Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(51): e2311276120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38079547

ABSTRACT

Although the tremendous progress has been made for mRNA delivery based on classical cationic carriers, the excess cationic charge density of lipids was necessary to compress mRNA through electrostatic interaction, and with it comes inevitably adverse events including the highly inflammatory and cytotoxic effects. How to develop the disruptive technologies to overcome cationic nature of lipids remains a major challenge for safe and efficient mRNA delivery. Here, we prepared noncationic thiourea lipids nanoparticles (NC-TNP) to compress mRNA by strong hydrogen bonds interaction between thiourea groups of NC-TNP and the phosphate groups of mRNA, abandoning the hidebound and traditional electrostatic force to construct mRNA-cationic lipids formulation. NC-TNP was a delivery system for mRNA with simple, convenient, and repeatable preparation technology and showed negligible inflammatory and cytotoxicity side effects. Furthermore, we found that NC-TNP could escape the recycling pathway to inhibit the egress of internalized nanoparticles from the intracellular compartment to the extracellular milieu which was a common fact in mRNA-LNP (lipid nanoparticles) formulation. Therefore, NC-TNP-encapsulated mRNA showed higher gene transfection efficiency in vitro and in vivo than mRNA-LNP formulation. Unexpectedly, NC-TNP showed spleen targeting delivery ability with higher accumulation ratio (spleen/liver), compared with traditional LNP. Spleen-targeting NC-TNP with mRNA exhibited high mRNA-encoded antigen expression in spleen and elicited robust immune responses. Overall, our work establishes a proof of concept for the construction of a noncationic system for mRNA delivery with good inflammatory safety profiles, high gene transfection efficiency, and spleen-targeting delivery to induce permanent and robust humoral and cell-mediated immunity for disease treatments.


Subject(s)
Biomimetics , Nanoparticles , RNA, Messenger/metabolism , Lipids/chemistry , Nanoparticles/chemistry , Cations/chemistry , Thiourea , RNA, Small Interfering/genetics
2.
Acc Chem Res ; 57(6): 905-918, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38417027

ABSTRACT

Cancer vaccines have shown tremendous potential in preventing and treating cancer by providing immunogenic antigens to initiate specific tumor immune responses. An in situ vaccine prepared from an autologous tumor can mobilize a patient's own tumor cell lysate as a reservoir of specific antigens, thus triggering a broad immune response and diverse antitumor immunity in an individually tailored manner. Its efficacy is much better than that of conventional vaccines with a limited number of epitopes. Several conventional therapies, including radiotherapy (RT), chemotherapeutics, photodynamic therapy (PDT), and photothermal therapy (PTT) can activate an anticancer in situ vaccine response by inducing immunogenic cell death (ICD), triggering the exposure of tumor-associated antigens (TAAs), cancerous testis antigens, neoantigens, and danger-associated molecular patterns (DAMPs) with low cost. However, the immunogenicity of dying tumor cells is low, making released antigens and DAMPs insufficient to initiate a robust immune response against malignant cancer. Moreover, the immunosuppressive tumor microenvironment (TME) severely hinders the infiltration and sensitization of effector immune cells, causing tolerogenic immunological effects.Herein, we mainly focus on the research in developing nanoplatforms to surmount the major challenges met by ICD-based in situ vaccines. We first summarized a variety of nanotechnologies that enable enhanced immunogenicity of dying cancer cells by enhancing antigenicity and adjuvanticity. The robust antigenicity was obtained via regulating the tumor cells death mode or the dying state to amplify the recognition of tumor debris by professional antigen-presenting cells (APCs). The adjuvanticity was potentiated by raising the level or intensifying the activity of endogenous adjuvants or promoting the intelligent delivery of exogenous immunostimulants to activate immune cell recruitment and promote antigen presentation. Additionally, versatile approaches to reverse immunosuppressive TME to boost the in situ tumor vaccination response are also highlighted in detail. On one hand, by modulating the cell metabolism in TME, the expansion and activity of effector versus immunosuppressive cells can be optimized to improve the efficiency of in situ vaccines. On the other hand, regulating cellular components in TME, such as reversing adverse immune cell phenotypes or inhibiting the activity of interstitial cells, can also significantly enhance the ICD-based antitumor immunotherapy effect. Finally, our viewpoint on the future challenges and opportunities in this hopeful area is presented. We expect that this Account can offer much more insight into the design, planning, and development of cutting-edge in situ tumor vaccine platforms, promoting more attention and academic-industry collaborations, accelerating the advanced progress of in situ tumor vaccine-based immunotherapy in the clinic.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Cancer Vaccines/therapeutic use , Nanomedicine , Immunogenic Cell Death , Neoplasms/therapy , Vaccination , Adjuvants, Immunologic , Tumor Microenvironment
3.
Nano Lett ; 24(28): 8609-8618, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954738

ABSTRACT

Although biomacromolecules are promising cytosolic drugs which have attracted tremendous attention, the major obstacles were the cellular membrane hindering the entrance and the endosome entrapment inducing biomacromolecule degradation. How to avoid those limitations to realize directly cytosolic delivery was still a challenge. Here, we prepared oligoarginine modified lipid to assemble a nanovesicle for biomacromolecules delivery, including mRNA (mRNA) and proteins which could be directly delivered into the cytoplasm of dendritic cells through subendocytosis-mediated membrane fusion. We named this membrane fusion lipid nanovesicle as MF-LNV. The mRNA loaded MF-LNV as nanovaccines showed efficient antigen expression to elicit robust immuno responses for cancer therapy. What's more, the antigen protein loaded MF-LNV as nanovaccines elicits much stronger CD8+ T cell specific responses than lipid nanoparticles through normal uptake pathways. This MF-LNV represented a refreshing strategy for intracellular delivery of the biomacromolecule.


Subject(s)
Lipids , Lipids/chemistry , Animals , Humans , Nanoparticles/chemistry , Dendritic Cells , RNA, Messenger/genetics , RNA, Messenger/administration & dosage , Mice , Membrane Fusion , Drug Delivery Systems , CD8-Positive T-Lymphocytes/immunology
4.
Eur J Clin Microbiol Infect Dis ; 43(4): 713-721, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38347245

ABSTRACT

BACKGROUND AND AIM: Patients with end-stage liver disease (ESLD) are susceptible to invasive pulmonary aspergillosis (IPA). This study aimed to investigate the risk factors affecting the occurrence and short-term prognosis of ESLD complicated by IPA. METHODS: This retrospective case-control study included 110 patients with ESLD. Of them, 27 ESLD-IPA received antifungal therapy with amphotericin B (AmB); 27 AmB-free-treated ESLD-IPA patients were enrolled through 1:1 propensity score matching. Fifty-six ESLD patients with other comorbid pulmonary infections were enrolled as controls. The basic features of groups were compared, while the possible risk factors affecting the occurrence and short-term outcomes of IPA were analyzed. RESULTS: Data analysis revealed invasive procedures, glucocorticoid exposure, and broad-spectrum antibiotic use were independent risk factors for IPA. The 54 patients with ESLD-IPA exhibited an overall treatment effectiveness and 28-d mortality rate of 50.00% and 20.37%, respectively, in whom patients treated with AmB-containing showed higher treatment efficacy than patients treated with AmB-free antifungal regimens (66.7% vs. 33.3%, respectively, χ2 = 6.000, P = 0.014). Multivariate logistic regression analysis revealed that the treatment regimen was the only predictor affecting patient outcomes, with AmB-containing regimens were 4.893 times more effective than AmB-free regimens (95% CI, 1.367-17.515; P = 0.015). The only independent predictors affecting the 28-d mortality rate were neutrophil-to-lymphocyte ratio and IPA diagnosis (OR = 1.140 and 10.037, P = 0.046 and 0.025, respectively). CONCLUSIONS: Glucocorticoid exposure, invasive procedures, and broad-spectrum antibiotic exposure increased the risk of IPA in ESLD patients. AmB alone or combined with other antifungals may serve as an economical, safe, and effective treatment option for ESLD-IPA.


Subject(s)
End Stage Liver Disease , Invasive Pulmonary Aspergillosis , Humans , Antifungal Agents , Retrospective Studies , Case-Control Studies , Glucocorticoids , Amphotericin B/therapeutic use , Prognosis , Risk Factors , Anti-Bacterial Agents/therapeutic use
5.
Scand J Gastroenterol ; 58(11): 1335-1343, 2023.
Article in English | MEDLINE | ID: mdl-37313731

ABSTRACT

OBJECTIVE: To explore the protective effect and related mechanism of miR-140-5p on liver fibrosis by interfering with TGF-ß/Smad signaling pathway. METHODS: Liver fibrosis mice models were established by intraperitoneal injection of CCL4. Hematoxylin and eosin (HE) staining was used to detect the structural and morphological changes of the liver. Masson staining was used to detect collagen deposition. Human hepatic stellate cells (HSCs, LX-2) were transfected with miR-140-5p mimic or inhibitor then treated with TGF-ß1. The qRT-PCR and Western blotting was used to detect the expression of related molecules. The luciferase reporter assay was used to identify the target of miR-140-5p. RESULTS: Our results indicated that miR-140-5p expression was downregulated in fibrotic liver tissues of model mice and LX-2 cells treated with TGF-ß1. The overexpression of miR-140-5p decreased the expression of collagen1(COL1) and α-smooth muscle actin(α-SMA), inhibited the phosphorylation of Smad-2/3 (pSmad-2/3) in LX-2 cells. Conversely, the knockdown of miR-140-5p upregulated COL1 and α-SMA expression, increased Smad-2/3 phosphorylation. A dual-luciferase reporter assay showed that TGFßR1 was a target gene of miR-140-5p. The overexpression of miR-140-5p suppressed TGFßR1 expression in LX-2 cells. Additionally, knockdown of TGFßR1 decreased the expression of COL1 and α-SMA. Conversely, the overexpression of TGFßR1 reversed the inhibitory effect of miR-140-5p upregulation on expression of COL1 and α-SMA. CONCLUSION: miR-140-5p bound to TGFßR1 mRNA 3'-untranslated region(3'UTR) and inhibited the expression of TGFßR1, pSmad-2/3, COL1 and α-SMA, thereby exerting a potential therapeutic effect on hepatic fibrosis.


Subject(s)
MicroRNAs , Transforming Growth Factor beta1 , Humans , Mice , Animals , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/therapeutic use , Signal Transduction , Cell Line , Liver Cirrhosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Luciferases/metabolism , Luciferases/pharmacology , Luciferases/therapeutic use , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Fibrosis
6.
Ann Hepatol ; 28(3): 101082, 2023.
Article in English | MEDLINE | ID: mdl-36893888

ABSTRACT

INTRODUCTION AND OBJECTIVES: As a fatal clinical syndrome, acute liver failure (ALF) is characterized by overwhelming liver inflammation and hepatic cell death. Finding new therapeutic methods has been a challenge in ALF research. VX-765 is a known pyroptosis inhibitor and has been reported to prevent damage in a variety of diseases by reducing inflammation. However, the role of VX-765 in ALF is still unclear. MATERIALS AND METHODS: ALF model mice were treated with D-galactosamine (D-GalN) and lipopolysaccharide (LPS). LO2 cells were stimulated with LPS. Thirty subjects were enrolled in clinical experiments. The levels of inflammatory cytokines, pyroptosis-associated proteins and peroxisome proliferator-activated receptor α (PPARα) were detected using quantitative reverse transcription-polymerase chain reaction (qRT‒PCR), western blotting and immunohistochemistry. An automatic biochemical analyzer was used to determine the serum aminotransferase enzyme levels. Hematoxylin and eosin (HE) staining was used to observe the pathological features of the liver. RESULTS: With the progression of ALF, the expression levels of interleukin (IL) -1ß, IL-18, caspase-1, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased. VX-765 could reduce the mortality rate of ALF mice, relieve liver pathological damage, and reduce inflammatory responses to protect against ALF. Further experiments showed that VX-765 could protect against ALF through PPARα, and this protective effect against ALF was reduced in the context of PPARα inhibition. CONCLUSIONS: As ALF progresses, inflammatory responses and pyroptosis deteriorate gradually. VX-765 can inhibit pyroptosis and reduce inflammatory responses to protect against ALF by upregulating PPARα expression, thus providing a possible therapeutic strategy for ALF.


Subject(s)
Liver Failure, Acute , PPAR alpha , Mice , Animals , PPAR alpha/genetics , PPAR alpha/metabolism , Pyroptosis , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/prevention & control , Liver/pathology , Inflammation/prevention & control , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL
7.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240315

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), characterized by excessive lipid accumulation in hepatocytes, is an increasing global healthcare burden. Sirtuin 2 (SIRT2) functions as a preventive molecule for NAFLD with incompletely clarified regulatory mechanisms. Metabolic changes and gut microbiota imbalance are critical to the pathogenesis of NAFLD. However, their association with SIRT2 in NAFLD progression is still unknown. Here, we report that SIRT2 knockout (KO) mice are susceptible to HFCS (high-fat/high-cholesterol/high-sucrose)-induced obesity and hepatic steatosis accompanied with an aggravated metabolic profile, which indicates SIRT2 deficiency promotes NAFLD-NASH (nonalcoholic steatohepatitis) progression. Under palmitic acid (PA), cholesterol (CHO), and high glucose (Glu) conditions, SIRT2 deficiency promotes lipid deposition and inflammation in cultured cells. Mechanically, SIRT2 deficiency induces serum metabolites alteration including upregulation of L-proline and downregulation of phosphatidylcholines (PC), lysophosphatidylcholine (LPC), and epinephrine. Furthermore, SIRT2 deficiency promotes gut microbiota dysbiosis. The microbiota composition clustered distinctly in SIRT2 KO mice with decreased Bacteroides and Eubacterium, and increased Acetatifactor. In clinical patients, SIRT2 is downregulated in the NALFD patients compared with healthy controls, and is associated with exacerbated progression of normal liver status to NAFLD to NASH in clinical patients. In conclusion, SIRT2 deficiency accelerates HFCS-induced NAFLD-NASH progression by inducing alteration of gut microbiota and changes of metabolites.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Sirtuin 2/genetics , Sirtuin 2/metabolism , Diet , Lipids , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
8.
Clin Infect Dis ; 74(11): 1925-1932, 2022 06 10.
Article in English | MEDLINE | ID: mdl-34487151

ABSTRACT

BACKGROUND: Pradefovir is a liver-targeted prodrug of adefovir, a nucleoside/nucleotide analogue with antiviral activity against hepatitis B virus (HBV) DNA polymerase. This phase 2 study compared the efficacy and safety of oral pradefovir (30, 45, 60, or 75 mg) versus tenofovir disoproxil fumarate (TDF; 300 mg) and aimed to identify the most appropriate dose of pradefovir for the forthcoming phase 3 study. METHODS: Treatment-naive and experienced (not on treatment >6 months) patients with chronic hepatitis B were eligible. RESULTS: A total of 240 participants were randomized and treated in the study (48 per group). Approximately 80% were hepatitis B e antigen (HBeAg) positive, and 10% had liver cirrhosis. The reductions from baseline in HBV DNA levels achieved at week 24 were 5.40, 5.34, 5.33, and 5.40 log10 IU/mL, with pradefovir doses of 30-, 45-, 60-, and 75-mg, respectively, compared with 5.12 log10 IU/mL with TDF. However, HBeAg loss was attained by more participants who received 45-, 60-, or 75-mg pradefovir than by those receiving TDF (12%, 6%, and 9% vs 3%). The TDF group exhibited a more significant increase in serum creatinine than the pradefovir 30- and 45-mg groups, and serum phosphate levels were comparable among all groups. Most adverse events (AEs) were mild (grade 1). No treatment-related severe AEs were reported. Overall, AEs and laboratory abnormalities were comparable to those in the TDF group. CONCLUSIONS: Pradefovir and TDF exhibited comparable reductions in HBV DNA levels. All treatments were safe and well tolerated. CLINICAL TRIALS REGISTRATION: NCT00230503 and China Drug Trials CTR2018042.


Subject(s)
Hepatitis B, Chronic , Prodrugs , Adenine/analogs & derivatives , Antiviral Agents/adverse effects , DNA, Viral , Hepatitis B e Antigens , Hepatitis B virus/genetics , Humans , Organophosphorus Compounds , Prodrugs/adverse effects , Tenofovir/adverse effects , Treatment Outcome , Viral Load
9.
Small ; 18(5): e2105160, 2022 02.
Article in English | MEDLINE | ID: mdl-34821027

ABSTRACT

Heteroatom interaction of atomically thin nanomaterials enables the improvement of electronic transfer, band structure, and optical properties. Black phosphorus quantum dots (BP QDs) are considered to be candidate diagnostic and/or therapeutic agents due to their innate biocompatibility and exceptional photochemical effects. However, BP QDs are not competitive regarding second near-infrared (NIR-II) window medical diagnosis and X-ray induced phototherapy. Here, an Nd3+ ion coordinated BP QD (BPNd) is synthesized with the aim to sufficiently improve its performances in NIR-II fluorescence imaging and X-ray induced photodynamic therapy, benefitting from the retrievable NIR/X-ray optoelectronic switching effects between BP QD and Nd3+ ion. Given its ultrasmall size and efficient cargo loading capacity, BPNd can easily cross the blood-brain barrier to precisely monitor the growth of glioblastoma through intracranial NIR-II fluorescence imaging and impede its progression by specific X-ray induced, synergistic photodynamic chemotherapy.


Subject(s)
Glioblastoma , Quantum Dots , Glioblastoma/diagnostic imaging , Humans , Neodymium , Phosphorus/chemistry , Quantum Dots/chemistry , X-Rays
10.
Hepatology ; 74(6): 3213-3234, 2021 12.
Article in English | MEDLINE | ID: mdl-34322883

ABSTRACT

BACKGROUND AND AIMS: Oxaliplatin (OXA) is one of the most common chemotherapeutics in advanced hepatocellular carcinoma (HCC), the resistance of which poses a big challenge. Long noncoding RNAs (lncRNAs) play vital roles in chemoresistance. Therefore, elucidating the underlying mechanisms and identifying predictive lncRNAs for OXA resistance is needed urgently. METHODS: RNA sequencing (RNA-seq) and fluorescence in situ hybridization (FISH) were used to investigate the OXA-resistant (OXA-R) lncRNAs. Survival analysis was performed to determine the clinical significance of homo sapiens long intergenic non-protein-coding RNA 1134 (LINC01134) and p62 expression. Luciferase, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and chromatin isolation by RNA purification (ChIRP) assays were used to explore the mechanisms by which LINC01134 regulates p62 expression. The effects of LINC01134/SP1/p62 axis on OXA resistance were evaluated using cell viability, apoptosis, and mitochondrial function and morphology analysis. Xenografts were used to estimate the in vivo regulation of OXA resistance by LINC01134/SP1/p62 axis. ChIP, cell viability, and xenograft assays were used to identify the demethylase for LINC01134 up-regulation in OXA resistance. RESULTS: LINC01134 was identified as one of the most up-regulated lncRNAs in OXA-R cells. Higher LINC01134 expression predicted poorer OXA therapeutic efficacy. LINC01134 activates anti-oxidative pathway through p62 by recruiting transcription factor SP1 to the p62 promoter. The LINC01134/SP1/p62 axis regulates OXA resistance by altering cell viability, apoptosis, and mitochondrial homeostasis both in vitro and in vivo. Furthermore, the demethylase, lysine specific demethylase 1 (LSD1) was responsible for LINC01134 up-regulation in OXA-R cells. In patients with HCC, LINC01134 expression was positively correlated with p62 and LSD1 expressions, whereas SP1 expression positively correlated with p62 expression. CONCLUSIONS: LSD1/LINC01134/SP1/p62 axis is critical for OXA resistance in HCC. Evaluating LINC01134 expression in HCC will be effective in predicting OXA efficacy. In treatment-naive patients, targeting the LINC01134/SP1/p62 axis may be a promising strategy to overcome OXA chemoresistance.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Histone Demethylases/metabolism , Liver Neoplasms/drug therapy , Oxaliplatin/therapeutic use , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Sp1 Transcription Factor/metabolism , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Demethylation , Drug Resistance, Neoplasm/genetics , Hep G2 Cells , Humans , Immunoprecipitation , In Situ Hybridization, Fluorescence , Liver Neoplasms/metabolism , Male , Mice , Mice, Nude , Neoplasm Transplantation , Oxidative Stress , RNA, Long Noncoding/genetics , Reactive Oxygen Species/metabolism
11.
Nano Lett ; 21(6): 2625-2633, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33683889

ABSTRACT

Silver sulfide (Ag2S) has gained widespread attention in second near-infrared (950-1700 nm, NIR-II) window imaging because of its high fluorescence quantum yield and low toxicity. However, its "always on" fluorescence shows inapplicability for targeted molecule-activated biomedical applications. Herein, we first developed a novel silver/silver sulfide Janus nanoparticle (Ag/Ag2S JNP) for specific activatable fluorescence imaging in the NIR-II window. Inner-particle electron compensation from Ag to Ag2S upon laser irradiation endowed JNPs an "off" state of fluorescence, whereas the oxidization of Ag incubated with H2O2, decreasing the electron-transfer effect and illuminating the NIR-II fluorescence of the Ag2S part. In contrast, the absorption of Ag/Ag2S JNPs slightly decreased in an H2O2-dependent manner, showing an activated photoacoustic imaging mechanism. The Ag/Ag2S JNPs were used for noninvasive location and diagnosis of diseases in vivo, such as for liver injury and cancer, with high sensitivity and accuracy.

12.
Toxicol Mech Methods ; 32(5): 325-332, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34749575

ABSTRACT

BACKGROUNDS: miR-26a-5p is a short noncoding RNA that is abnormally expressed in drug-induced liver injury (DILI), but its pathophysiologic role in the mechanism of disease in DILI is still vague. METHODS: The expression of miR-26a-5p, viability of hepatic stellate cells (HSCs) proliferation, and apoptosis were explored via real-time PCR, CCK-8 assay, Tunel fluorescence, and flow cytometry. The expression of Bid was detected via Western blot assays, real-time PCR, and immunofluorescence. The apoptosis-associated proteins were determined through Western blot. The interaction between miR-26a-5p and Bid was measured via Dual luciferase reporter assay. RESULTS: miR-26a-5p expression was greatly decreased in HSCs and serum treated with azithromycin, simvastatin and diclofenac sodium, respectively. Hepatocyte viability was largely suppressed while hepatocyte apoptosis was markedly increased in DILI. Correspondingly, the apoptosis-associated proteins including Bid, caspase-8 and cytochrome C in HSCs were significantly upregulated when treated with either of these drugs. Moreover, miR-26a-5p interacted with Bid, and hepatocyte proliferation and apoptosis influenced by miR-26a-5p mimics were obviously reversed when co-treated with overexpressed Bid plasmids. CONCLUSIONS: miR-26a-5p played a protective role against DILI via targeting Bid.


Subject(s)
Chemical and Drug Induced Liver Injury , MicroRNAs , Apoptosis/genetics , Apoptosis Regulatory Proteins , Cell Proliferation , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/prevention & control , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
13.
Hepatobiliary Pancreat Dis Int ; 20(5): 426-432, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34246549

ABSTRACT

BACKGROUND: This study aimed to assess the association between metabolic syndrome (MetS) and severity of nonalcoholic fatty liver disease (NAFLD), and to discuss the pathological relevance of the diagnostic criteria in metabolic (dysfunction) associated fatty liver disease (MAFLD). METHODS: This was a multicenter, cross-sectional study. Patients with NAFLD confirmed by liver biopsy were enrolled between July 2016 and December 2018 from 14 centers across the mainland of China. Anthropometric and metabolic parameters were collected to assess the pathological relevance. RESULTS: Of 246 enrolled patients with NAFLD, 150 (61.0%) had the comorbidity of MetS. With the increase of metabolic components, the proportions of nonalcoholic steatohepatitis (NASH) and significant fibrosis were notably increased. The comorbid three metabolic components significantly increased the proportion of NASH, and further increase of metabolic components did not increase the proportion of NASH. However, the increase of metabolic components was parallel to the increase of the proportion of liver fibrosis. Among the 246 patients, 239 (97.2%) met the diagnostic criteria of MAFLD. Although non-MAFLD patients had less NASH, they present with similar proportion of significant fibrosis and cirrhosis. In the diagnostic criteria of MAFLD, BMI ≥ 23 kg/m2 was related to NASH (Mantel-Haenszel Common Estimate OR: 2.975; 95% CI: 1.037-8.538; P = 0.043), and T2DM was related to significant fibrosis (Mantel-Haenszel Common Estimate OR: 2.531; 95% CI: 1.388-4.613; P = 0.002). The homeostasis model assessment of insulin resistance (HOMA-IR) ≥ 2.5 was the most significant factor for NASH (OR: 4.100; 95% CI: 1.772-9.487; P = 0.001) and significant factor for liver fibrosis (OR: 2.947; 95% CI: 1.398-6.210; P = 0.004) after the adjustments of the BMI and diabetes. CONCLUSIONS: Metabolic dysregulations are important risk factors in NAFLD progression. The insulin resistance status may play a predominant role in the progression in MAFLD patients.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Biopsy , China/epidemiology , Cross-Sectional Studies , Humans , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiology , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology
14.
Angew Chem Int Ed Engl ; 60(18): 9804-9827, 2021 04 26.
Article in English | MEDLINE | ID: mdl-32285531

ABSTRACT

With the increasing recognition of the diverse roles and significance of oxidative species in the pathogenesis of many diseases, a tremendous amount of work on the development of oxidative-species-responsive materials has been conducted for 1) detecting oxygen metabolites or diagnosis of oxidative-stress-relevant diseases, 2) reducing oxidative stress in the disease sites, and/or 3) delivering therapeutic and diagnostic agents. In this review, we first discuss the distinct features and biological functions of each oxidative species. Then the selectivity and sensitivity of chemical linkers/groups to specific oxidative species and the underlying chemistry of their particular interactions are systematically elucidated. Their potential biomedical applications are also highlighted. We expect that this comprehensive review will provide more insights for the design and development of oxidative-species-selective materials for more effective diagnostic and therapeutic applications.


Subject(s)
Reactive Oxygen Species/analysis , Humans , Molecular Structure , Oxidation-Reduction , Oxidative Stress , Oxygen/analysis , Oxygen/metabolism , Reactive Oxygen Species/metabolism
15.
Angew Chem Int Ed Engl ; 60(26): 14458-14466, 2021 06 21.
Article in English | MEDLINE | ID: mdl-33835672

ABSTRACT

We have synthesized a PEGylated, phenylboronic acid modified L-DOPA pro-antioxidant (pPAD) that can self-assemble into nanoparticles (pPADN) for the loading of a model glucocorticoid dexamethasone (Dex) through 1,3-diol/phenylboronic acid chemistry and hydrophobic interactions for more effective treatment of inflammation. Upon exposure to ROS, pPADN convert into the active form of L-DOPA, and a cascade of oxidative reactions transform it into antioxidative melanin-like materials. Concomitantly, the structural transformation of pPADN triggers the specific release of Dex, along with the acidic pH of inflammatory tissue. In a rat model of osteoarthritis, Dex-loaded pPADN markedly mitigate synovial inflammation, suppress joint destruction and cartilage matrix degradation, with negligible in vivo toxicity. Moreover, in situ structural transformation makes pPADN suitable for noninvasive monitoring of therapeutic effects as a photoacoustic imaging contrast agent.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/chemistry , Contrast Media/chemistry , Inflammation/drug therapy , Photoacoustic Techniques , Anti-Inflammatory Agents/chemistry , Boronic Acids/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Inflammation/diagnosis , Inflammation/metabolism , Levodopa/chemistry , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism
16.
Cancer Sci ; 111(6): 2028-2040, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279388

ABSTRACT

Sorafenib resistance is a major challenge in the therapy for advanced hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of HCC resistance to sorafenib remain unclear. Activator of thyroid and retinoid receptor (ACTR, also known as SRC-3), overexpressed in HCC patients, plays an important oncogenic role in HCC; however, the link between ACTR and sorafenib resistance in HCC is unknown. Our study demonstrated that ACTR was one of the most upregulated genes in sorafenib-resistant HCC xenografts. ACTR increases sorafenib resistance through regulation of the Warburg effect. ACTR promotes glycolysis through upregulation of glucose uptake, ATP and lactate production, and reduction of the extracellular acidification and the oxygen consumption rates. Glycolysis regulated by ACTR is vital for the susceptibility of HCC to sorafenib in vitro and in vivo. Mechanistically, ACTR knockout or knockdown decreases the expression of glycolytic enzymes. In HCC patients, ACTR expression is positively correlated with glycolytic gene expression and is associated with poorer outcome. Furthermore, ACTR interacts with the central regulator of the Warburg effect, c-Myc, and promotes its recruitment to glycolytic gene promoters. Our findings provide new clues regarding the role of ACTR as a prospective sensitizing target for sorafenib therapy in HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Drug Resistance, Neoplasm/physiology , Liver Neoplasms/metabolism , Nuclear Receptor Coactivator 3/metabolism , Sorafenib/pharmacology , Animals , Carcinoma, Hepatocellular/pathology , Glycolysis/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Male , Mice , Mice, Nude , Xenograft Model Antitumor Assays
17.
Ann Hepatol ; 19(2): 214-221, 2020.
Article in English | MEDLINE | ID: mdl-31628069

ABSTRACT

INTRODUCTION AND OBJECTIVES: Glucocorticoid resistance frequently associating with inflammation, may severely compromise the therapeutic effect of glucocorticoids. In this study, we aimed to investigate the regulation of glucocorticoid resistance by microRNA-124a (miR-124a) in patients with acute-on-chronic liver failure (ACLF). MATERIALS AND METHODS: The miR-124a levels and glucocorticoid receptor alpha (GRα) expressions in peripheral blood monocytes and liver tissues were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), flow cytometry, and western blot analyses in the following four groups: healthy controls (HC), moderate chronic hepatitis B (CHB) patients, hepatitis B virus-related ACLF (HBV-ACLF) patients, and alcohol-induced ACLF (A-ACLF) patients. In addition, the serum miR-124a levels and multiple biochemical indices were determined. The effects of miR-124a transfection on GRα expression were assayed by qRT-PCR and western blotting in U937 and HepG2 cells stimulated with lipopolysaccharide (LPS). RESULTS: Compared with the CHB patients and HC, the miR-124a levels in HBV-ACLF and A-ACLF patients increased, while GRα expressions decreased. No significant differences in miR-124a levels and GRα expressions were observed between the HBV-ACLF and A-ACLF patients. For the ACLF patients, miR-124a level was negatively related to GRα expression in monocytes and positively correlated with the inflammatory factors such as interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). In U937 and HepG2 cells, LPS stimulated miR-124a levels but inhibited GRα expressions; meanwhile, increasing miR-124a levels reduced GRα expressions, and inhibiting miR-124a levels increased GRα expressions. CONCLUSIONS: This study provides evidence that GRα expression was negatively regulated by miR-124a, which primarily determines the extent of acquired glucocorticoid resistance in ACLF.


Subject(s)
Acute-On-Chronic Liver Failure/metabolism , Hepatitis B, Chronic/metabolism , Liver Diseases, Alcoholic/metabolism , MicroRNAs/genetics , Receptors, Glucocorticoid/genetics , Acute-On-Chronic Liver Failure/drug therapy , Acute-On-Chronic Liver Failure/etiology , Adult , Case-Control Studies , Drug Resistance/genetics , Female , Gene Expression Regulation , Gene Knock-In Techniques , Hep G2 Cells , Hepatitis B, Chronic/complications , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Liver Diseases, Alcoholic/complications , Male , Middle Aged , Monocytes/metabolism , Receptors, Glucocorticoid/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/metabolism , U937 Cells
18.
Biochem Biophys Res Commun ; 513(1): 64-72, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30935688

ABSTRACT

Autophagy is an intracellular recycling and degradation process for regulating cell survival and drug resistance. Non-alcoholic steatohepatitis (NASH) is becoming a widespread disease in developing countries. However, the role of autophagy in NASH has not yet been fully elucidated. The present study determined that signal transducer and activator of transcription 3 (STAT3), in the inflammation and autophagy regulation, was the key in the progression of NASH. In NASH mouse and cell models, STAT3 mRNA and protein expressions were significantly increased, while the induction of autophagy was radically decreased. Furthermore, the effects of metformin on STAT3 expression level and NASH inflammation were investigated. The current results showed that metformin activated autophagy and decreased the mRNA expressions of inflammatory cytokines, IL-1ß, IL-6, and TNF-α via inhibition of the STAT3 mRNA and protein expression. The siRNA targeting STAT3 activated autophagy and inhibited the NASH inflammatory response by reducing the mRNA expressions of the inflammatory cytokines in vivo and in vitro. The correlation between autophagy and inflammation was also explored. Autophagy induced by metformin attenuated the inflammatory response. This phenomenon of inflammation reduction was partially restored by treatment with the autophagy inhibitor 3-methylindole (3-MA). In conclusion, this study demonstrated that metformin alleviated the inflammatory response in the liver and the hepatocyte of the NASH model via STAT3-mediated autophagy induction. This mechanism provides a strategy for targeting the NASH inflammatory response.


Subject(s)
Autophagy/drug effects , Inflammation/drug therapy , Metformin/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , STAT3 Transcription Factor/immunology , Animals , Inflammation/complications , Inflammation/immunology , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/immunology
19.
Virol J ; 16(1): 47, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30992019

ABSTRACT

BACKGROUND: Hepatitis C virus (HCV) infection is one of the leading causes of liver cancer, creating enormous economic and social burdens. The Chinese government recommends routine screening of inpatients for HCV before invasive procedures to prevent iatric infections. However, the diagnosis and treatment rates for HCV remain low. The aim of this study was to use available routine screening data to understand the HCV screening of inpatients in different regions of China. METHODS: Inpatient information and HCV screening results were collected from January 2016 to December 2016 at eight tertiary hospitals in different regions of China to compare the HCV-positivity of hospitalized patients among different regions and age groups. RESULTS: The HCV screening rate of inpatients was more than 50%. A total of 467,008 inpatients were enrolled in the study (51.20% were male), and the HCV antibody (anti-HCV) -positive rate was 0.88% (95% confidence interval [CI], 0.85-0.91%) among the total population. This rate was significantly higher among all males compared with all females (0.91% vs 0.85%). Moreover, the HCV antibody-positive rate increased with age and was highest for the 60-64-year age group. Notably, 90.14% (3722/4129) of the anti-HCV seropositive patients were 40 years of age or older. HCV screening for people over 40 years old is recommended. CONCLUSIONS: This study highlights the key role of routine examination for HCV infection in hospitalized patients. Full use of inpatient screening results to manage HCV antibody-positive patients and a screening strategy targeting inpatients 40 years and older were found to be low-cost and effective, which will help to find the missing millions of yet unaware patients and also accelerate the elimination of HCV in China.


Subject(s)
Hepatitis C/diagnosis , Mass Screening/statistics & numerical data , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Hepatitis B/immunology , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Hepatitis C Antibodies/blood , Hospitalization/statistics & numerical data , Hospitals , Humans , Infant , Infant, Newborn , Liver Neoplasms/epidemiology , Liver Neoplasms/virology , Male , Middle Aged , Prevalence , Retrospective Studies , Risk Factors , Tertiary Care Centers/statistics & numerical data , Young Adult
20.
J Nanobiotechnology ; 17(1): 23, 2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30711005

ABSTRACT

BACKGROUND: In recent years, multifunctional theranostic nanoparticles have been fabricated by integrating imaging and therapeutic moieties into one single nano-formulations. However, Complexity of production and safety issues limits their further application. RESULTS: Herein, we demonstrated self-assembled nanoparticles with single structure as a "from one to all" theranostic platform for tumor-targeted dual-modal imaging and programmed photoactive therapy (PPAT). The nanoparticles were successfully developed through self-assembling of hyaluronic acid (HA)-cystamine-cholesterol (HSC) conjugate, in which IR780 was simultaneously incorporated (HSCI NPs). Due to the proper hydrodynamic size and intrinsic targeting ability of HA, the HSCI NPs could accumulate at the tumor site effectively after systemic administration. In the presence of incorporated IR780, in vivo biodistribution and accumulation behaviors of HSCI NPs could be monitored by photoacoustic imaging. After cellular uptake, the HSCI NPs would disintegrate resulting from cystamine reacting with over-expressed GSH. The released IR780 would induce fluorescence "turn-on" conversion, which could be used to image tumor sites effectively. Upon treatment with 808 nm laser irradiation, PPAT could be achieved in which generated reactive oxygen species (ROS) would produce photodynamic therapy (PDT), and subsequently the raised temperature would be beneficial to tumor photothermal therapy (PTT). CONCLUSION: The self-assembled HSCI NPs could act as "from one to all" theranostic platform for high treatment efficiency via PPAT pattern, which could also real-time monitor NPs accumulation by targeted and dual-modal imaging in a non-invasive way.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Photochemotherapy/methods , Theranostic Nanomedicine/methods , Animals , Cell Line, Tumor , Cholesterol/chemistry , Cystamine/chemistry , Female , Humans , Hyaluronic Acid/chemistry , Indoles/chemistry , Mice , Mice, Nude , Nanoparticles/metabolism , Nanoparticles/ultrastructure , Photoacoustic Techniques , Tissue Distribution , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL