a rapid microwave assisted hydrothermal process at low temperature. The Bi0.9Sm0.5Nd0.5FeO3film exhibits narrow bandgap (1.35 eV) and photo response to red light, the on-off current ratio reaches over 105. The decrease in band gap and +2/+3 variable element doping are responsible for the excellent photo response. The excellent photo response performances are much better than any previously reported BiFeO3films, which has great potential for applications in photodetection, ferroelectric photovoltaic and optoelectronic devices.

10.
Mol Biol Rep ; 51(1): 153, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236436

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is an autosomal dominant disease of lipid metabolism mainly caused by mutations in the low-density lipoprotein receptor (LDLR) gene. Genetic detection of patients with FH help with precise diagnosis and treatment, thus reducing the risk of coronary heart disease (CHD) and other related diseases. The study aimed to identify the causative gene mutations in a Chinese FH family and reveal the pathogenicity and the mechanism of these mutations. METHODS AND RESULTS: Whole exome sequencing was performed in a patient with severe lipid metabolism dysfunction seeking fertility guidance from a Chinese FH family. Two LDLR variants c.1875 C > G (p.N625K; novel variant) and c.1448G > A (p.W483*) were identified in the family. Wildtype and mutant LDLR constructs were established by the site-direct mutagenesis technique. Functional studies were carried out by cell transfection to evaluate the impact of detected variants on LDLR activity. The two variants were proven to affect LDL uptake and binding, resulting in cholesterol clearance reduction to different degrees. According to The American College of Medical Genetics and Genomics (ACMG) Standards and Guidelines, the W483* variant was classified as "Pathogenic", while the N625K variant as "VUS". CONCLUSIONS: Our results provide novel experimental evidence of functional alteration by LDLR variants identified in our study and expand the mutational spectrum of LDLR mutation induced FH.


Subject(s)
Hyperlipoproteinemia Type II , Lipid Metabolism , Receptors, LDL , Humans , Biological Transport , Hyperlipoproteinemia Type II/genetics , Mutagenesis , Receptors, LDL/genetics
11.
Acta Pharmacol Sin ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719954

ABSTRACT

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

12.
BMC Psychiatry ; 24(1): 146, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383298

ABSTRACT

BACKGROUND: To investigate the incidence of depression in middle-aged and elderly patients with diabetes in China and the influencing factors to provide a theoretical basis to improve the mental health of middle-aged and elderly patients with diabetes and formulate prevention, control, and intervention strategies. METHODS: The sample of this study was obtained from the China Health and Aging Tracking Survey (CHARLS) 2018 survey data, and middle-aged and older patients with diabetes(responding "Yes" to the questionnaire: "Have you ever been told by a doctor that you have diabetes or elevated blood glucose [including abnormal glucose tolerance and elevated fasting glucose]?") aged ≥ 45 years were selected as study subjects (n = 2,613 ). Depressive symptoms of the study subjects were determined using the simplified version of the Depression Scale for Epidemiological Surveys scores(a score ≥ 10 was defined as depression), influence factors were analyzed using binary logistic regression, and proportion of depressive symptoms was standardized using the sex ratio of the seventh census. RESULTS: Among the 2,613 middle-aged and elderly patients with diabetes, 1782 (68.2%) had depressive symptoms and 831 (31.8%) had no depressive symptoms. There were 481 (27.0%) patients aged 45-59 years, 978 (54.9%) aged 60-74 years, and 323 (18.1%) aged ≥ 75 years. The depression rate among middle-aged and elderly Chinese patients with diabetes after standardization correction was 67.5%. Binary logistic regression results showed that age, education level, life satisfaction, marital satisfaction, self-rated health grade, somatic pain, visual impairment, physical disability, and the presence of comorbid chronic diseases were factors that influenced the onset of depression in middle-aged and elderly Chinese patients with diabetes (P < 0.05). CONCLUSION: According to a survey analysis of the CHARLS 2018 data, depression is influenced by a combination of factors among middle-aged and elderly patients with diabetes in China. Therefore, for this population, targeted prevention and control should be carried out for key populations, such as middle-aged and elderly people, poor physical health, and low life satisfaction and marital satisfaction, from various dimensions (e.g., demographic and sociological factors, physical health status, and life satisfaction and marital satisfaction).


Subject(s)
Depression , Diabetes Mellitus , Aged , Middle Aged , Humans , Depression/epidemiology , Depression/psychology , Incidence , Diabetes Mellitus/epidemiology , Aging , Glucose , China/epidemiology , Longitudinal Studies
13.
Neurol Sci ; 45(6): 2615-2623, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38216851

ABSTRACT

PURPOSE: To compare the peripapillary retinal nerve fiber layer (pRNFL), retinal nerve fiber layer (RNFL), and ganglion cell complex (GCC) thickness measurement in early-onset Alzheimer's disease (EOAD) and controls using spectral domain optical coherence tomography (SD-OCT). We also assessed the relationship between SD-OCT measurements and cognitive measures, serum biomarkers for Alzheimer's disease (AD), and cerebral microstructural volume. METHODS: pRNFL, RNFL, and GCC thicknesses were measured in 43 EOAD and 42 controls using SD-OCT. Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) were used to assess cognitive status, magnetic resonance imaging (MRI) tool was used to quantify cerebral microstructural volume, and serum biomarkers were quantified from peripheral blood. RESULTS: EOAD patients had thinner pRNFL (P < 0.001), RNFL (P = 0.008), and GCC (P = 0.018) thicknesses compared to controls after adjusting for multiple factors. pRNFL thickness correlated (P = 0.016) with serum t-tau level. Serum Aß42 (P < 0.05) concentration correlated with RNFL thickness. Importantly, occipital lobe volume (P = 0.010) correlated with GCC thicknesses in EOAD patients. CONCLUSION: Our findings suggest that retinal thickness may be useful markers for assessing neurodegenerative process in EOAD.


Subject(s)
Alzheimer Disease , Biomarkers , Brain , Tomography, Optical Coherence , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Male , Female , Biomarkers/blood , Middle Aged , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Amyloid beta-Peptides/blood , tau Proteins/blood , Retina/pathology , Retina/diagnostic imaging , Aged , Retinal Neurons/pathology , Nerve Fibers/pathology , Peptide Fragments/blood
14.
Anim Genet ; 55(1): 147-151, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38084665

ABSTRACT

Zi goose is a famous indigenous breed originating from northeast China with high annual egg production. Xianghai flying goose is a composite breed and is bred by crosses of the wild swan goose and the Zi goose. Our previous study revealed significant differences in muscle fiber characteristics between the two populations. Here, we aimed to reveal the underlying genetic basis of the above phenotype differences through whole-genome and transcriptome analysis. A total of 20 blood samples (10 Zi geese and 10 Xianghai flying geese) were used for whole genome sequencing, and eight breast muscle tissue samples (four Zi geese and four Xianghai flying geese) were used for RNA sequencing. Using the FST and XP-EHH analysis, some highly differentiated genome regions annotated with egg production (RORB, WNT4, BMPR1B) and breast muscle development (WNT7B) between the two populations were detected. RNA-sequencing analysis revealed differentially expressed genes related to muscle development (IGF1, PAX7). Moreover, several genes were detected by both genome and transcriptome analysis, and some of them were reported to be associated with muscle growth (SLIT2, PREX1) and intramuscular fat (COL6A1). These findings will help researchers better understand the genetic basis related to egg production and muscle development in geese.


Subject(s)
Geese , Transcriptome , Animals , Geese/genetics , Genome , Gene Expression Profiling , Phenotype
15.
Nano Lett ; 23(13): 6148-6155, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37384822

ABSTRACT

Two-dimensional (2D) piezoelectric materials have recently drawn intense interest in studying the nanoscale electromechanical coupling phenomenon and device development. A critical knowledge gap exists to correlate the nanoscale piezoelectric property with the static strains often found in 2D materials. Here, we present a study of the out-of-plane piezoelectric property of nanometer-thick 2D ZnO-nanosheets (NS) in correlation to in-plane strains, using in situ via strain-correlated piezoresponse force microscopy (PFM). We show that the strain configuration (either tensile or compressive) can dramatically influence the measured piezoelectric coefficient (d33) of 2D ZnO-NS. A comparison of the out-of-plane piezoresponse is made for in-plane tensile and compressive strains approaching 0.50%, where the measured d33 varies between 2.1 and 20.3 pm V-1 resulting in an order-of-magnitude change in the piezoelectric property. These results highlight the important role of in-plane strain in the quantification and application of 2D piezoelectric materials.

16.
Nano Lett ; 23(7): 2467-2475, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36975035

ABSTRACT

Mechanical signals establish two-way communication between mammalian cells and their environment. Cells contacting a surface exert forces via contractility and transmit them at the areas of focal adhesions. External stimuli, such as compressive and pulling forces, typically affect the adhesion-free cell surface. Here, we demonstrate the collaborative employment of Fluidic Force Microscopy and confocal Traction Force Microscopy supported by the Cellogram solver to enable a powerful integrated force probing approach, where controlled vertical forces are applied to the free surface of individual cells, while the concomitant deformations are used to map their transmission to the substrate. Force transmission across human cells is measured with unprecedented temporal and spatial resolution, enabling the investigation of the cellular mechanisms involved in the adaptation, or maladaptation, to external mechanical stimuli. Altogether, the system enables facile and precise force interrogation of individual cells, with the capacity to perform population-based analysis.


Subject(s)
Cell Adhesion , Extracellular Matrix , Focal Adhesions , Mechanotransduction, Cellular , Animals , Humans , Cell Adhesion/physiology , Cell Membrane/physiology , Focal Adhesions/metabolism , Focal Adhesions/physiology , Mammals/anatomy & histology , Mammals/physiology , Mechanical Phenomena , Mechanotransduction, Cellular/physiology , Microscopy, Atomic Force/methods , Extracellular Matrix/physiology
17.
Alzheimers Dement ; 20(6): 4185-4198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747519

ABSTRACT

INTRODUCTION: This study addresses the urgent need for non-invasive early-onset Alzheimer's disease (EOAD) prediction. Using optical coherence tomography angiography (OCTA), we present a choriocapillaris model sensitive to EOAD, correlating with serum biomarkers. METHODS: Eighty-four EOAD patients and 73 controls were assigned to swept-source OCTA (SS-OCTA) or the spectral domain OCTA (SD-OCTA) cohorts. Our hypothesis on choriocapillaris predictive potential in EOAD was tested and validated in these two cohorts. RESULTS: Both cohorts revealed diminished choriocapillaris signals, demonstrating the highest discriminatory capability (area under the receiver operating characteristic curve: SS-OCTA 0.913, SD-OCTA 0.991; P < 0.001). A sparser SS-OCTA choriocapillaris correlated with increased serum amyloid beta (Aß)42, Aß42/40, and phosphorylated tau (p-tau)181 levels (all P < 0.05). Apolipoprotein E status did not affect choriocapillaris measurement. DISCUSSION: The choriocapillaris, observed in both cohorts, proves sensitive to EOAD diagnosis, and correlates with serum Aß and p-tau181 levels, suggesting its potential as a diagnostic tool for identifying and tracking microvascular changes in EOAD. HIGHLIGHTS: Optical coherence tomography angiography may be applied for non-invasive screening of Alzheimer's disease (AD). Choriocapillaris demonstrates high sensitivity and specificity for early-onset AD diagnosis. Microvascular dynamics abnormalities are associated with AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Choroid , Tomography, Optical Coherence , tau Proteins , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/blood , Alzheimer Disease/diagnostic imaging , Female , Male , Amyloid beta-Peptides/blood , Choroid/diagnostic imaging , Middle Aged , tau Proteins/blood , Biomarkers/blood , Aged , Peptide Fragments/blood , Cohort Studies
18.
Neurobiol Dis ; 188: 106346, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37931884

ABSTRACT

Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. However, exploring the potential role of MeCP2 in the documented misguidance of axons in the dentate gyrus has not yet been attempted. In this study, a status epilepticus-induced decrease of neuronal MeCP2 was observed in the dentate gyrus (DG). An essential regulatory role of MeCP2 in the development of functional mossy fiber sprouting (MFS) was confirmed through stereotaxic injection of a recombinant adeno-associated virus (AAV) to up- or down-regulate MeCP2 in the dentate neurons. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to identify the binding profile of native MeCP2 using micro-dissected dentate tissues. In both dentate tissues and HT22 cell lines, we demonstrated that MeCP2 could act as a transcription repressor on miR-682 with the involvement of the DNA methylation mechanism. Further, we found that miR-682 could bind to mRNA of phosphatase and tensin homolog (PTEN) in a sequence specific manner, thus leading to the suppression of PTEN and excessive activation of mTOR. This study therefore presents a novel epigenetic mechanism by identifying MeCP2/miR-682/PTEN/mTOR as an essential signal pathway in regulating the formation of MFS in the temporal lobe epileptic (TLE) mice. SIGNIFICANCE STATEMENT: Understanding the mechanisms that regulate axon guidance is important for a better comprehension of neural disorders. Sprouting of mossy fibers, one of the most consistent findings in patients with mesial temporal lobe epilepsy, has been considered a paradigmatic example of circuit plasticity in the adult brain. Although abnormal regulation of DNA methylation has been observed in both experimental rodents and humans with epilepsy, the potential role of DNA methylation in this well-documented example of sprouting of dentate axon remains elusive. This study demonstrates an essential role of methyl-CpG-binding protein 2 in the formation of mossy fiber sprouting. The underlying signal pathway has been also identified. The data hence provide new insight into epileptogenesis as well as axon misguidance in the central nervous system.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , MicroRNAs , Animals , Humans , Mice , Dentate Gyrus/metabolism , Epilepsy, Temporal Lobe/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , MicroRNAs/metabolism , Mossy Fibers, Hippocampal , TOR Serine-Threonine Kinases/metabolism
19.
Anal Chem ; 95(21): 8340-8347, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37192372

ABSTRACT

Biomarkers detection in blood with high accuracy is crucial for the diagnosis and treatment of many diseases. In this study, the proof-of-concept fabrication of a dual-mode sensor based on a single probe (Re-BChE) using a dual-signaling electrochemical ratiometric strategy and a "turn-on" fluorescent method is presented. The probe Re-BChE was synthesized in a single step and demonstrated dual mode response toward butyrylcholinesterase (BChE), a promising biomarker of Alzheimer's disease (AD). Due to the specific hydrolysis reaction, the probe Re-BChE demonstrated a turn-on current response for BChE at -0.28 V, followed by a turn-off current response at -0.18 V, while the fluorescence spectrum demonstrated a turn-on response with an emission wavelength of 600 nm. The developed ratiometric electrochemical sensor and fluorescence detection demonstrated high sensitivity with BChE concentrations with a low detection limit of 0.08 µg mL-1 and 0.05 µg mL-1, respectively. Importantly, the dual-mode sensor presents the following advantages: (1) dual-mode readout can correct the impact of systematic or background error, thereby achieving more accurate results; (2) the responses of dual-mode readout originate from two distinct mechanisms and relatively independent signal transduction, in which there is no interference between two signaling routes. Additionally, compared with the reported single-signal electrochemical assays for BChE, both redox potential signals were detected in the absence of biological interference within a negative potential window. Furthermore, it was discovered that the outcomes of direct dual-mode electrochemical and fluorescence quantifications of the level of BChE in serum were in agreement with those obtained from the use of commercially available assay kits for BChE sensing. This method has the potential to serve as a useful point-of-care tool for the early detection of AD.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Humans , Alzheimer Disease/diagnosis , Fluorescent Dyes , Biomarkers
20.
J Med Virol ; 95(1): e28245, 2023 01.
Article in English | MEDLINE | ID: mdl-36262113

ABSTRACT

Despite the high vaccination coverage, potential COVID-19 vaccine-induced adverse effects, especially in pregnant women, have not been fully characterized. We examined the association between COVID-19 vaccination before conception and maternal thyroid function during early pregnancy. We conducted a retrospective cohort study in Shanghai, China. A total of 6979 pregnant women were included. Vaccine administration was obtained from electronic vaccination records. Serum levels of thyroid hormone were measured by fluorescence and chemiluminescence immunoassays. Among the 6979 included pregnant women, 3470 (49.7%) received at least two doses of an inactivated vaccine. COVID-19 vaccination had a statistically significant association with both maternal serum levels of free thyroxine (FT4) and thyroid stimulating hormone (TSH). Compared with unvaccinated pregnant women, the mean FT4 levels were lower in pregnant women who had been vaccinated within 3 months before the date of conception by 0.27 pmol/L (ß = -0.27, 95% confidence interval [CI], -0.42, -0.12), and the mean TSH levels were higher by 0.08 mIU/L (ß = 0.08, 95% CI, 0.00, 0.15). However, when the interval from vaccination to conception was prolonged to more than 3 months, COVID-19 vaccination was not associated with serum FT4 or TSH levels. Moreover, we found that COVID-19 vaccination did not significantly associate with maternal hypothyroidism. Our study suggested that vaccination with inactivated COVID-19 vaccines before conception might result in a small change in maternal thyroid function, but this did not reach clinically significant levels.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thyroid Gland , Female , Humans , Pregnancy , China/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Retrospective Studies , Thyroid Function Tests , Thyroid Hormones , Thyrotropin
SELECTION OF CITATIONS
SEARCH DETAIL