Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38701782

ABSTRACT

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Subject(s)
Epigenesis, Genetic , Myelin Sheath , Oligodendroglia , Remyelination , Animals , Myelin Sheath/metabolism , Humans , Mice , Remyelination/drug effects , Oligodendroglia/metabolism , Central Nervous System/metabolism , Mice, Inbred C57BL , Rejuvenation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Organoids/metabolism , Organoids/drug effects , Demyelinating Diseases/metabolism , Demyelinating Diseases/genetics , Cell Differentiation/drug effects , Small Molecule Libraries/pharmacology , Male , Regeneration/drug effects , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology
2.
Cell ; 152(1-2): 248-61, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23332759

ABSTRACT

Establishment of oligodendrocyte identity is crucial for subsequent events of myelination in the CNS. Here, we demonstrate that activation of ATP-dependent SWI/SNF chromatin-remodeling enzyme Smarca4/Brg1 at the differentiation onset is necessary and sufficient to initiate and promote oligodendrocyte lineage progression and maturation. Genome-wide multistage studies by ChIP-seq reveal that oligodendrocyte-lineage determination factor Olig2 functions as a prepatterning factor to direct Smarca4/Brg1 to oligodendrocyte-specific enhancers. Recruitment of Smarca4/Brg1 to distinct subsets of myelination regulatory genes is developmentally regulated. Functional analyses of Smarca4/Brg1 and Olig2 co-occupancy relative to chromatin epigenetic marking uncover stage-specific cis-regulatory elements that predict sets of transcriptional regulators controlling oligodendrocyte differentiation. Together, our results demonstrate that regulation of the functional specificity and activity of a Smarca4/Brg1-dependent chromatin-remodeling complex by Olig2, coupled with transcriptionally linked chromatin modifications, is critical to precisely initiate and establish the transcriptional program that promotes oligodendrocyte differentiation and subsequent myelination of the CNS.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Chromatin Assembly and Disassembly , Enhancer Elements, Genetic , Nerve Tissue Proteins/metabolism , Oligodendroglia/cytology , Animals , Brain/cytology , Cells, Cultured , DNA Helicases/metabolism , Gene Expression Regulation , Mice , Mice, Knockout , Nuclear Proteins/metabolism , Oligodendrocyte Transcription Factor 2 , Oligodendroglia/metabolism , Rats , Spinal Cord/cytology , Transcription Factors/metabolism
3.
Nature ; 612(7941): 787-794, 2022 12.
Article in English | MEDLINE | ID: mdl-36450980

ABSTRACT

Medulloblastoma (MB) is the most common malignant childhood brain tumour1,2, yet the origin of the most aggressive subgroup-3 form remains elusive, impeding development of effective targeted treatments. Previous analyses of mouse cerebella3-5 have not fully defined the compositional heterogeneity of MBs. Here we undertook single-cell profiling of freshly isolated human fetal cerebella to establish a reference map delineating hierarchical cellular states in MBs. We identified a unique transitional cerebellar progenitor connecting neural stem cells to neuronal lineages in developing fetal cerebella. Intersectional analysis revealed that the transitional progenitors were enriched in aggressive MB subgroups, including group 3 and metastatic tumours. Single-cell multi-omics revealed underlying regulatory networks in the transitional progenitor populations, including transcriptional determinants HNRNPH1 and SOX11, which are correlated with clinical prognosis in group 3 MBs. Genomic and Hi-C profiling identified de novo long-range chromatin loops juxtaposing HNRNPH1/SOX11-targeted super-enhancers to cis-regulatory elements of MYC, an oncogenic driver for group 3 MBs. Targeting the transitional progenitor regulators inhibited MYC expression and MYC-driven group 3 MB growth. Our integrated single-cell atlases of human fetal cerebella and MBs show potential cell populations predisposed to transformation and regulatory circuitries underlying tumour cell states and oncogenesis, highlighting hitherto unrecognized transitional progenitor intermediates predictive of disease prognosis and potential therapeutic vulnerabilities.


Subject(s)
Brain Neoplasms , Cell Transformation, Neoplastic , Fetus , Medulloblastoma , Humans , Brain Neoplasms/pathology , Cell Transformation, Neoplastic/pathology , Cerebellar Neoplasms/pathology , Cerebellum/cytology , Cerebellum/pathology , Fetus/cytology , Fetus/pathology , Medulloblastoma/pathology , Neural Stem Cells/cytology , Neural Stem Cells/pathology , Prognosis
4.
Brain ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028640

ABSTRACT

Huntington's disease and juvenile-onset schizophrenia have long been regarded as distinct disorders. However, both manifest cell-intrinsic abnormalities in glial differentiation, with resultant astrocytic dysfunction and hypomyelination. To assess whether a common mechanism might underlie the similar glial pathology of these otherwise disparate conditions, we used comparative correlation network approaches to analyse RNA-sequencing data from human glial progenitor cells (hGPCs) produced from disease-derived pluripotent stem cells. We identified gene sets preserved between Huntington's disease and schizophrenia hGPCs yet distinct from normal controls that included 174 highly connected genes in the shared disease-associated network, focusing on genes involved in synaptic signalling. These synaptic genes were largely suppressed in both schizophrenia and Huntington's disease hGPCs, and gene regulatory network analysis identified a core set of upstream regulators of this network, of which OLIG2 and TCF7L2 were prominent. Among their downstream targets, ADGRL3, a modulator of glutamatergic synapses, was notably suppressed in both schizophrenia and Huntington's disease hGPCs. Chromatin immunoprecipitation sequencing confirmed that OLIG2 and TCF7L2 each bound to the regulatory region of ADGRL3, whose expression was then rescued by lentiviral overexpression of these transcription factors. These data suggest that the disease-associated suppression of OLIG2 and TCF7L2-dependent transcription of glutamate signalling regulators may impair glial receptivity to neuronal glutamate. The consequent loss of activity-dependent mobilization of hGPCs may yield deficient oligodendrocyte production, and hence the hypomyelination noted in these disorders, as well as the disrupted astrocytic differentiation and attendant synaptic dysfunction associated with each. Together, these data highlight the importance of convergent glial molecular pathology in both the pathogenesis and phenotypic similarities of two otherwise unrelated disorders, Huntington's disease and schizophrenia.

5.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443202

ABSTRACT

The mechanistic target of rapamycin (mTOR) is a central regulator of cell growth and an attractive anticancer target that integrates diverse signals to control cell proliferation. Previous studies using mTOR inhibitors have shown that mTOR targeting suppresses gene expression and cell proliferation. To date, however, mTOR-targeted therapies in cancer have seen limited efficacy, and one key issue is related to the development of evasive resistance. In this manuscript, through the use of a gene targeting mouse model, we have found that inducible deletion of mTOR in hematopoietic stem cells (HSCs) results in a loss of quiescence and increased proliferation. Adaptive to the mTOR loss, mTOR-/- HSCs increase chromatin accessibility and activate global gene expression, contrary to the effects of short-term inhibition by mTOR inhibitors. Mechanistically, such genomic changes are due to a rewiring and adaptive activation of the ERK/MNK/eIF4E signaling pathway that enhances the protein translation of RNA polymerase II, which in turn leads to increased c-Myc gene expression, allowing the HSCs to thrive despite the loss of a functional mTOR pathway. This adaptive mechanism can also be utilized by leukemia cells undergoing long-term mTOR inhibitor treatment to confer resistance to mTOR drug targeting. The resistance can be counteracted by MNK, CDK9, or c-Myc inhibition. These results provide insights into the physiological role of mTOR in mammalian stem cell regulation and implicate a mechanism of evasive resistance in the context of mTOR targeting.


Subject(s)
Cell Proliferation/drug effects , Hematopoietic Stem Cells/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation Sequencing , Cyclin-Dependent Kinase 9/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Targeting , Genes, myc/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mice , Mice, Knockout , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , RNA Polymerase II/metabolism , TOR Serine-Threonine Kinases/metabolism
6.
J Neurosci ; 42(45): 8542-8555, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36198499

ABSTRACT

The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.


Subject(s)
Demyelinating Diseases , Remyelination , Animals , Female , Male , Mice , Cell Differentiation , Demyelinating Diseases/metabolism , Myelin Sheath/metabolism , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendroglia/metabolism , Mice, Knockout
7.
J Neurosci ; 42(44): 8373-8392, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36127134

ABSTRACT

The chromatin remodeler CHD8 represents a high-confidence risk factor in autism, a multistage progressive neurologic disorder, however the underlying stage-specific functions remain elusive. In this study, by analyzing Chd8 conditional knock-out mice (male and female), we find that CHD8 controls cortical neural stem/progenitor cell (NSC) proliferation and survival in a stage-dependent manner. Strikingly, inducible genetic deletion reveals that CHD8 is required for the production and fitness of transit-amplifying intermediate progenitors (IPCs) essential for upper-layer neuron expansion in the embryonic cortex. p53 loss of function partially rescues apoptosis and neurogenesis defects in the Chd8-deficient brain. Further, transcriptomic and epigenomic profiling indicates that CHD8 regulates the chromatin accessibility landscape to activate neurogenesis-promoting factors including TBR2, a key regulator of IPC neurogenesis, while repressing DNA damage- and p53-induced apoptotic programs. In the adult brain, CHD8 depletion impairs forebrain neurogenesis by impeding IPC differentiation from NSCs in both subventricular and subgranular zones; however, unlike in embryos, it does not affect NSC proliferation and survival. Treatment with an antidepressant approved by the Federal Drug Administration (FDA), fluoxetine, partially restores adult hippocampal neurogenesis in Chd8-ablated mice. Together, our multistage functional studies identify temporally specific roles for CHD8 in developmental and adult neurogenesis, pointing to a potential strategy to enhance neurogenesis in the CHD8-deficient brain.SIGNIFICANCE STATEMENT The role of the high-confidence autism gene CHD8 in neurogenesis remains incompletely understood. Here, we identify a stage-specific function of CHD8 in development of NSCs in developing and adult brains by conserved, yet spatiotemporally distinct, mechanisms. In embryonic cortex, CHD8 is critical for the proliferation, survival, and differentiation of both NSC and IPCs during cortical neurogenesis. In adult brain, CHD8 is required for IPC generation but not the proliferation and survival of adult NSCs. Treatment with FDA-approved antidepressant fluoxetine partially rescues the adult neurogenesis defects in CHD8 mutants. Thus, our findings help resolve CHD8 functions throughout life during embryonic and adult neurogenesis and point to a potential avenue to promote neurogenesis in CHD8 deficiency.


Subject(s)
Autistic Disorder , Chromatin , DNA-Binding Proteins , Neurogenesis , Animals , Female , Male , Mice , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fluoxetine , Hippocampus/metabolism , Mice, Knockout , Neurogenesis/physiology , Tumor Suppressor Protein p53 , Prosencephalon
8.
Blood ; 138(3): 221-233, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34292326

ABSTRACT

The Chd8 gene encodes a member of the chromodomain helicase DNA-binding (CHD) family of SNF2H-like adenosine triphosphate (ATP)-dependent chromatin remodeler, the mutations of which define a subtype of autism spectrum disorders. Increasing evidence from recent studies indicates that ATP-dependent chromatin-remodeling genes are involved in the control of crucial gene-expression programs in hematopoietic stem/progenitor cell (HSPC) regulation. In this study, we identified CHD8 as a specific and essential regulator of normal hematopoiesis. Loss of Chd8 leads to severe anemia, pancytopenia, bone marrow failure, and engraftment failure related to a drastic depletion of HSPCs. CHD8 forms a complex with ATM and its deficiency increases chromatin accessibility and drives genomic instability in HSPCs causing an activation of ATM kinase that further stabilizes P53 protein by phosphorylation and leads to increased HSPC apoptosis. Deletion of P53 rescues the apoptotic defects of HSPCs and restores overall hematopoiesis in Chd8-/- mice. Our findings demonstrate that chromatin organization by CHD8 is uniquely necessary for the maintenance of hematopoiesis by integrating the ATM-P53-mediated survival of HSPCs.


Subject(s)
DNA-Binding Proteins/metabolism , Hematopoiesis , Hematopoietic Stem Cells/cytology , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Survival , Cells, Cultured , DNA-Binding Proteins/genetics , Gene Deletion , Hematopoietic Stem Cells/metabolism , Mice , Pancytopenia/genetics , Pancytopenia/metabolism , Protein Stability
9.
Proc Natl Acad Sci U S A ; 115(35): E8246-E8255, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30108144

ABSTRACT

Oligodendrocyte precursor cells (OPCs) constitute the main proliferative cells in the adult brain, and deregulation of OPC proliferation-differentiation balance results in either glioma formation or defective adaptive (re)myelination. OPC differentiation requires significant genetic reprogramming, implicating chromatin remodeling. Mounting evidence indicates that chromatin remodelers play important roles during normal development and their mutations are associated with neurodevelopmental defects, with CHD7 haploinsuficiency being the cause of CHARGE syndrome and CHD8 being one of the strongest autism spectrum disorder (ASD) high-risk-associated genes. Herein, we report on uncharacterized functions of the chromatin remodelers Chd7 and Chd8 in OPCs. Their OPC-chromatin binding profile, combined with transcriptome and chromatin accessibility analyses of Chd7-deleted OPCs, demonstrates that Chd7 protects nonproliferative OPCs from apoptosis by chromatin closing and transcriptional repression of p53 Furthermore, Chd7 controls OPC differentiation through chromatin opening and transcriptional activation of key regulators, including Sox10, Nkx2.2, and Gpr17 However, Chd7 is dispensable for oligodendrocyte stage progression, consistent with Chd8 compensatory function, as suggested by their common chromatin-binding profiles and genetic interaction. Finally, CHD7 and CHD8 bind in OPCs to a majority of ASD risk-associated genes, suggesting an implication of oligodendrocyte lineage cells in ASD neurological defects. Our results thus offer new avenues to understand and modulate the CHD7 and CHD8 functions in normal development and disease.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins/metabolism , Oligodendroglia/metabolism , Stem Cells/metabolism , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , CHARGE Syndrome/genetics , CHARGE Syndrome/metabolism , CHARGE Syndrome/pathology , Cell Survival , DNA-Binding Proteins/genetics , Homeobox Protein Nkx-2.2 , Homeodomain Proteins , Mice , Mice, Knockout , Nuclear Proteins , Oligodendroglia/pathology , Stem Cells/pathology , Transcription Factors
10.
Glia ; 68(8): 1604-1618, 2020 08.
Article in English | MEDLINE | ID: mdl-32460418

ABSTRACT

Oligodendrocytes, the myelinating cells in the vertebrate central nervous system, produce myelin sheaths to enable saltatory propagation of action potentials. The process of oligodendrocyte myelination entails a stepwise progression from precursor specification to differentiation, which is coordinated by a series of transcriptional and chromatin remodeling events. ATP-dependent chromatin remodeling enzymes, which utilize ATP as an energy source to control chromatin dynamics and regulate the accessibility of chromatin to transcriptional regulators, are critical for oligodendrocyte lineage development and regeneration. In this review, we focus on the latest insights into the spatial and temporal specificity of chromatin remodelers during oligodendrocyte development, myelinogenesis, and regeneration. We will also bring together various plausible mechanisms by which lineage specific transcriptional regulators coordinate with chromatin remodeling factors for programming genomic landscapes to specifically modulate these different processes during developmental myelination and remyelination upon injury.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Myelin Sheath/physiology , Oligodendroglia/cytology , Remyelination/physiology , Animals , Cell Differentiation/physiology , Central Nervous System/metabolism , Humans
11.
J Neurosci ; 38(6): 1575-1587, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29326173

ABSTRACT

Bergmann glia facilitate granule neuron migration during development and maintain the cerebellar organization and functional integrity. At present, molecular control of Bergmann glia specification from cerebellar radial glia is not fully understood. In this report, we show that ZEB2 (aka, SIP1 or ZFHX1B), a Mowat-Wilson syndrome-associated transcriptional regulator, is highly expressed in Bergmann glia, but hardly detectable in astrocytes in the cerebellum. The mice lacking Zeb2 in cerebellar radial glia exhibit severe deficits in Bergmann glia specification, and develop cerebellar cortical lamination dysgenesis and locomotion defects. In developing Zeb2-mutant cerebella, inward migration of granule neuron progenitors is compromised, the proliferation of glial precursors is reduced, and radial glia fail to differentiate into Bergmann glia in the Purkinje cell layer. In contrast, Zeb2 ablation in granule neuron precursors or oligodendrocyte progenitors does not affect Bergmann glia formation, despite myelination deficits caused by Zeb2 mutation in the oligodendrocyte lineage. Transcriptome profiling identified that ZEB2 regulates a set of Bergmann glia-related genes and FGF, NOTCH, and TGFß/BMP signaling pathway components. Our data reveal that ZEB2 acts as an integral regulator of Bergmann glia formation ensuring maintenance of cerebellar integrity, suggesting that ZEB2 dysfunction in Bergmann gliogenesis might contribute to motor deficits in Mowat-Wilson syndrome.SIGNIFICANCE STATEMENT Bergmann glia are essential for proper cerebellar organization and functional circuitry, however, the molecular mechanisms that control the specification of Bergmann glia remain elusive. Here, we show that transcriptional factor ZEB2 is highly expressed in mature Bergmann glia, but not in cerebellar astrocytes. The mice lacking Zeb2 in cerebellar radial glia, but not oligodendrocyte progenitors or granular neuron progenitors, exhibit severe defects in Bergmann glia formation. The orderly radial scaffolding formed by Bergmann glial fibers critical for cerebellar lamination was not established in Zeb2 mutants, displaying motor behavior deficits. This finding demonstrates a previously unrecognized critical role for ZEB2 in Bergmann glia specification, and points to an important contribution of ZEB2 dysfunction to cerebellar motor disorders in Mowat-Wilson syndrome.


Subject(s)
Cerebellum/cytology , Cerebellum/growth & development , Neurogenesis/genetics , Neurogenesis/physiology , Neuroglia/physiology , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/physiology , Animals , Astrocytes/physiology , Cell Count , Cerebellum/physiology , Facies , Gene Expression Profiling , Hirschsprung Disease/genetics , Intellectual Disability/genetics , Locomotion/physiology , Mice , Mice, Transgenic , Microcephaly/genetics , Neural Stem Cells/physiology , Oligodendroglia/physiology , Purkinje Cells/physiology , Transcriptome/physiology
12.
Hum Mol Genet ; 26(19): 3776-3791, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28934388

ABSTRACT

Recently, we identified biallelic mutations of SLC25A46 in patients with multiple neuropathies. Functional studies revealed that SLC25A46 may play an important role in mitochondrial dynamics by mediating mitochondrial fission. However, the cellular basis and pathogenic mechanism of the SLC25A46-related neuropathies are not fully understood. Thus, we generated a Slc25a46 knock-out mouse model. Mice lacking SLC25A46 displayed severe ataxia, mainly caused by degeneration of Purkinje cells. Increased numbers of small, unmyelinated and degenerated optic nerves as well as loss of retinal ganglion cells indicated optic atrophy. Compound muscle action potentials in peripheral nerves showed peripheral neuropathy associated with degeneration and demyelination in axons. Mutant cerebellar neurons have large mitochondria, which exhibit abnormal distribution and transport. Biochemically mutant mice showed impaired electron transport chain activity and accumulated autophagy markers. Our results suggest that loss of SLC25A46 causes degeneration in neurons by affecting mitochondrial dynamics and energy production.


Subject(s)
Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Animals , Ataxia/pathology , Female , Humans , Male , Mice , Mice, Knockout , Mitochondrial Dynamics/physiology , Mutation , Retinal Ganglion Cells/pathology
13.
Neurobiol Dis ; 77: 106-16, 2015 May.
Article in English | MEDLINE | ID: mdl-25747816

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factor Olig2 is crucial for mammalian central nervous system development. Human ortholog OLIG2 is located in the Down syndrome critical region in trisomy 21. To investigate the effect of Olig2 misexpression on brain development, we generated a developmentally regulated Olig2-overexpressing transgenic line with a Cre/loxP system. The transgenic mice with Olig2 misexpression in cortical neural stem/progenitor cells exhibited microcephaly, cortical dyslamination, hippocampus malformation, and profound motor deficits. Ectopic misexpression of Olig2 impaired cortical progenitor proliferation and caused precocious cell cycle exit. Massive neuronal cell death was detected in the developing cortex of Olig2-misexpressing mice. In addition, Olig2 misexpression led to a significant downregulation of neuronal specification factors including Ngn1, Ngn2 and Pax6, and a defect in cortical neurogenesis. Chromatin-immunoprecipitation and sequencing (ChIP-Seq) analysis indicates that Olig2 directly targets the promoter and/or enhancer regions of Nfatc4, Dscr1/Rcan1 and Dyrk1a, the critical neurogenic genes that contribute to Down syndrome phenotypes, and inhibits their expression. Together, our study suggests that Olig2 misexpression in neural stem cells elicits neurogenesis defects and neuronal cell death, which may contribute to developmental disorders including Down syndrome, where OLIG2 is triplicated on chromosomal 21.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cerebral Cortex , Down Syndrome/genetics , Down Syndrome/pathology , Gene Expression Regulation, Developmental/genetics , Nerve Tissue Proteins/genetics , Neurogenesis/genetics , Age Factors , Animals , Animals, Newborn , Calbindins/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Death/genetics , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Cerebral Cortex/pathology , DNA-Binding Proteins/metabolism , Disease Models, Animal , Embryo, Mammalian , Homeodomain Proteins/metabolism , Interneurons/metabolism , Interneurons/pathology , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Oligodendrocyte Transcription Factor 2 , POU Domain Factors/metabolism , Parvalbumins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Trinucleotide Repeats/genetics
14.
Article in Zh | MEDLINE | ID: mdl-26080527

ABSTRACT

OBJECTIVE: To investigate the prevalence of echinococcosis in Gannan Tibetan Autonomous Prefecture of Gansu Province since the implementation of the echinococcosis control project from Sepical Funds for Central Government Subsidies to Local Public Health (2007-2011). METHODS: Eight counties of Hezuo, Lintan, Zhuoni, Luqu, Maqu, Xiahe, Zhouqu, and Diebu were selected as survey sites. The prevalence in the sampled population was investigated by B ultrasound examination. Hydatid infection in children below 12 years old was serologically investigated by ELISA. The fecal samples from dogs were determined for Echinococcus infection by double antibody sandwich ELISA method. Livestock were dissected through slaughterhouse for pathological examination. Data of echinococcosis cases of Gannan Tibetan Autonomous Prefecture from 2007 to 2011 were collected from the National Infectious Diseases Reporting System, and statistically analyzed by using SPSS 10.0 and Epi info software. RESULTS: A total of 257 823 people received type B ultrasound examination in the 5 years. Five hundred eighty-one echinococcosis cases were found with an overall prevalence of 0.2%, including 578 cases of echinococcosis granulosus and 3 cases of echinococcosis multilocularis. The annual prevalence in the population decreased year by year, from 0.4% (97/21 938) in 2007 to 0.1% (68/63 980) in 2011 (P <0.05). Three hundred and six cases were officially reported to the National Infectious Diseases Reporting System during the period. Among those, female patients accounted for 58.2% (178/306) and male patients 41.8% (128/ 306). By occupation, more infection were found in herdsmen (82.0%, 251/306), followed by farmers (7.8%; 24/306). The cases were mainly distributed in the 20-60 year-old age group, with the highest prevalence in the group of 30-39 years (23.5%, 72/306). The sero-positive rate in children was 4.7% (1 571/33 613), which was highest in 2008 (8.4%, 413/4907), and lowest in 2010 (3.2%, 223/7 021) (P < 0.05). The mean positive rate of coproantigen in dogs was 6.3% (2 511/40 179), decreased from 11.9% (335/2 819) in 2007 to 6.3% (734/11 666) in 2011 (P < 0.05), with lowest positive rate in 2009 (3.7%, 354/9 550). The mean prevalence of livestock was 4.1% (914/22 087), decreased from 8.8% (235/2 658) in 2007 to 2.0% (144/7 347) in 2011 (P < 0.05). CONCLUSION: Since the project implementation for echinococcosis control in 2007, the prevalence of hydatid desease in the population, the sero-positive rate in children, the positive rate of dog coproantigen, and the prevalence in livestock have been significantly decreased.


Subject(s)
Echinococcosis/epidemiology , Echinococcus granulosus , Echinococcus multilocularis , Adult , Animals , Child , China/epidemiology , Dogs , Enzyme-Linked Immunosorbent Assay , Farmers , Feces/parasitology , Female , Humans , Livestock/parasitology , Male , Middle Aged , Prevalence , Young Adult
15.
J Environ Sci (China) ; 26(10): 1961-9, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25288538

ABSTRACT

A large quantity of toxic chemical pollutants possibly remains in reclaimed water due to the limited removal efficiency in traditional reclamation processes. It is not enough to guarantee the safety of reclaimed water using conventional water quality criteria. An integrated assessment method based on toxicity test is necessary to vividly depict the safety of reclaimed water for reuse. A toxicity test battery consisting of lethality, genotoxicity and endocrine disrupting effect was designed to screen the multiple biological effects of residual toxic chemicals in reclaimed water. The toxicity results of reclaimed water were converted into the equivalent concentrations of the corresponding positive reference substances (EQC). Simultaneously, the predicted no-effect concentration (PNEC) of each positive reference substance was obtained by analyzing the species sensitivity distribution (SSD) of toxicity data. An index "toxicity score" was proposed and valued as 1, 2, 3, or 4 depending on the ratio of the corresponding EQC to PNEC. For vividly ranking the safety of reclaimed water, an integrated assessment index "toxicity rank" was proposed, which was classified into A, B, C, or D rank with A being the safest. The proposed method was proved to be effective in evaluating reclaimed water samples in case studies.


Subject(s)
Conservation of Natural Resources , Water Pollutants, Chemical/toxicity , Endocrine Disruptors/toxicity , Lethal Dose 50 , Mutagenicity Tests , Toxicity Tests
16.
Mol Biol Rep ; 40(10): 5551-61, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24013816

ABSTRACT

The objective of this study is to examine the cumulative effect of the less studied genetic variants in PLEKHA1/ARMS2/HTRA1 on age-related macular degeneration (AMD). We performed an extensive literature search for studies on the association between AMD and the less studied genetic variants in PLEKHA1/ARMS2/HTRA1. Multiple meta-analyses were performed to evaluate the association between individual genetic variants and AMD. A gene-cluster analysis was used to investigate the cumulative effect of these less studied genetic variants on AMD. A total of 23 studies from 20 published papers met the eligibility criteria and were included in our analyses. Several genetic variants in the gene cluster are significantly associated with AMD in our meta-analyses or in individual studies. Gene-cluster analysis reveals a strong cumulative association between these genetic variants in this gene cluster and AMD (p < 10(-5)). However, two previously suspected SNPs in ARMS2, including rs2736911, the SNP having the largest number of studies in our meta-analyses; and rs3793917, the SNP with the largest sample size, were not significantly associated with AMD (both p's > 0.12). Sensitivity analyses reveal significant association of AMD with rs2736911 in Chinese but not in Caucasian, with c.372_815del443ins54 in Caucasian but not in Chinese, and with rs1049331 in both ethnic groups. These less studied genetic variants have a significant cumulative effect on wet AMD. Our study provides evidence of the joint contribution of genetic variants in PLEKHA1/ARMS2/HTRA1 to AMD risk, in addition to the two widely studied genetic variants whose association with AMD was well established.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Intracellular Signaling Peptides and Proteins/genetics , Macular Degeneration/genetics , Membrane Proteins/genetics , Proteins/genetics , Serine Endopeptidases/genetics , Aged , Cluster Analysis , Female , High-Temperature Requirement A Serine Peptidase 1 , Humans , Male , Multigene Family/genetics , Polymorphism, Single Nucleotide/genetics , Publication Bias
17.
Nat Cell Biol ; 25(2): 323-336, 2023 02.
Article in English | MEDLINE | ID: mdl-36732631

ABSTRACT

Nuclear localization of HIPPO-YAP fusion proteins has been implicated in supratentorial ependymoma development. Here, unexpectedly, we find that liquid-liquid phase separation, rather than nuclear localization, of recurrent patient-derived YAP fusions, YAP-MAMLD1 and C11ORF95-YAP, underlies ependymoma tumourigenesis from neural progenitor cells. Mutagenesis and chimaera assays demonstrate that an intrinsically disordered region promotes oligomerization of the YAP fusions into nuclear, puncta-like, membrane-less condensates. Oligomerization and nuclear condensates induced by YAP fusion with a coiled-coil domain of transcriptional activator GCN4 also promote ependymoma formation. YAP-MAMLD1 concentrates transcription factors and co-activators, including BRD4, MED1 and TEAD, in condensates while excluding transcriptional repressive PRC2, and induces long-range enhancer-promoter interactions that promote transcription and oncogenic programmes. Blocking condensate-mediated transcriptional co-activator activity inhibits tumourigenesis, indicating a critical role of liquid phase separation for YAP fusion oncogenic activity in ependymoma. YAP fusions containing the intrinsically disordered region features are common in human tumours, suggesting that nuclear condensates could be targeted to treat YAP-fusion-induced cancers.


Subject(s)
Ependymoma , Transcription Factors , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/genetics , Cell Cycle Proteins/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Ependymoma/genetics , Ependymoma/metabolism , Ependymoma/pathology , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins , Cell Nucleus/metabolism , Transcription, Genetic
18.
Sci Rep ; 13(1): 12433, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528157

ABSTRACT

Low-grade and secondary high-grade gliomas frequently contain mutations in the IDH1 or IDH2 metabolic enzymes that are hypothesized to drive tumorigenesis by inhibiting many of the chromatin-regulating enzymes that regulate DNA structure. Histone deacetylase inhibitors are promising anti-cancer agents and have already been used in clinical trials. However, a clear understanding of their mechanism or gene targets is lacking. In this study, the authors genetically dissect patient-derived IDH1 mutant cultures to determine which HDAC enzymes drive growth in IDH1 mutant gliomas. A panel of patient-derived gliomasphere cell lines (2 IDH1 mutant lines, 3 IDH1 wildtype lines) were subjected to a drug-screen of epigenetic modifying drugs from different epigenetic classes. The effect of LBH (panobinostat) on gene expression and chromatin structure was tested on patient-derived IDH1 mutant lines. The role of each of the highly expressed HDAC enzymes was molecularly dissected using lentiviral RNA interference knock-down vectors and a patient-derived IDH1 mutant in vitro model of glioblastoma (HK252). These results were then confirmed in an in vivo xenotransplant model (BT-142). The IDH1 mutation leads to gene down-regulation, DNA hypermethylation, increased DNA accessibility and H3K27 hypo-acetylation in two distinct IDH1 mutant over-expression models. The drug screen identified histone deacetylase inhibitors (HDACi) and panobinostat (LBH) more specifically as the most selective compounds to inhibit growth in IDH1 mutant glioma lines. Of the eleven annotated HDAC enzymes (HDAC1-11) only six are expressed in IDH1 mutant glioma tissue samples and patient-derived gliomasphere lines (HDAC1-4, HDAC6, and HDAC9). Lentiviral knock-down experiments revealed that HDAC1 and HDAC6 are the most consistently essential for growth both in vitro and in vivo and target very different gene modules. Knock-down of HDAC1 or HDAC6 in vivo led to a more circumscribed less invasive tumor. The gene dysregulation induced by the IDH1 mutation is wide-spread and only partially reversible by direct IDH1 inhibition. This study identifies HDAC1 and HDAC6 as important and drug-targetable enzymes that are necessary for growth and invasiveness in IDH1 mutant gliomas.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioma , Humans , Panobinostat/pharmacology , Panobinostat/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Glioma/metabolism , Antineoplastic Agents/therapeutic use , Chromatin , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutation , Brain Neoplasms/pathology , Histone Deacetylase 1/genetics , Histone Deacetylase 6/genetics
19.
Nat Commun ; 14(1): 762, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765089

ABSTRACT

MYC-driven medulloblastomas are highly aggressive childhood brain tumors, however, the molecular and genetic events triggering MYC amplification and malignant transformation remain elusive. Here we report that mutations in CTDNEP1, a CTD nuclear-envelope-phosphatase, are the most significantly enriched recurrent alterations in MYC-driven medulloblastomas, and define high-risk subsets with poorer prognosis. Ctdnep1 ablation promotes the transformation of murine cerebellar progenitors into Myc-amplified medulloblastomas, resembling their human counterparts. CTDNEP1 deficiency stabilizes and activates MYC activity by elevating MYC serine-62 phosphorylation, and triggers chromosomal instability to induce p53 loss and Myc amplifications. Further, phosphoproteomics reveals that CTDNEP1 post-translationally modulates the activities of key regulators for chromosome segregation and mitotic checkpoint regulators including topoisomerase TOP2A and checkpoint kinase CHEK1. Co-targeting MYC and CHEK1 activities synergistically inhibits CTDNEP1-deficient MYC-amplified tumor growth and prolongs animal survival. Together, our studies demonstrate that CTDNEP1 is a tumor suppressor in highly aggressive MYC-driven medulloblastomas by controlling MYC activity and mitotic fidelity, pointing to a CTDNEP1-dependent targetable therapeutic vulnerability.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Humans , Mice , Animals , Child , Medulloblastoma/pathology , Phosphoric Monoester Hydrolases/genetics , Cerebellar Neoplasms/pathology , Cell Transformation, Neoplastic/genetics , Genomic Instability , Proto-Oncogene Proteins c-myc/genetics , Phosphoprotein Phosphatases/genetics
20.
Proc Natl Acad Sci U S A ; 106(50): 21353-8, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19965374

ABSTRACT

Cyclin-dependent kinase 5 (Cdk5) and its activator p35 are critical for radial migration and lamination of cortical neurons. However, how this kinase is regulated by extracellular and intracellular signals during cortical morphogenesis remains unclear. Here, we show that PKCdelta, a member of novel PKC expressing in cortical neurons, could stabilize p35 by direct phosphorylation. PKCdelta attenuated the degradation of p35 but not its mutant derivative, which could not be phosphorylated by PKCdelta. Down-regulation of PKCdelta by in utero electroporation of specific small interference RNA (siRNA) severely impaired the radial migration of cortical neurons. This migration defect was similar to that caused by down-regulation of p35 and could be prevented by cotransfection with the wild-type but not the mutant p35. Furthermore, PKCdelta could be activated by the promigratory factor brain-derived neurotrophic factor (BDNF) and was required for the activation of Cdk5 by BDNF. Both PKCdelta and p35 were required for the promigratory effect of BDNF on cultured newborn neurons. Thus, PKCdelta may promote cortical radial migration through maintaining the proper level of p35 in newborn neurons.


Subject(s)
Brain-Derived Neurotrophic Factor/physiology , Cell Movement , Cerebral Cortex/cytology , Nerve Tissue Proteins/metabolism , Protein Kinase C-delta/physiology , Animals , Cells, Cultured , Cyclin-Dependent Kinase 5 , Down-Regulation/drug effects , Neurons/cytology , Neurons/metabolism , Phosphorylation , Protein Kinase C-delta/genetics , Protein Stability , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL