Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Mater ; 23(4): 527-534, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454027

ABSTRACT

The liquid-like feature of thermoelectric superionic conductors is a double-edged sword: the long-range migration of ions hinders the phonon transport, but their directional segregation greatly impairs the service stability. We report the synergetic enhancement in figure of merit (ZT) and stability in Cu1.99Se-based superionic conductors enabled by ion confinement effects. Guided by density functional theory and nudged elastic band simulations, we elevated the activation energy to restrict ion migrations through a cation-anion co-doping strategy. We reduced the carrier concentration without sacrificing the low thermal conductivity, obtaining a ZT of ∼3.0 at 1,050 K. Notably, the fabricated device module maintained a high conversion efficiency of up to ∼13.4% for a temperature difference of 518 K without obvious degradation after 120 cycles. Our work could be generalized to develop electrically and thermally robust functional materials with ionic migration characteristics.

2.
Opt Express ; 32(8): 14276-14288, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859378

ABSTRACT

Bound states in the continuum (BIC) represent distinct non-radiative states endowed with infinite lifetime and vanishing resonance linewidth. Introducing asymmetric perturbation to the system can convert true BICs into high quality leaky modes which is useful in many photonic applications. Previously, such perturbation and resonance of interest is only limited to a single factor. However, different perturbations by unit cell gap, geometry and rotation angle result distinctive resonance modes. The combination of two perturbation factors can excite multi-mode resonance contributed from each asymmetric factor which coexist simultaneously; thus, the number of reflectance peaks can be controlled. In addition, we have carefully analyzed the electric field variations under different perturbation factors, followed by a multipolar decomposition of resonances to reveal underlying mechanisms of distinct resonance modes. Through simulations, we find that the introduction of multiple asymmetric perturbations also influences the metasurface sensitivity in refractive index sensing and compare the performance of different resonance modes. These observations provide structural design insights for achieving high quality resonance with multiple modes and ultra-sensitive sensing.

3.
Nano Lett ; 23(24): 11763-11770, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38100381

ABSTRACT

Understanding the phonon characteristics of two-dimensional (2D) molybdenum ditelluride (MoTe2) under strain is critical to manipulating its multiphysical properties. Although there have been numerous computational efforts to elucidate the strain-coupled phonon properties of monolayer MoTe2, empirical validation is still lacking. In this work, monolayer 1H-MoTe2 under uniaxial strain is studied via in situ micro-Raman spectroscopy. Directionally dependent monotonic softening of the doubly degenerate in-plane E2g1 phonon mode is observed with increasing uniaxial strain, where the E2g1 peak red-shifts -1.66 ± 0.04 cm-1/% along the armchair direction and -0.80 ± 0.07 cm-1/% along the zigzag direction. The corresponding Grüneisen parameters are calculated to be 1.09 and 0.52 along the armchair and zigzag directions, respectively. This work provides the first empirical quantification and validation of the orientation-dependent strain-coupled phonon response in monolayer 1H-MoTe2 and serves as a benchmark for other prototypical 2D transition-metal tellurides.

4.
Plant J ; 111(2): 406-421, 2022 07.
Article in English | MEDLINE | ID: mdl-35510493

ABSTRACT

Camellia plants include more than 200 species of great diversity and immense economic, ornamental, and cultural values. We sequenced the transcriptomes of 116 Camellia plants from almost all sections of the genus Camellia. We constructed a pan-transcriptome of Camellia plants with 89 394 gene families and then resolved the phylogeny of genus Camellia based on 405 high-quality low-copy core genes. Most of the inferred relationships are well supported by multiple nuclear gene trees and morphological traits. We provide strong evidence that Camellia plants shared a recent whole genome duplication event, followed by large expansions of transcription factor families associated with stress resistance and secondary metabolism. Secondary metabolites, particularly those associated with tea quality such as catechins and caffeine, were preferentially heavily accumulated in the Camellia plants from section Thea. We thoroughly examined the expression patterns of hundreds of genes associated with tea quality, and found that some of them exhibited significantly high expression and correlations with secondary metabolite accumulations in Thea species. We also released a web-accessible database for efficient retrieval of Camellia transcriptomes. The reported transcriptome sequences and obtained novel findings will facilitate the efficient conservation and utilization of Camellia germplasm towards a breeding program for cultivated tea, camellia, and oil-tea plants.


Subject(s)
Camellia , Camellia/genetics , Camellia/metabolism , Phylogeny , Plant Breeding , Tea/metabolism , Transcriptome/genetics
5.
Int J Cancer ; 152(3): 536-547, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36121650

ABSTRACT

Colorectal cancer (CRC) develops mainly from colorectal advanced adenomas (AA), which are considered precancerous lesions. Novel early diagnostic biomarkers are urgently needed to distinguish CRC and AA from healthy control (HC). Alternative glycosylation of serum IgG has been shown to be closely associated with CRC. We aimed to explore the potential of IgG N-glycan as biomarkers in the early differential diagnosis of CRC. The study population was strictly matched to the exclusion criteria process. Serum IgG N-glycan profiles were analyzed by a robust and reliable relative quantitative method based on ultra-performance liquid chromatography (UPLC). Relative quantification and classification performance of IgG N-glycans were evaluated by Mann-Whitney U tests and ROC curve based on directly detected and derived glycan traits, respectively. Six and 14 directly detected glycan traits were significantly changed in AA and CRC, respectively, compared with HC. GP1 and GP3 were able to accurately distinguish AA from HC for early precancerous lesions screening. GP4 and GP14 provided a high value in discriminating CRC from HC. A novel combined index named GlycoF, including GP1, GP3, GP4, GP14 and CEA was developed to provide a potential early diagnostic biomarker in discriminating simultaneously AA (AUC = 0.847) and CRC (AUC = 0.844) from HC. GlycoF also demonstrated a superior CRC detection rate across CRC all stages and conspicuous prediction ability of risk of relapse. Serum IgG N-glycans analysis provided powerful early screening biomarkers that can efficiently differentiate CRC and AA from HC.


Subject(s)
Adenoma , Colorectal Neoplasms , Precancerous Conditions , Humans , Biomarkers, Tumor , Neoplasm Recurrence, Local/diagnosis , Colorectal Neoplasms/pathology , Polysaccharides , Early Detection of Cancer/methods , Immunoglobulin G , Precancerous Conditions/diagnosis
6.
Scand J Immunol ; 98(2): e13281, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38441215

ABSTRACT

Liver cytosol antibody type 1 (anti-LC1) is reported to be a marker of type 2 autoimmune hepatitis (AIH), a type of autoimmune liver disease (AILD). However, anti-LC1 is not entirely disease-specific, and its clinical value in other hepatic diseases has not been well elucidated. Our study aimed to explore the associations between the diagnoses and outcome of decompensated cirrhosis or liver failure (DC/LF) in patients positive for anti-LC1. A total of 157 patients positive for anti-LC1 were included in our final analysis. DC/LF was defined as the outcome of patients positive for anti-LC1. The risk of DC/LF according to diagnosis was estimated using multivariable Cox proportional hazards models, while stratified Cox regression models were used in the subgroup analyses. The diagnoses of patients positive for anti-LC1 were found to be comprised of various liver disorders. Versus other diagnoses, viral hepatitis was associated with a 2.25-fold increased risk of DC/LF in these patients, independent of sex, age, disease course, treatment and drinking history. Additionally, the associations were more significant by subgroup analysis in male patients, younger patients, non-newly diagnosed patients, patients without treatment and patients without drinking history. Anti-LC1 is not a disease-specific antibody, as it was found in multiple types of hepatic disease. Furthermore, viral hepatitis rather than AILD was associated with an increased risk of DC/LF in patients positive for anti-LC1. These findings emphasize the important role of viral hepatitis in the progression of DC/LF in patients positive for anti-LC1.


Subject(s)
Autoimmune Diseases , Hepatitis, Viral, Human , Liver Failure , Humans , Male , Cytosol , Liver Cirrhosis
7.
Exp Dermatol ; 32(4): 359-367, 2023 04.
Article in English | MEDLINE | ID: mdl-36394347

ABSTRACT

Mutations in the γ-secretase complex have been well-described in familial hidradenitis suppurativa (HS). No gene mutations have been identified in sporadic HS, which comprises 60%-70% of all HS cases. Obesity and smoking are risk factors for HS and are closely related to DNA methylation, an essential epigenetic phenomenon. Hence, we hypothesized that epigenetic modifications might be involved in sporadic HS. To investigate genes with aberrant methylation in sporadic HS cases and assess their expression in skin lesions and blood from patients with HS. Skin lesion samples and corresponding normal skin were obtained from three patients with HS and subjected to whole-genome DNA methylation sequencing. Blood samples were collected from 20 patients with HS and 20 healthy controls (HCs). The HS mouse model was established by applying tamoxifen to NcstnΔKC mice. Target gene expression was analysed by immunohistochemistry, immunofluorescence, western blotting, enzyme-linked immunosorbent assay (ELISA) and semiquantitative real-time polymerase chain reaction (RT-qPCR). Among 10 807 differentially methylated genes, we filtered 2101 genes with hypermethylated promoter regions, and following bioinformatics analyses, we focused on CXC chemokine ligand 16 (CXCL16). Subsequent functional experiments confirmed the downregulation of CXCL16 and its receptor, CXC chemokine receptor (CXCR) 6, in skin tissue from HS patients and NcstnΔKC mice. Serum CXCL16 concentrations were also significantly decreased in patients with HS. Our data revealed the downregulation of CXCL16 and CXCR6 in HS.


Subject(s)
Hidradenitis Suppurativa , Animals , Mice , Chemokine CXCL16/genetics , Hidradenitis Suppurativa/genetics , Skin , Immunohistochemistry , Fluorescent Antibody Technique , Receptors, CXCR6
8.
Nanotechnology ; 34(42)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37478830

ABSTRACT

Molybdenum disulfide (MoS2), especially single-layer MoS2, has been experimentally and computationally discovered to exist in several different polymorphs exhibiting various electronic and mechanical properties. The morphology of MoS2can be tuned through strain engineering. Molecular dynamics simulations are conducted to systematically study the phase transition of single-layer MoS2and bilayer MoS2under the uniaxial tensile condition at room temperature. The roles of edge and S-line vacancy are investigated. Phase transitions are always triggered near the edge and vacancy sites. The initiation of the metastable T″ phase can release the tensile stress in the lattice, followed by I4/mmm phase initiation, regardless of the edge conditions. The growth of the I4/mmm phase can cause the local buckling of the MoS2plane. With a tilted S-line vacancy, I4/mmm phase is first initiated to reduce the local shear stress accumulated near the vacancy line. Overall, the phase transition mechanism of single layer and bilayer MoS2under the uniaxial tensile loading is provided, which guides the future strain engineering of MoS2in nanoelectronics applications.

9.
Sensors (Basel) ; 24(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38203016

ABSTRACT

The growth of renewable energy sources presents a pressing challenge to the operation and maintenance of existing fossil fuel power plants, given that fossil fuel remains the predominant fuel source, responsible for over 60% of electricity generation in the United States. One of the main concerns within these fossil fuel power plants is the unpredictable failure of boiler tubes, resulting in emergency maintenance with significant economic and societal consequences. A reliable high-temperature sensor is necessary for in situ monitoring of boiler tubes and the safety of fossil fuel power plants. In this study, a comprehensive four-stage multi-physics computational framework is developed to assist the design, optimization installation, and operation of the high-temperature stainless-steel and quartz coaxial cable sensor (SSQ-CCS) for coal-fired boiler applications. With the consideration of various operation conditions, we predict the distributions of flue gas temperatures within coal-fired boilers, the temperature correlation between the boiler tube and SSQ-CCS, and the safety of SSQ-CCS. With the simulation-guided sensor installation plan, the newly designed SSQ-CCSs have been employed for field testing for more than 430 days. The computational framework developed in this work can guide the future operation of coal-fired plants and other power plants for the safety prediction of boiler operations.

10.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838874

ABSTRACT

BACKGROUND: Cashew (Anacardium occidentale L.) is a commercially important plant. Cashew nuts are a popular food source that belong to the tree nut family. Tree nuts are one of the eight major food allergens identified by the Food and Drug Administration in the USA. Allergies to cashew nuts cause severe and systemic immune reactions. Tree nut allergies are frequently fatal and are becoming more common. AIM: We aimed to identify the key allergenic epitopes of cashew nut proteins by correlating the phage display epitope prediction results with bioinformatics analysis. DESIGN: We predicted and experimentally confirmed cashew nut allergen antigenic peptides, which we named Ana o 2 (cupin superfamily) and Ana o 3 (prolamin superfamily). The Ana o 2 and Ana o 3 epitopes were predicted using DNAstar and PyMoL (incorporated in the Swiss-model package). The predicted weak and strong epitopes were synthesized as peptides. The related phage library was built. The peptides were also tested using phage display technology. The expressed antigens were tested and confirmed using microtiter plates coated with pooled human sera from patients with cashew nut allergies or healthy controls. RESULTS: The Ana o 2 epitopes were represented by four linear peptides, with the epitopes corresponding to amino acids 108-111, 113-119, 181-186, and 218-224. Furthermore, the identified Ana o 3 epitopes corresponding to amino acids 10-24, 13-27, 39-49, 66-70, 101-106, 107-114, and 115-122 were also screened out and chosen as the key allergenic epitopes. DISCUSSION: The Ana o 3 epitopes accounted for more than 40% of the total amino acid sequence of the protein; thus, Ana o 3 is potentially more allergenic than Ana o 2. CONCLUSIONS: The bioinformatic epitope prediction produced subpar results in this study. Furthermore, the phage display method was extremely effective in identifying the allergenic epitopes of cashew nut proteins. The key allergenic epitopes were chosen, providing important information for the study of cashew nut allergens.


Subject(s)
Anacardium , Nut Hypersensitivity , Nut Proteins , Humans , Allergens/chemistry , Epitopes , Anacardium/chemistry , Plant Proteins/metabolism , Nut Proteins/analysis , Immunoglobulin E , Nuts/chemistry
11.
Plant J ; 106(5): 1312-1327, 2021 06.
Article in English | MEDLINE | ID: mdl-33730390

ABSTRACT

The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.


Subject(s)
Camellia sinensis/genetics , DNA Methylation , DNA Transposable Elements/genetics , Evolution, Molecular , Genes, Duplicate/genetics , Genome, Plant/genetics , Camellia sinensis/physiology , Cold Temperature , Gene Expression Regulation, Plant , Genome Size , Stress, Physiological
12.
BMC Public Health ; 22(1): 434, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246096

ABSTRACT

BACKGROUND: In October 2015, China's one-child policy was universally replaced by a so-called two-child policy. This study investigated the association between the enactment of the new policy and changes in the number of births, and health-related birth outcomes. METHODS: We used difference-in-difference model to analyse the birth record data in Pudong New Area, Shanghai.The design is descriptive before-and-after comparative study. RESULTS: The data covered three policy periods: the one-child policy period (January 2008 to November 2014); the partial two-child policy period (December 2014 to June 2016); the universal two-child policy period (July 2016 to December 2017). There was an estimate of 7656 additional births during the 18 months of the implementation of the universal two-child policy. The trend of monthly percentage of births to mothers aged ≥35 increased by 0.24 percentage points (95% confidence interval 0.19 to 0.28, p < 0.001) during the same period. Being a baby boy, preterm birth, low birth weight, parents with lower educational attainment, and assisted delivery were associated with a higher risk of birth defects. CONCLUSIONS: The universal two-child policy was associated with an increase in the number of births and maternal age. Preterm birth, low birth weight, and assisted delivery were associated with a higher risk of birth defects, which suggested that these infants needed additional attention in the future.


Subject(s)
Family Planning Policy , Premature Birth , Birth Rate , China/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Policy , Pregnancy , Premature Birth/epidemiology
13.
J Sci Food Agric ; 102(12): 5200-5209, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35289954

ABSTRACT

BACKGROUND: In this study, the optimal conditions for the extraction and purification of glycyrrhizic acid from Radix Glycyrrhizae (RG) and baicalein and wogonin from Radix Scutellariae (RS) by foam fractionation were studied on the basis of central composite design (CCD) and response surface methodology. RESULTS: The results showed that herbal proportion (RG:RS), gas flow and ethanol concentration were the main factors guiding the foam fractionation of RG and RS. The optimum technological parameters were obtained as follows: herbal proportion (RG:RS), 1.86:1.14; gas flow, 109 mL min-1 ; and ethanol concentration, 53%. Under the optimal operating conditions, the maximal extraction yields of baicalein, glycyrrhizic acid and wogonin were 56.67, 13.25 and 9.51 mg g-1 , respectively, which were 2.32-, 1.22- and 1.84-fold higher than those of ultrasonic extraction and 17.28-, 1.15- and 9.91-fold higher than those of ultrasonic extraction without hydrolysis, respectively. Investigations on the antioxidant activity showed that the foam-fractionated extract exhibited better free radical scavenging activity (IC50 13.80 µg mL-1 ) than that of the ultrasonic extract (IC50 223.00 µg mL-1 ). Antibacterial activity showed that the minimum inhibitory concentrations of the foam fractionated extract against Staphylococcus aureus, Candida albicans, Group A Streptococcus and Pseudomonas aeruginosa were 1.38, 1.38, 0.69 and 5.50 mg mL-1 , respectively. CONCLUSION: The results indicate that the foam fractionated extract exhibited better extraction yields and free radical scavenging activity than did the ultrasonic extract. Therefore, this fast and eco-friendly method was established and could be a basis for the extraction and separation of other active constituents from herbal medicines. © 2022 Society of Chemical Industry.


Subject(s)
Drugs, Chinese Herbal , Flavanones , Scutellaria , Drugs, Chinese Herbal/pharmacology , Ethanol , Flavonoids , Free Radicals , Glycyrrhizic Acid , Plant Extracts/pharmacology , Scutellaria baicalensis
14.
Small ; 17(20): e2006574, 2021 May.
Article in English | MEDLINE | ID: mdl-33825322

ABSTRACT

There is very limited repertoire of organic ambipolar semiconductors to date. Electron donor-acceptor alternative stacking is a unique and important binary motif for 1D mixed-stack cocrystals, opening up possibilities for the development of organic ambipolar semiconductors. Herein, four 1D mixed-stack cocrystals using N,N'-bis(perfluorobutyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDICNF) as the acceptor and anthracene, pyrene, perylene, and meso-diphenyl tetrathia[22]annulene[2,1,2,1] (DPTTA) as the donors are achieved in a stoichiometric ratio (D:A = 1:1) through solution or vapor processed methods. Their packing structures, energy levels, charge transfer interactions, coassembling behaviors, and molecular orientations are systematically investigated by single-crystal X-ray analysis, absorption spectra, fluorescence quenching, Job's curve plot, and polarized photoluminescence measurements with the help of theoretical calculations. The donor-acceptor alternative stacking direction coincides with the long axis for all the four cocrystals. The field-effect transistors based on Pyrene-PDICNF show the electron mobility up to 0.19 cm2 V-1 s-1 , which is the highest value among perylene diimide-based cocrystals. Moreover, DPTTA-PDICNF cocrystals possess well-balanced electron and hole mobility with 1.7 × 10-2 and 2.0 × 10-2  cm2 V-1 s-1 respectively due to both hole and electron strong superexchange interactions, shedding light on the design of 1D mixed-stack cocrystals with excellent ambipolar transport behaviors.

15.
Opt Express ; 29(23): 37399-37417, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34808812

ABSTRACT

Propagation-based X-ray phase-contrast computed tomography (PB-PCCT) has been increasingly popular for distinguishing low contrast tissues. Phase retrieval is an important step to quantitatively obtain the phase information before the tomographic reconstructions, while typical phase retrieval methods in PB-PCCT, such as homogenous transport of intensity equation (TIE-Hom), are essentially low-pass filters and thus improve the signal to noise ratio at the expense of the reduced spatial resolution of the reconstructed image. To improve the reconstructed spatial resolution, measured phase contrast projections with high edge enhancement and the phase projections retrieved by TIE-Hom were weighted summed and fed into an iterative tomographic algorithm within the framework of the adaptive steepest descent projections onto convex sets (ASD-POCS), which was employed for suppressing the image noise in low dose reconstructions because of the sparse-view scanning strategy or low exposure time for single phase contrast projection. The merging strategy decreases the accuracy of the linear model of PB-PCCT and would finally lead to the reconstruction failure in iterative reconstructions. Therefore, the additive median root prior is also introduced in the algorithm to partly increase the model accuracy. The reconstructed spatial resolution and noise performance can be flexibly balanced by a pair of antagonistic hyper-parameters. Validations were performed by the established phase-contrast Feldkamp-Davis-Kress, phase-retrieved Feldkamp-Davis-Kress, conventional ASD-POCS and the proposed enhanced ASD-POCS with a numerical phantom dataset and experimental biomaterial dataset. Simulation results show that the proposed algorithm outperforms the conventional ASD-POCS in spatial evaluation assessments such as root mean square error (a ratio of 9.78%), contrast to noise ratio (CNR) (a ratio of 7.46%), and also frequency evaluation assessments such as modulation transfer function (a ratio of 66.48% of MTF50% (50% MTF value)), noise power spectrum (a ratio of 35.25% of f50% (50% value of the Nyquist frequency)) and noise equivalent quanta (1-2 orders of magnitude at high frequencies). Experimental results again confirm the superiority of proposed strategy relative to the conventional one in terms of edge sharpness and CNR (an average increase of 67.35%).


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Computer Simulation , Filtration/instrumentation , Signal-To-Noise Ratio
16.
Value Health ; 24(5): 615-624, 2021 05.
Article in English | MEDLINE | ID: mdl-33933229

ABSTRACT

OBJECTIVES: Movement restriction policies (MRPs) are effective in preventing/delaying COVID-19 transmission but are associated with high societal cost. This study aims to estimate the health burden of the first wave of COVID-19 in China and the cost-effectiveness of early versus late implementation of MRPs to inform preparation for future waves. METHODS: The SEIR (susceptible, exposed, infectious, and recovered) modeling framework was adapted to simulate the health and cost outcomes of initiating MRPs at different times: rapid implementation (January 23, the real-world scenario), delayed by 1 week, delayed by 2 weeks, and delayed by 4 weeks. The end point was set as the day when newly confirmed cases reached zero. Two costing perspectives were adopted: healthcare and societal. Input data were obtained from official statistics and published literature. The primary outcomes were disability-adjusted life-years, cost, and net monetary benefit. Costs were reported in both Chinese renminbi (RMB) and US dollars (USD) at 2019 values. RESULTS: The first wave of COVID-19 in China resulted in 38 348 disability adjusted life-years lost (95% CI 19 417-64 130) and 2639 billion RMB losses (95% CI 1347-4688). The rapid implementation strategy dominated all other delayed strategies. This conclusion was robust to all scenarios tested. At a willingness-to-pay threshold of 70 892 RMB (the national annual GDP per capita) per disability-adjusted life-year saved, the probability for the rapid implementation to be the optimal strategy was 96%. CONCLUSIONS: Early implementation of MRPs in response to COVID-19 reduced both the health burden and societal cost and thus should be used for future waves of COVID-19.


Subject(s)
COVID-19/complications , Cost of Illness , Physical Distancing , Time Factors , COVID-19/economics , COVID-19/epidemiology , China , Cost-Benefit Analysis , Humans , Public Health/methods , Public Health/standards , Public Health/statistics & numerical data
17.
Biochem Biophys Res Commun ; 521(2): 326-332, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31668371

ABSTRACT

Hematopoiesis is systematically regulated by microenvironmental factors. The positive and negative factors coordinated together to yield a complicated blood system. Interferon-γ (IFNγ) has been identified as a common cause of various hematopoietic abnormalities, such as aplastic anemia. However, its impact on monolineage development, especially erythropoiesis, has not been fully elucidated from the cellular angle. In this study, we investigated the behavior of IFNγ and found that IFNγ plays dual functions on erythropoiesis; it not only blocks the erythroid lineage commitment but also accelerates the erythroid differentiation process, ultimately leading to the erythropoietic window clearance. IFNγ can even powerfully initiate early differentiation without the existence of erythropoietin (EPO). Interferon regulatory factor 1 (IRF1) was confirmed as the essential downstream effector, and its ectopic overexpression can also have the same effect as that of IFNγ. These results reveal that the IFNγ-IRF1 axis plays a bidirectional role on erythropoiesis, impeding the access to erythroid lineage and driving the coming cells toward the differentiation endpoint. This model may place an innovative implication for IFNγ-IRF1 axis to understand its in-depth mechanism on normal hematopoiesis and abnormal blood disorders, especially aplastic anemia.


Subject(s)
Erythropoiesis/drug effects , Interferon Regulatory Factor-1/metabolism , Interferon-gamma/pharmacology , Signal Transduction , Anemia, Aplastic , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cells, Cultured , Humans
18.
Immunogenetics ; 71(7): 489-499, 2019 07.
Article in English | MEDLINE | ID: mdl-31297569

ABSTRACT

Epigenetic modifications have been shown to be important for immune cell differentiation by regulating gene transcription. However, the role and mechanism of histone methylation in the development and differentiation of iNKT cells in rheumatoid arthritis (RA) mice have yet to be deciphered. The DBA/1 mouse RA model was established by using a modified GPI mixed peptide. We demonstrated that total peripheral blood, thymus, and spleen iNKT cells in RA mice decreased significantly, while iNKT1 in the thymus and spleen was increased significantly. PLZF protein and PLZF mRNA levels were significantly decreased in thymus DP T cells, while T-bet protein and mRNA were significantly increased in thymus iNKT cells. We found a marked accumulation in H3K27me3 around the promoter regions of the signature gene Zbtb16 in RA mice thymus DP T cells, and an accumulation of H3K4me3 around the promoters of the Tbx21 gene in iNKT cells. The expression levels of UTX in the thymus of RA mice were significantly reduced. The changes in the above indicators were particularly significant in the progressive phase of inflammation (11 days after modeling) and the peak phase of inflammation (14 days after modeling) in RA mice. Developmental and differentiation defects of iNKT cells in RA mice were associated with abnormal methylation levels (H3K27me3 and H3K4me3) in the promoters of key genes Zbtb16 (encoding PLZF) and Tbx21 (encoding T-bet). Decreased UTX of thymus histone demethylase levels resulted in the accumulation of H3K27me3 modification.


Subject(s)
Arthritis, Rheumatoid/pathology , Lysine/metabolism , Natural Killer T-Cells/pathology , Promoter Regions, Genetic , Thymus Gland/physiology , Animals , Arthritis, Experimental/pathology , Cell Differentiation , Epigenesis, Genetic , Gene Expression Regulation , Histone Demethylases/genetics , Histone Demethylases/metabolism , Methylation , Mice, Inbred DBA , Promyelocytic Leukemia Zinc Finger Protein/genetics , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Spleen/pathology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
19.
Plant Biotechnol J ; 17(10): 1938-1953, 2019 10.
Article in English | MEDLINE | ID: mdl-30913342

ABSTRACT

Tea is the world's widely consumed nonalcohol beverage with essential economic and health benefits. Confronted with the increasing large-scale omics-data set particularly the genome sequence released in tea plant, the construction of a comprehensive knowledgebase is urgently needed to facilitate the utilization of these data sets towards molecular breeding. We hereby present the first integrative and specially designed web-accessible database, Tea Plant Information Archive (TPIA; http://tpia.teaplant.org). The current release of TPIA employs the comprehensively annotated tea plant genome as framework and incorporates with abundant well-organized transcriptomes, gene expressions (across species, tissues and stresses), orthologs and characteristic metabolites determining tea quality. It also hosts massive transcription factors, polymorphic simple sequence repeats, single nucleotide polymorphisms, correlations, manually curated functional genes and globally collected germplasm information. A variety of versatile analytic tools (e.g. JBrowse, blast, enrichment analysis, etc.) are established helping users to perform further comparative, evolutionary and functional analysis. We show a case application of TPIA that provides novel and interesting insights into the phytochemical content variation of section Thea of genus Camellia under a well-resolved phylogenetic framework. The constructed knowledgebase of tea plant will serve as a central gateway for global tea community to better understand the tea plant biology that largely benefits the whole tea industry.


Subject(s)
Camellia sinensis/genetics , Computational Biology , Genome, Plant , Genomics , Phylogeny , Tea
20.
Opt Express ; 27(3): 3229-3246, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732347

ABSTRACT

In functional near-infrared spectroscopy (fNIRS), the conventional indirect approaches first separately recover the spatial distribution of the changes in the optical properties at every time point, and then extract the activation levels by a time-course analysis process at every site. In the tomographic implementation of fNIRS, i.e., diffuse optical tomography (DOT), these approaches not only suffer from the ill-posedness of the optical inversions and error propagation between the two successive steps, but also fail to achieve satisfactory temporal resolution due to the requirement for a complete data set. To cope with the above adversities of the indirect approaches, we propose herein a direct approach to tomographically reconstructing the activation levels by incorporating a Kalman scheme. Dynamic simulative and phantom experiments were conducted for the performance validation of the proposed approach, demonstrating its potentials to improve the calculated images and to relax the speed limitation of the instruments.


Subject(s)
Brain/physiology , Image Processing, Computer-Assisted/methods , Spectroscopy, Near-Infrared/methods , Tomography, Optical/methods , Algorithms , Animals , Humans , Phantoms, Imaging , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL