Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000589

ABSTRACT

Mitogen-activated protein kinase kinase 1 (MAPK kinase 1, MEK1) is a key kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. MEK1 mutations have been reported to lead to abnormal activation that is closely related to the malignant growth and spread of various tumors, making it an important target for cancer treatment. Targeting MEK1, four small-molecular drugs have been approved by the FDA, including Trametinib, Cobimetinib, Binimetinib, and Selumetinib. Recently, a study showed that modification with dehydroalanine (Dha) can also lead to abnormal activation of MEK1, which has the potential to promote tumor development. In this study, we used molecular dynamics simulations and metadynamics to explore the mechanism of abnormal activation of MEK1 caused by the Dha modification and predicted the inhibitory effects of four FDA-approved MEK1 inhibitors on the Dha-modified MEK1. The results showed that the mechanism of abnormal activation of MEK1 caused by the Dha modification is due to the movement of the active segment, which opens the active pocket and exposes the catalytic site, leading to sustained abnormal activation of MEK1. Among four FDA-approved inhibitors, only Selumetinib clearly blocks the active site by changing the secondary structure of the active segment from α-helix to disordered loop. Our study will help to explain the mechanism of abnormal activation of MEK1 caused by the Dha modification and provide clues for the development of corresponding inhibitors.


Subject(s)
Alanine , MAP Kinase Kinase 1 , Molecular Dynamics Simulation , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Alanine/metabolism , Humans , Catalytic Domain , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Enzyme Activation/drug effects , Benzimidazoles/pharmacology , Benzimidazoles/chemistry
2.
Scand J Psychol ; 65(2): 195-205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37727105

ABSTRACT

Spillover effect theory posits that work stressors can have spillover effects into workers' home lives. Although job insecurity spillover into the home domain has been explored extensively, potential spillback effects into the work domain have not. We posit that daily job insecurity represents a negative subjective perception that can spillover into the home domain and lead to insomnia, which will damage the recovery of self-regulatory resources and make employees unable to regulate their own behavior, ultimately resulting in next-day counterproductive work behavior. We hypothesized that self-compassion, as an individual trait, weakens the spillover effect of job insecurity and moderates the indirect effect of job insecurity on next-day counterproductive work behavior via insomnia. Our analyses of data collected from 132 full-time employees across 10 consecutive working days showed that insomnia mediates the relationship between daily job insecurity and next-day counterproductive work behavior, and further showed that this relationship was moderated by self-compassion. Overall, our research captures the cascading effects of daily job insecurity and contributes to a more complete understanding of the spillover effect of job insecurity.


Subject(s)
Job Security , Sleep Initiation and Maintenance Disorders , Humans , Employment , Surveys and Questionnaires , Job Satisfaction
3.
J Am Chem Soc ; 145(46): 25214-25221, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37934914

ABSTRACT

We herein report the iridium-catalyzed enantioselective C-H borylation of aryl chlorides. A variety of prochiral biaryl compounds could be well-tolerated, affording a vast array of axially chiral biaryls with high enantioselectivities. The current method exhibits a high turnover number (TON) of 7000, which represents the highest in functional-group-directed asymmetric C-H activation. The high TON was attributed to a weak catalyst-substrate interaction that was caused by mismatched chirality between catalyst and substrate. We also demonstrated the synthetic application of the current method by C-B, ortho-C-H, and C-Cl bond functionalization, including programmed Suzuki-Miyaura coupling for the synthesis of axially chiral polyarenes.

4.
Hum Genet ; 142(3): 419-430, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36576601

ABSTRACT

Waardenburg syndrome (WS) is a rare inherited autosomal dominant disorder caused by SOX10, PAX3, MITF, EDNRB, EDN3, and SNAI2. A large burden of pathogenic de novo variants is present in patients with WS, which may be derived from parental mosaicism. Previously, we retrospectively analyzed 90 WS probands with family information. And the frequency of de novo events and parental mosaicism was preliminary investigated in our previous study. In this study, we further explored the occurrence of low-level parental mosaicism in 33 WS families with de novo variants and introduced our procedure of quantifying low-level mosaicism. Mosaic single nucleotide polymorphisms (SNPs) were validated by amplicon-based next-generation sequencing (NGS); copy-number variants (CNVs) were validated by droplet-digital polymerase chain reaction (ddPCR). Molecular validation of low-level mosaicism of WS-causing variants was performed in four families (12.1%, 4/33). These four mosaic variants, comprising three SNVs and one CNV, were identified in SOX10. The rate of parental mosaicism was 25% (4/16) in WS families with de novo SOX10 variants. The lowest allele ratio of a mosaic variant was 2.0% in parental saliva. These de novo WS cases were explained by parental mosaicism conferring an elevated recurrence risk in subsequent pregnancies of parents. Considering its importance in genetic counseling, low-level parental mosaicism should be systematically investigated by personalized sensitive testing. Amplicon-based NGS and ddPCR are recommended to detect and precisely quantify the mosaicism for SNPs and CNVs.


Subject(s)
Mosaicism , Waardenburg Syndrome , Humans , Waardenburg Syndrome/diagnosis , Waardenburg Syndrome/genetics , Retrospective Studies , Parents , Exons , Mutation
5.
J Phys Chem A ; 127(32): 6791-6803, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37530446

ABSTRACT

The current benchmark study is focused on determining the most precise theoretical method for optimizing the geometry of transition metal-dinitrogen complexes. To accomplish this goal, seven density functional (DF) methods from five distinct classes of density functional theory (DFT) have been selected, including B3LYP-D3(BJ), BP86-D3(BJ), PBE0-D3(BJ), ωB97X-D, M06, M06-L, and TPSSh-D3(BJ). These DFs will be utilized with the Karlsruhe basis set (def2-SVP). To carry out this benchmark study, a total of forty-two structurally diverse transition metal-dinitrogen compounds with experimentally known X-ray data have been selected from the Cambridge Crystallographic Data Centre (CCDC). Based on a comparison of the theoretical data with experimental values (X-ray) of the selected transition metal-dinitrogen compounds, statistical parameters such as root-mean-square deviation (RMSD) and N-N and M-N bond lengths are obtained to evaluate the performance of the seven chosen DFs. According to the obtained results, among all DFT methods used in the study, Minnesota functionals (M06 and M06-L) and TPSSh-D3(BJ) show good performance, with lower RMSD values. This suggests that these three methods are the most reliable for optimizing the geometry of transition metal-dinitrogen complexes. Based on the absolute errors of the N-N and M-N bond lengths relative to the X-ray data, further analysis is conducted, and it is determined that M06-L is the best functional for optimizing the geometry of transition metal-dinitrogen compounds. Additionally, the influence of using a high-level basis set (def2-TZVP) compared to def2-SVP on the calculated RMSD among the seven chosen methods is found to be negligible.

6.
Molecules ; 28(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067587

ABSTRACT

The co-gasification of biomass and coal is helpful for achieving the clean and efficient utilization of phosphorus-rich biomass. A large number of alkali and alkaline earth metals (AAEMs) present in the ash system of coal (or biomass) cause varying degrees of ash, slagging, and corrosion problems in the entrained flow gasifier. Meanwhile, phosphorus is present in the slag in the form of PO43-, which has a strong affinity for AAEMs (especially for Ca2+) to produce minerals dominated by calcium phosphates or alkaline Ca-phosphate, effectively mitigating the aforementioned problems. To investigate the changing behavior of the slag flow temperature (FT) under different CaO/P2O5 ratios, 72 synthetic ashes with varying CaO/P2O5 ratios at different Si/Al contents and compositions were prepared, and their ash fusion temperatures were tested. The effects of different CaO/P2O5 ratios on the FT were analyzed using FactSage thermodynamic simulation. A model for predicting slag FT at different CaO/P2O5 ratios was constructed on the basis of the average molar ionic potential (Ia) method and used to predict data reported from 19 mixed ashes in the literature. The results showed that Ia and FT gradually increased with a decreasing CaO/P2O5 ratio, and the main mineral types shifted from anorthite → mullite → berlinite, which reasonably explained the decrease in ash fusion temperatures in the mixed ash. The established model showed good adaptability to the prediction of 19 actual coal ash FTs in the literature; the deviation of the prediction was in the range of 40 °C. The model proposed between FT and Ia based on the different CaO/P2O5 ratios can be used to predict the low-rank coal and phosphorus-rich biomass and their mixed ashes.

7.
Molecules ; 28(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36985640

ABSTRACT

The electron transport layer (ETL) with excellent charge extraction and transport ability is one of the key components of high-performance perovskite solar cells (PSCs). SnO2 has been considered as a more promising ETL for the future commercialization of PSCs due to its excellent photoelectric properties and easy processing. Herein, we propose a facile and effective ETL modification strategy based on the incorporation of methylenediammonium dichloride (MDACl2) into the SnO2 precursor colloidal solution. The effects of MDACl2 incorporation on charge transport, defect passivation, perovskite crystallization, and PSC performance are systematically investigated. First, the surface defects of the SnO2 film are effectively passivated, resulting in the increased conductivity of the SnO2 film, which is conducive to electron extraction and transport. Second, the MDACl2 modification contributes to the formation of high-quality perovskite films with improved crystallinity and reduced defect density. Furthermore, a more suitable energy level alignment is achieved at the ETL/perovskite interface, which facilitates the charge transport due to the lower energy barrier. Consequently, the MDACl2-modified PSCs exhibit a champion efficiency of 22.30% compared with 19.62% of the control device, and the device stability is also significantly improved.

8.
Emerg Infect Dis ; 28(12): 2491-2499, 2022 12.
Article in English | MEDLINE | ID: mdl-36417938

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tickborne bandavirus mainly transmitted by Haemaphysalis longicornis ticks in East Asia, mostly in rural areas. As of April 2022, the amplifying host involved in the natural transmission of SFTSV remained unidentified. Our epidemiologic field survey conducted in endemic areas in China showed that hedgehogs were widely distributed, had heavy tick infestations, and had high SFTSV seroprevalence and RNA prevalence. After experimental infection of Erinaceus amurensis and Atelerix albiventris hedgehogs with SFTSV, we detected robust but transitory viremias that lasted for 9-11 days. We completed the SFTSV transmission cycle between hedgehogs and nymph and adult H. longicornis ticks under laboratory conditions with 100% efficiency. Furthermore, naive H. longicornis ticks could be infected by SFTSV-positive ticks co-feeding on naive hedgehogs; we confirmed transstadial transmission of SFTSV. Our study suggests that the hedgehogs are a notable wildlife amplifying host of SFTSV in China.


Subject(s)
Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Ticks , Animals , Hedgehogs , Seroepidemiologic Studies , Phylogeny , Phlebovirus/genetics , China/epidemiology
9.
Emerg Infect Dis ; 28(2): 363-372, 2022 02.
Article in English | MEDLINE | ID: mdl-35075994

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is spreading rapidly in Asia. This virus is transmitted by the Asian longhorned tick (Haemaphysalis longicornis), which has parthenogenetically and sexually reproducing populations. Parthenogenetic populations were found in ≥15 provinces in China and strongly correlated with the distribution of severe fever with thrombocytopenia syndrome cases. However, distribution of these cases was poorly correlated with the distribution of populations of bisexual ticks. Phylogeographic analysis suggested that the parthenogenetic population spread much faster than bisexual population because colonization is independent of sexual reproduction. A higher proportion of parthenogenetic ticks was collected from migratory birds captured at an SFTSV-endemic area, implicating the contribution to the long-range movement of these ticks in China. The SFTSV susceptibility of parthenogenetic females was similar to that of bisexual females under laboratory conditions. These results suggest that parthenogenetic Asian longhorned ticks, probably transported by migratory birds, play a major role in the rapid spread of SFTSV.


Subject(s)
Bunyaviridae Infections , Ixodidae , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Ticks , Animals , Bunyaviridae Infections/epidemiology , Female , Phlebovirus/genetics , Phylogeny
10.
Molecules ; 27(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080502

ABSTRACT

All-polymer solar cells (All-PSCs), whose electron donor and acceptors are both polymeric materials, have attracted great research attention in the past few years. However, most all-PSC devices with top-of-the-line efficiencies are processed from chloroform. In this work, we apply the sequential processing (SqP) method to fabricate All-PSCs from an aromatic hydrocarbon solvent, toluene, and obtain efficiencies up to 17.0%. By conducting a series of characterizations on our films and devices, we demonstrate that the preparation of SqP devices using toluene can effectively reduce carrier recombination, enhance carrier mobility and promote the fill factor of the device.

11.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144539

ABSTRACT

Multicomponent organic solar cells (OSCs), such as the ternary and quaternary OSCs, not only inherit the simplicity of binary OSCs but further promote light harvesting and power conversion efficiency (PCE). Here, we propose a new type of multicomponent solar cells with non-fullerene acceptor isomers. Specifically, we fabricate OSCs with the polymer donor J71 and a mixture of isomers, ITCF, as the acceptors. In comparison, the ternary OSC devices with J71 and two structurally similar (not isomeric) NFAs (IT-DM and IT-4F) are made as control. The morphology experiments reveal that the isomers-containing blend film demonstrates increased crystallinity, more ideal domain size, and a more favorable packing orientation compared with the IT-DM/IT-4F ternary blend. The favorable orientation is correlated with the balanced charge transport, increased exciton dissociation and decreased bimolecular recombination in the ITCF-isomer-based blend film, which contributes to the high fill factor (FF), and thus the high PCE. Additionally, to evaluate the generality of this method, we examine other acceptor isomers including IT-M, IXIC-2Cl and SY1, which show same trend as the ITCF isomers. These results demonstrate that using isomeric blends as the acceptor can be a promising approach to promote the performance of multicomponent non-fullerene OSCs.

12.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445681

ABSTRACT

Parthenogenetic embryos have been widely studied as an effective tool related to paternal and maternal imprinting genes and reproductive problems for a long time. In this study, we established a parthenogenetic epiblast-like stem cell line through culturing parthenogenetic diploid blastocysts in a chemically defined medium containing activin A and bFGF named paAFSCs. The paAFSCs expressed pluripotent marker genes and germ-layer-related genes, as well as being alkaline-phosphatase-positive, which is similar to epiblast stem cells (EpiSCs). We previously showed that advanced embryonic stem cells (ASCs) represent hypermethylated naive pluripotent embryonic stem cells (ESCs). Here, we converted paAFSCs to ASCs by replacing bFGF with bone morphogenetic protein 4 (BMP4), CHIR99021, and leukemia inhibitory factor (LIF) in a culture medium, and we obtained parthenogenetic advanced stem cells (paASCs). The paASCs showed similar morphology with ESCs and also displayed a stronger developmental potential than paAFSCs in vivo by producing chimaeras. Our study demonstrates that maternal genes could support parthenogenetic EpiSCs derived from blastocysts and also have the potential to convert primed state paAFSCs to naive state paASCs.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Parthenogenesis/physiology , Activins/metabolism , Animals , Blastocyst/metabolism , Bone Morphogenetic Protein 4/pharmacology , Cell Culture Techniques/methods , Cell Differentiation/drug effects , DNA Methylation/drug effects , Embryo Culture Techniques/methods , Female , Fibroblast Growth Factors/pharmacology , Germ Layers/metabolism , Germ Layers/physiology , Leukemia Inhibitory Factor/pharmacology , Mice , Mice, 129 Strain , Mice, Inbred ICR , Mouse Embryonic Stem Cells/cytology , Parthenogenesis/genetics , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/pathology
13.
Molecules ; 26(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34641440

ABSTRACT

Quorum sensing (QS) is employed by the opportunistic pathogen Pseudomonas aeruginosa to regulate physiological behaviors and virulence. QS inhibitors (QSIs) are potential anti-virulence agents for the therapy of P. aeruginosa infection. During the screening for QSIs from Chinese herbal medicines, falcarindiol (the major constituent of Notopterygium incisum) exhibited QS inhibitory activity. The subinhibitory concentration of falcarindiol exerted significant inhibitory effects on the formation of biofilm and the production of virulence factors such as elastase, pyocyanin, and rhamnolipid. The mRNA expression of QS-related genes (lasB, phzH, rhlA, lasI, rhlI, pqsA, and rhlR) was downregulated by falcarindiol while that of lasR was not affected by falcarindiol. The transcriptional activation of the lasI promoter was inhibited by falcarindiol in the P. aeruginosa QSIS-lasI selector. Further experiments confirmed that falcarindiol inhibited the las system using the reporter strain Escherichia coli MG4/pKDT17. Electrophoretic mobility shift assay (EMSA) showed that falcarindiol inhibited the binding of the transcription factor LasR and the lasI promoter region. Molecular docking showed that falcarindiol interacted with the Tyr47 residue, leading to LasR instability. The decrease of LasR-mediated transcriptional activation was responsible for the reduction of downstream gene expression, which further inhibited virulence production. The inhibition mechanism of falcarindiol to LasR provides a theoretical basis for its medicinal application.


Subject(s)
Apiaceae/chemistry , Diynes/pharmacology , Fatty Alcohols/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Quorum Sensing , Diynes/isolation & purification , Fatty Alcohols/isolation & purification , Phytochemicals/isolation & purification
14.
Cell Mol Biol (Noisy-le-grand) ; 66(8): 14-19, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-34174971

ABSTRACT

Oral cancer (OC) is a common malignant tumor in oral surgery, which is prone to metastasis and the prognosis is not optimistic. Long-non-coding RNA (lncRNA) is a kind of endogenous transcripts with more than 200bp in length, lack of specific and complete open reading frame, and does not have the function of protein-coding. Studies have found that it can regulate gene expression at many levels, such as epigenetic level, transcriptional level and post-transcriptional level, thus affecting the occurrence and development of diseases. Recent studies have shown that the occurrence, development, of oral cancer, are associated with lncRNA. In this research, we found that lncRNA SNHG1 was up-regulated in oral cancer. Knockdown of lncRNA SNHG1 would inhibit the proliferation of oral cancer cells. Then we revealed a new mechanism that lncRNA SNHG1 regulated the growth of oral cancer via controlling the miR-421/HMGB2 axis, which provided new therapy for patients with oral cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , HMGB2 Protein/genetics , MicroRNAs/genetics , Mouth Neoplasms/genetics , RNA, Long Noncoding/genetics , Animals , Blotting, Western , Cell Cycle/genetics , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Gene Knockdown Techniques , HEK293 Cells , HMGB2 Protein/metabolism , Humans , Mice, Nude , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Reverse Transcriptase Polymerase Chain Reaction , Transplantation, Heterologous , Up-Regulation
15.
Cell Mol Biol (Noisy-le-grand) ; 66(7): 24-30, 2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33287918

ABSTRACT

Oral tumors are malignant cancers caused by abnormal proliferation or pathological changes of soft or hard tissues in the oral cavity. Serious cases may pose a threat to life. However, its precancerous lesions remain unclear. This study is based on a comprehensive strategy to explore a multi-factor-driven oral cancer barrier module, which is an attempt to describe the pathogenesis of the disease and potential regulatory drugs from a global perspective. Functional disease modules were identified by constructing a protein-specific interaction network in patients' oral tissues. Then, comprehensive pathogenesis was explored through combination with analysis of functional and signaling pathway enrichment, prediction of key regulatory factors. It was found that these specifically expressed proteins and their interactions often play a pivotal part in oral tumors. This is reflected in the results of functional and pathway enrichment of modulating genes, which show that they are mainly involved in various immune responses, inflammatory reactions, oral plaque, and oral ulcer-related regulatory processes. This may represent the potential pathogenesis of oral tumors. On the predictive analysis of regulators, a series of ncRNAs (including miR-590, CRNDE and miR-340) and transcription factors (including E2F1, MYC and TP53) were identified that have potential important regulatory effects on oral tumors. These key regulators may manipulate a crucial part of the module sub-network and then work together to mediate the occurrence of oral tumors. On the comprehensive Multi-omics module analysis, the specific proteins and their interactions in patients' oral tissues were identified, while the prominent pivotal regulators were involved in the different pathogenic functions of oral tumors.


Subject(s)
Genomics , Mouth Neoplasms/genetics , Gene Ontology , Gene Regulatory Networks , Humans , Protein Interaction Maps , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Transcription Factors/metabolism
16.
Phys Chem Chem Phys ; 22(5): 2849-2857, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31967628

ABSTRACT

A green catalyst for acetylene hydrochlorination yielding a VCM is presented using imidazole as a single component metal-free catalyst. The mechanisms and reactivities of imidazole-catalyzed acetylene hydrochlorination have been investigated by combined computational and experimental studies. The electronic effects of ortho-substituents on the reactivities have also been investigated. Through theoretical calculations and experimental studies, the nitrogen-atom including a lone pair active site of single component imidazole for metal-free acetylene hydrochlorination is proposed. It is suggested that the nitrogen-atom including a lone pair of imidazole adsorbs an HCl molecule to form an imidazole-HCl complex, which serves as the active catalyst to participate in the reaction process of acetylene hydrochlorination. Besides, the results show that C2H2 assists in the electrophilic addition of HCl, undergoing an almost planar six-membered ring transition state. Computational studies on the ortho-substitution of the active sites will have an important impact on the catalytic efficiency.

17.
Mar Drugs ; 18(4)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290259

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen using virulence factors and biofilm regulated by quorum sensing (QS) systems to infect patients and protect itself from environmental stress and antibiotics. Interfering with QS systems is a novel approach to combat P. aeruginosa infections without killing the bacteria, meaning that it is much harder for bacteria to develop drug resistance. A marine fungus Cladosporium sp. Z148 with anti-QS activity was obtained from Jiaozhou Bay, China. Cladodionen, a novel QS inhibitor, was isolated from the extracts of this fungus. Cladodionen had a better inhibitory effect than pyocyanin on the production of elastase and rhamnolipid. It also inhibited biofilm formation and motilities. The mRNA expressions of QS-related genes, including receptor proteins (lasR, rhlR and pqsR), autoinducer synthases (lasI, rhlI and pqsA) and virulence factors (lasB and rhlA) were down-regulated by cladodionen. Molecular docking analysis showed that cladodionen had better binding affinity to LasR and PqsR than natural ligands. Moreover, the binding affinity of cladodionen to LasR was higher than to PqsR. Cladodionen exhibits potential as a QS inhibitor against P. aeruginosa, and its structure-activity relationships should be further studied to illustrate the mode of action, optimize its structure and improve anti-QS activity.


Subject(s)
Anti-Bacterial Agents/chemistry , Aquatic Organisms , Cladosporium , Pseudomonas aeruginosa/drug effects , Pyrans/chemistry , Pyrroles/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Bays , China , Pseudomonas aeruginosa/pathogenicity , Pyrans/pharmacology , Pyrroles/pharmacology , Quorum Sensing/drug effects
18.
Plant Mol Biol ; 100(1-2): 133-149, 2019 May.
Article in English | MEDLINE | ID: mdl-30843130

ABSTRACT

KEY MESSAGE: The OsPLS2 locus was isolated and cloned by map-based cloning that encodes a Upf1-like helicase. Disruption of OsPLS2 accelerated light-dependent leaf senescence in the rice mutant of ospls2. Leaf senescence is a very complex physiological process controlled by both genetic and environmental factors, however its underlying molecular mechanisms remain elusive. In this study, we report a novel Oryza sativa premature leaf senescence mutant (ospls2). Through map-based cloning, a G-to-A substitution was determined at the 1st nucleotide of the 13th intron in the OsPLS2 gene that encodes a Upf1-like helicase. This mutation prompts aberrant splicing of OsPLS2 messenger and consequent disruption of its full-length protein translation, suggesting a negative role of OsPLS2 in regulating leaf senescence. Wild-type rice accordingly displayed a progressive drop of OsPSL2 protein levels with age-dependent leaf senescence. Shading and light filtration studies showed that the ospls2 phenotype, which was characteristic of photo-oxidative stress and reactive oxygen species (ROS) accumulation, was an effect of irritation by light. When continuously exposed to far-red light, exogenous H2O2 and/or abscisic acid (ABA), the ospls2 mutant sustained hypersensitive leaf senescence. In consistence, light and ROS signal pathways in ospls2 were activated by down-regulation of phytochrome genes, and up-regulation of PHYTOCHROME-INTERACTING FACTORS (PIFs) and WRKY genes, all promoting leaf senescence. Together, these data indicated that OsPLS2 played an essential role in leaf senescence and its disruption triggered light-dependent leaf senescence in rice.


Subject(s)
DNA Helicases/genetics , Genes, Plant , Light , Oryza/growth & development , Oryza/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Abscisic Acid/metabolism , Amino Acid Sequence , Antioxidants/metabolism , DNA Helicases/chemistry , DNA Helicases/metabolism , Gene Expression Regulation, Plant , Mutation/genetics , Oryza/enzymology , Oryza/radiation effects , Phenotype , Photosynthesis/genetics , Plant Leaves/genetics , Plant Leaves/radiation effects , Plant Leaves/ultrastructure , Plant Proteins/chemistry , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Time Factors
19.
J Opt Soc Am A Opt Image Sci Vis ; 36(7): 1215-1220, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31503960

ABSTRACT

We report on the generation of diverse arrays of Airy vortex beams (AiVBs) with normal or deformed structures by employing computer-generated holography. The intensity distributions and evolution of the arrays containing four AiVBs with different topological charges are theoretically and experimentally studied. The generated AiVBs are converged due to the self-bending characteristic independent of the sign and topological charges of the AiVBs. The experimental and numerical results agree well with each other. These novel arrays are expected to be used for multiple capture or manipulation of particles at the same time but at different positions, providing powerful theoretical and experimental bases for improving the efficiency of optical manipulation.

20.
Appl Opt ; 58(4): 935-938, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30874138

ABSTRACT

We present a method of measuring the propagation trajectory of Airy beams using digital propagation based on the theory of angular spectrum. The dependence of the transverse displacement of Airy beams on artificial propagation distance in phase masks is investigated with no motion of imaging apparatus. The parabolic propagation trajectory is experimentally verified, which is consistent with theoretical predictions. On this basis, we generate autofocusing beams by combining multiple Airy beams and digital propagation. Results show that this technique can provide accurate and easy measurement of the self-accelerating characteristic in a fixed plane, as well as flexible manipulation without translating the target.

SELECTION OF CITATIONS
SEARCH DETAIL