Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Plant Biol ; 24(1): 259, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594635

ABSTRACT

BACKGROUND: Heterosis breeding is one of the most important breeding methods for chrysanthemum. To date, the genetic mechanisms of heterosis for waterlogging tolerance in chrysanthemum are still unclear. This study aims to analyze the expression profiles and potential heterosis-related genes of two hybrid lines and their parents with extreme differences in waterlogging tolerance under control and waterlogging stress conditions by RNA-seq. RESULTS: A population of 140 F1 progeny derived from Chrysanthemum indicum (Nanchang) (waterlogging-tolerant) and Chrysanthemum indicum (Nanjing) (waterlogging-sensitive) was used to characterize the extent of genetic variation in terms of seven waterlogging tolerance-related traits across two years. Lines 98 and 95, respectively displaying positive and negative overdominance heterosis for the waterlogging tolerance traits together with their parents under control and waterlogging stress conditions, were used for RNA-seq. In consequence, the maximal number of differentially expressed genes (DEGs) occurred in line 98. Gene ontology (GO) enrichment analysis revealed multiple stress-related biological processes for the common up-regulated genes. Line 98 had a significant increase in non-additive genes under waterlogging stress, with transgressive up-regulation and paternal-expression dominant patterns being the major gene expression profiles. Further, GO analysis identified 55 and 95 transgressive up-regulation genes that overlapped with the up-regulated genes shared by two parents in terms of responses to stress and stimulus, respectively. 6,640 genes in total displaying maternal-expression dominance patterns were observed in line 95. In addition, 16 key candidate genes, including SAP12, DOX1, and ERF017 which might be of significant importance for the formation of waterlogging tolerance heterosis in line 98, were highlighted. CONCLUSION: The current study provides a comprehensive overview of the root transcriptomes among F1 hybrids and their parents under waterlogging stress. These findings lay the foundation for further studies on molecular mechanisms underlying chrysanthemum heterosis on waterlogging tolerance.


Subject(s)
Chrysanthemum , Transcriptome , Hybrid Vigor/genetics , Chrysanthemum/genetics , Plant Breeding , Gene Expression Profiling/methods , Gene Expression Regulation, Plant
2.
Blood ; 139(10): 1529-1540, 2022 03 10.
Article in English | MEDLINE | ID: mdl-34929029

ABSTRACT

Bone marrow niche cells have been reported to fine-tune hematopoietic stem cell (HSC) stemness via direct interaction or secreted components. Nevertheless, how niche cells control HSC activities remains largely unknown. We previously showed that angiopoietin-like protein 2 (ANGPTL2) can support the ex vivo expansion of HSCs by binding to human leukocyte immunoglobulin-like receptor B2. However, how ANGPTL2 from specific niche cell types regulates HSC activities under physiological conditions is still not clear. Herein, we generated an Angptl2-flox/flox transgenic mouse line and conditionally deleted Angptl2 expression in several niche cells, including Cdh5+ or Tie2+ endothelial cells, Prx1+ mesenchymal stem cells, and Pf4+ megakaryocytes, to evaluate its role in the regulation of HSC fate. Interestingly, we demonstrated that only endothelial cell-derived ANGPTL2 and not ANGPTL2 from other niche cell types plays important roles in supporting repopulation capacity, quiescent status, and niche localization. Mechanistically, ANGPTL2 enhances peroxisome-proliferator-activated receptor D (PPARD) expression to transactivate G0s2 to sustain the perinuclear localization of nucleolin to prevent HSCs from entering the cell cycle. These findings reveal that endothelial cell-derived ANGPTL2 serves as a critical niche component to maintain HSC stemness, which may benefit the understanding of stem cell biology in bone marrow niches and the development of a unique strategy for the ex vivo expansion of HSCs.


Subject(s)
Angiopoietin-Like Protein 2/metabolism , Bone Marrow , Animals , Bone Marrow/metabolism , Bone Marrow Cells , Endothelial Cells , Hematopoietic Stem Cells/metabolism , Mice , Stem Cell Niche
3.
J Org Chem ; 89(7): 4840-4850, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38502550

ABSTRACT

Here, we report controlled and site-selective C-H alkenylation and dialkenylation of indolizines and pyrrolo[1,2-a]quinolines with ß-alkoxyvinyl trifluoromethylketones under simple and practical conditions. Moreover, this direct C-H alkenylation strategy can also be extended to imidazo[1,2-a]pyridines. Notably, without a transition metal and external oxidant, efficient dehydrogenative ß-alkenylation of tertiary amines with ß-alkoxyvinyl trifluoromethylketones is presented.

4.
Acta Pharmacol Sin ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862818

ABSTRACT

Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus characterized by heart failure and cardiac remodeling. Previous studies show that tetrahydroberberrubine (THBru) retrogrades cardiac aging by promoting PHB2-mediated mitochondrial autophagy and prevents peritoneal adhesion by suppressing inflammation. In this study we investigated whether THBru exerted protective effect against DCM in db/db mice and potential mechanisms. Eight-week-old male db/db mice were administered THBru (25, 50 mg·kg-1·d-1, i.g.) for 12 weeks. Cardiac function was assessed using echocardiography. We showed that THBru administration significantly improved both cardiac systolic and diastolic function, as well as attenuated cardiac remodeling in db/db mice. In primary neonatal mouse cardiomyocytes (NMCMs), THBru (20, 40 µM) dose-dependently ameliorated high glucose (HG)-induced cell damage, hypertrophy, inflammatory cytokines release, and reactive oxygen species (ROS) production. Using Autodock, surface plasmon resonance (SPR) and DARTS analyses, we revealed that THBru bound to the domain of the receptor for advanced glycosylation end products (RAGE), subsequently leading to inactivation of the PI3K/AKT/NF-κB pathway. Importantly, overexpression of RAGE in NMCMs reversed HG-induced inactivation of the PI3K/AKT/NF-κB pathway and subsequently counteracted the beneficial effects mediated by THBru. We conclude that THBru acts as an inhibitor of RAGE, leading to inactivation of the PI3K/AKT/NF-κB pathway. This action effectively alleviates the inflammatory responses and oxidative stress in cardiomyocytes, ultimately leading to ameliorated DCM.

5.
Plant Cell Rep ; 43(4): 84, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448703

ABSTRACT

KEY MESSAGE: The dynamic genetic architecture of flowering time in chrysanthemum was elucidated by GWAS. Thirty-six known genes and 14 candidate genes were identified around the stable QTNs and QEIs, among which ERF-1 was highlighted. Flowering time (FT) adaptation is one of the major breeding goals in chrysanthemum, a multipurpose ornamental plant. In order to reveal the dynamic genetic architecture of FT in chrysanthemum, phenotype investigation of ten FT-related traits was conducted on 169 entries in 2 environments. The broad-sense heritability of five non-conditional FT traits, i.e., budding (FBD), visible coloring (VC), early opening (EO), full-bloom (OF) and decay period (DP), ranged from 56.93 to 84.26%, which were higher than that of the five derived conditional FT traits (38.51-75.13%). The phenotypic variation coefficients of OF_EO and DP_OF were relatively large ranging from 30.59 to 36.17%. Based on 375,865 SNPs, the compressed variance component mixed linear model 3VmrMLM was applied for a multi-locus genome-wide association study (GWAS). As a result, 313 quantitative trait nucleotides (QTNs) were identified for the non-conditional FT traits in single-environment analysis, while 119 QTNs and 67 QTN-by-environment interactions (QEIs) were identified in multi-environment analysis. As for the conditional traits, 343 QTNs were detected in single-environment analysis, and 119 QTNs and 83 QEIs were identified in multi- environment analysis. Among the genes around stable QTNs and QEIs, 36 were orthologs of known FT genes in Arabidopsis and other plants; 14 candidates were mined by combining the transcriptomics data and functional annotation, including ERF-1, ACA10, and FOP1. Furthermore, the haplotype analysis of ERF-1 revealed six elite accessions with extreme FBD. Our findings contribute to the understanding of dynamic genetic architecture of FT and provide valuable resources for future chrysanthemum molecular breeding programs.


Subject(s)
Arabidopsis , Chrysanthemum , Genome-Wide Association Study , Plant Breeding , Reproduction , Chrysanthemum/genetics
6.
Gen Comp Endocrinol ; 352: 114501, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38527592

ABSTRACT

Reproductive history is one of the strongest risk factors for breast cancer in women. Pregnancy can promote short-term breast cancer risk, but also reduce a woman's lifetime risk of breast cancer. Changes in hormone levels before and after pregnancy are one of the key factors in breast cancer risk. This article summarizes the changes in hormone levels before and after pregnancy, and the roles of hormones in mammary gland development and breast cancer progression. Other factors, such as changes in breast morphology and mammary gland differentiation, changes in the proportion of mammary stem cells (MaSCs), changes in the immune and inflammatory environment, and changes in lactation before and after pregnancy, also play key roles in the occurrence and development of breast cancer. This review discusses the dual effects and the potential mechanisms of pregnancy on breast cancer risk from the above aspects, which is helpful to understand the complexity of female breast cancer occurrence.


Subject(s)
Breast Neoplasms , Female , Humans , Pregnancy , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Cell Differentiation , Hormones , Lactation , Mammary Glands, Animal , Risk Factors
7.
Gen Comp Endocrinol ; 353: 114513, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38604437

ABSTRACT

Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-ß superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-ß family members, such as TGF-ß1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-ß signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-ß signaling for the treatment of muscle atrophy.


Subject(s)
Cachexia , Muscular Atrophy , Myostatin , Neoplasms , Sarcopenia , Signal Transduction , Transforming Growth Factor beta , Humans , Cachexia/metabolism , Cachexia/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Sarcopenia/metabolism , Sarcopenia/pathology , Signal Transduction/physiology , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Myostatin/metabolism , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
8.
BMC Pulm Med ; 24(1): 264, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824531

ABSTRACT

BACKGROUND: Smoking induces and modifies the airway immune response, accelerating the decline of asthmatics' lung function and severely affecting asthma symptoms' control level. To assess the prognosis of asthmatics who smoke and to provide reasonable recommendations for treatment, we constructed a nomogram prediction model. METHODS: General and clinical data were collected from April to September 2021 from smoking asthmatics aged ≥14 years attending the People's Hospital of Zhengzhou University. Patients were followed up regularly by telephone or outpatient visits, and their medication and follow-up visits were recorded during the 6-months follow-up visit, as well as their asthma control levels after 6 months (asthma control questionnaire-5, ACQ-5). The study employed R4.2.2 software to conduct univariate and multivariate logistic regression analyses to identify independent risk factors for 'poorly controlled asthma' (ACQ>0.75) as the outcome variable. Subsequently, a nomogram prediction model was constructed. Internal validation was used to test the reproducibility of the model. The model efficacy was evaluated using the consistency index (C-index), receiver operating characteristic (ROC) curve, calibration curve, and decision curve. RESULTS: Invitations were sent to 231 asthmatics who smoked. A total of 202 participants responded, resulting in a final total of 190 participants included in the model development. The nomogram established five independent risk factors (P<0.05): FEV1%pred, smoking index (100), comorbidities situations, medication regimen, and good or poor medication adherence. The area under curve (AUC) of the modeling set was 0.824(95%CI 0.765-0.884), suggesting that the nomogram has a high ability to distinguish poor asthma control in smoking asthmatics after 6 months. The calibration curve showed a C-index of 0.824 for the modeling set and a C-index of 0.792 for the self-validation set formed by 1000 bootstrap sampling, which means that the prediction probability of the model was consistent with reality. Decision curve analysis (DCA) of the nomogram revealed that the net benefit was higher when the risk threshold probability for poor asthma control was 4.5 - 93.9%. CONCLUSIONS: FEV1%pred, smoking index (100), comorbidities situations, medication regimen, and medication adherence were identified as independent risk factors for poor asthma control after 6 months in smoking asthmatics. The nomogram established based on these findings can effectively predict relevant risk and provide clinicians with a reference to identify the poorly controlled population with smoking asthma as early as possible, and to select a better therapeutic regimen. Meanwhile, it can effectively improve the medication adherence and the degree of attention to complications in smoking asthma patients.


Subject(s)
Asthma , Nomograms , Smoking , Humans , Asthma/drug therapy , Asthma/physiopathology , Male , Female , Risk Factors , Adult , Middle Aged , Smoking/epidemiology , Smoking/adverse effects , ROC Curve , Logistic Models , China/epidemiology , Surveys and Questionnaires , Prognosis , Reproducibility of Results
9.
Eur Arch Otorhinolaryngol ; 281(1): 267-272, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37737873

ABSTRACT

PURPOSE: To evaluate the role of perioperative antibiotics use in children after adenotonsillectomy. METHODS: SPSS 27.0 was used for statistical analysis. Two independent samples mean T test was used to evaluate the throat pain scores consecutive 3 days after the surgery, the time to resume to normal diet, and the wound healing time. Logistic regression analysis was used to evaluate the independent risk factors of the two groups. The generalized estimation model was used to evaluate the correlation between age and postoperative pain scores, and the relationship between different tonsillar bed gradings and postoperative pain scores. RESULTS: The pain scores were 5.83 ± 1.879, 5.20 ± 1.933, and 4.02 ± 1.936 in the observation group; and 6.83 ± 1.892, 6.17 ± 2.001, and 5.29 ± 2.068 in the control group on days 1-3 after surgery, respectively. The time of pain disappearance was 6.24 ± 2.121 days in the observation group and 7.73 ± 2.210 days in the control group. The wound repair time was 18.66 ± 2.200 days in the observation group and 18.70 ± 2.468 days in the control group. Logistic regression analysis showed that fever was an independent risk factor for the two groups and was negatively correlated (B = - 1.237, P < 0.001, OR = 0.290). Generalized estimation model showed that there was a positive correlation between age and pain scores (P < 0.001), and with the increasing grading of tonsillar bed, the higher the pain scores was (P < 0.001). CONCLUSIONS: Perioperative use of antibiotics in children with adenotonsillectomy can effectively reduce postoperative fever, throat pain symptoms, and shorten the pain time. With the increasing of tonsillar bed grading, perioperative antibiotic therapy was more necessary.


Subject(s)
Tonsillectomy , Child , Humans , Tonsillectomy/adverse effects , Adenoidectomy/adverse effects , Anti-Bacterial Agents/therapeutic use , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Pain, Postoperative/diagnosis , Pharynx
10.
J Allergy Clin Immunol ; 152(3): 622-632, 2023 09.
Article in English | MEDLINE | ID: mdl-37178731

ABSTRACT

BACKGROUND: Cough-variant asthma (CVA) may respond differently to antiasthmatic treatment. There are limited data on the heterogeneity of CVA. OBJECTIVE: We aimed to classify patients with CVA using cluster analysis based on clinicophysiologic parameters and to unveil the underlying molecular pathways of these phenotypes with transcriptomic data of sputum cells. METHODS: We applied k-mean clustering to 342 newly physician-diagnosed patients with CVA from a prospective multicenter observational cohort using 10 prespecified baseline clinical and pathophysiologic variables. The clusters were compared according to clinical features, treatment response, and sputum transcriptomic data. RESULTS: Three stable CVA clusters were identified. Cluster 1 (n = 176) was characterized by female predominance, late onset, normal lung function, and a low proportion of complete resolution of cough (60.8%) after antiasthmatic treatment. Patients in cluster 2 (n = 105) presented with young, nocturnal cough, atopy, high type 2 inflammation, and a high proportion of complete resolution of cough (73.3%) with a highly upregulated coexpression gene network that related to type 2 immunity. Patients in cluster 3 (n = 61) had high body mass index, long disease duration, family history of asthma, low lung function, and low proportion of complete resolution of cough (54.1%). TH17 immunity and type 2 immunity coexpression gene networks were both upregulated in clusters 1 and 3. CONCLUSION: Three clusters of CVA were identified with different clinical, pathophysiologic, and transcriptomic features and responses to antiasthmatics treatment, which may improve our understanding of pathogenesis and help clinicians develop individualized cough treatment in asthma.


Subject(s)
Anti-Asthmatic Agents , Asthma , Female , Male , Humans , Cough , Prospective Studies , Phenotype , Anti-Asthmatic Agents/therapeutic use
11.
BMC Genomics ; 24(1): 478, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37612625

ABSTRACT

BACKGROUND: Heat shock protein 20 (HSP20) is a member of the heat stress-related protein family, which plays critical roles in plant growth, development, and response to abiotic stresses. Although many HSP20 genes have been associated with heat stress in numerous types of plants, little is known about the details of the HSP20 gene family in Coix. To investigate the mechanisms of the ClHSP20 response to heat and drought stresses, the ClHSP20 gene family in Coix was identified and characterized based on genome-wide analysis. RESULTS: A total of 32 putative ClHSP20 genes were identified and characterized in Coix. Phylogenetic analysis indicated that ClHSP20s were grouped into 11 subfamilies. The duplicated event analysis demonstrated that tandem duplication and segment duplication events played crucial roles in promoting the expansion of the ClHSP20 gene family. Synteny analysis showed that Coix shared the highest homology in 36 HSP20 gene pairs with wheat, followed by 22, 19, 15, and 15 homologous gene pairs with maize, sorghum, barley, and rice, respectively. The expression profile analysis showed that almost all ClHSP20 genes had different expression levels in at least one tissue. Furthermore, 22 of the 32 ClHSP20 genes responded to heat stress, with 11 ClHSP20 genes being significantly upregulated and 11 ClHSP20 genes being significantly downregulated. Furthermore, 13 of the 32 ClHSP20 genes responded to drought stress, with 6 ClHSP20 genes being significantly upregulated and 5 ClHSP20 genes being significantly downregulated. CONCLUSIONS: Thirty-two ClHSP20 genes were identified and characterized in the genome of Coix. Tandem and segmental duplication were identified as having caused the expansion of the ClHSP20 gene family. The expression patterns of the ClHSP20 genes suggested that they play a critical role in growth, development, and response to heat and drought stress. The current study provides a theoretical basis for further research on ClHSP20s and will facilitate the functional characterization of ClHSP20 genes.


Subject(s)
Coix , Heat-Shock Proteins , Animals , Droughts , Phylogeny , Estrus
12.
Respir Res ; 24(1): 139, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231445

ABSTRACT

BACKGROUND: The associations between short- and long-term exposure to ambient fine particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) and allergic symptoms in middle-aged and elderly populations remain unclear, particularly in China, where most cities have severe air pollution. METHODS: Participants (n = 10,142; age = 40-75 years) were recruited from ten regions in China from 2018 to 2021 for the Predictive Value of Inflammatory Biomarkers and Forced Expiratory Volume in 1 s (FEV1) for Chronic Obstructive Pulmonary Disease (PIFCOPD) study. Short-term (lag0 and lag0-7 day) and long-term (1-, 3- and 5-year) PM2.5 concentrations at residences were extracted from the air pollutant database known as Tracking Air Pollution (TAP) in China. Multivariate logistic regression models were used to estimate associations for short- and long-term PM2.5 exposure concentrations and long-term exposure models were additionally adjusted for short-term deviations. RESULTS: A 10 µg/m3 increase in PM2.5 on the day the allergic symptoms questionnaire was administered (lag0 day) was associated with higher odds of allergic nasal (1.09, 95% CI 1.05, 1.12) and eye symptoms (1.08, 95% CI 1.05, 1.11), worsening dyspnea caused by allergens (1.06, 95% CI 1.02, 1.10), and ≥ 2 allergic symptoms (1.07, 95% CI 1.03, 1.11), which was similar in the lag0-7 day concentrations. A 10 µg/m3 increase in the 1-year average PM2.5 concentration was associated with an increase of 23% for allergic nasal symptoms, 22% for eye symptoms, 20% for worsening dyspnea caused by allergens, and 21% for ≥ 2 allergic symptoms, similar to the 3- and 5-year average PM2.5 concentrations. These associations between long-term PM2.5 concentration and allergic symptoms were generally unchanged after adjustment for short-term deviations. CONCLUSIONS: Short- and long-term exposure to ambient PM2.5 was associated with an increased risk of allergic nasal and eye symptoms, worsening dyspnea caused by allergens, and ≥ 2 allergic symptoms. TRIAL REGISTRATION: Clinical trial ID: NCT03532893 (29 Mar 2018).


Subject(s)
Air Pollutants , Air Pollution , Middle Aged , Humans , Aged , Adult , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , China/epidemiology , Dyspnea , Allergens , Environmental Exposure/adverse effects , Environmental Exposure/analysis
13.
Cell Commun Signal ; 21(1): 338, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996849

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) is a versatile RNA/DNA-binding protein with multifaceted processes. While TDP-43 has been extensively studied in the context of degenerative diseases, recent evidence has also highlighted its crucial involvement in diverse life processes beyond neurodegeneration. Here, we mainly reviewed the function of TDP-43 in non-neurodegenerative physiological and pathological processes, including spermatogenesis, embryonic development, mammary gland development, tumor formation, and viral infection, highlighting its importance as a key regulatory factor for the maintenance of normal functions throughout life. TDP-43 exhibits diverse and sometimes opposite functionality across different cell types through various mechanisms, and its roles can shift at distinct stages within the same biological system. Consequently, TDP-43 operates in both a context-dependent and a stage-specific manner in response to a variety of internal and external stimuli. Video Abstract.


Subject(s)
DNA-Binding Proteins , RNA-Binding Proteins , Male , Humans , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism
14.
J Org Chem ; 88(1): 75-85, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36537803

ABSTRACT

Here, we report a facile and metal-free method for the construction of dihydrooxazine derivatives via a formal (3 + 3) annulation reaction of naphthols and 1,3,5-triazinanes. The 1,3,5-triazinanes were utilized as a formal three-atom synthon (C-N-C) for cycloaddition. In addition, dihydrothiazine and tetrahydrobenzoquinazoline derivatives could also be produced in good yields by this strategy under catalyst-free and additive-free conditions.


Subject(s)
Amines , Naphthols , Cycloaddition Reaction , Catalysis
15.
J Org Chem ; 88(11): 7199-7207, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37170895

ABSTRACT

Pyridinium 1,4-zwitterionic thiolates were regarded as powerful and versatile building blocks to prepare nitrogen- and sulfur-containing heterocycles. Herein, we reported a copper-catalyzed formal [4 + 1] annulation of pyridinium 1,4-zwitterionic thiolates and diazo compounds without any additives to access a library of trifunctionalized indolizines in good yields. Besides, isoquinolinium 1,4-zwitterionic thiolates and imidazolium 1,4-zwitterionic thiolates were also applied to this formal [4 + 1] annulation reaction. Of particular note is that various functional groups such as -CO2R, -CO2NR2, -CF3, -CN, and -(O)P(OR)2 could be easily introduced into cycloaddition products indolizines by this strategy.

16.
Phys Chem Chem Phys ; 25(5): 3766-3771, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36644908

ABSTRACT

The search for a method for enhancing the electrochemical performance of manganese dioxide is still a challenge. Herein, we report a rod-like P-MnOx cathode material with a hierarchical manganese gradient valence through the phosphatization process. For the incorporation of P, Mn3O4 was formed on the surface of MnO2 and exhibited a gradient valence structure, while the oxygen defect concentration in P-MnOx increased. The unique structure was verified via XRD, TEM and XPS. As the cathode material for a supercapacitor, the specific capacitance of P-MnOx was 126.3 F g-1, which was four times that of MnO2. The assembling of the coin cells of aqueous ZIBs with P-MnOx also showed good rate performance. The electrochemical performance of the synthesised P-MnOx cathode was enhanced for the synergistic effect of improved conductivity and structural stability.

17.
Acta Pharmacol Sin ; 44(2): 332-344, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35948750

ABSTRACT

Heart aging is characterized by left ventricular hypertrophy and diastolic dysfunction, which in turn induces a variety of cardiovascular diseases. There is still no therapeutic drug to ameliorate cardiac abnormities in heart aging. In this study we investigated the protective effects of berberine (BBR) and its derivative tetrahydroberberrubine (THBru) against heart aging process. Heart aging was induced in mice by injection of D-galactose (D-gal, 120 mg · kg-1 · d-1, sc.) for 12 weeks. Meanwhile the mice were orally treated with berberine (50 mg · kg-1 · d-1) or THBru (25, 50 mg · kg-1 · d-1) for 12 weeks. We showed that BBR and THBru treatment significantly mitigated diastolic dysfunction and cardiac remodeling in D-gal-induced aging mice. Furthermore, treatment with BBR (40 µM) and THBru (20, 40 µM) inhibited D-gal-induced senescence in primary neonatal mouse cardiomyocytes in vitro. Overall, THBru exhibited higher efficacy than BBR at the same dose. We found that the levels of mitophagy were significantly decreased during the aging process in vivo and in vitro, THBru and BBR promoted mitophagy with different potencies. We demonstrated that the mitophagy-inducing effects of THBru resulted from increased mRNA stability of prohibitin 2 (PHB2), a pivotal factor during mitophagy, thereby upregulating PHB2 protein expression. Knockdown of PHB2 effectively reversed the antisenescence effects of THBru in D-gal-treated cardiomyocytes. On the contrary, overexpression of PHB2 promoted mitophagy and retarded cardiomyocyte senescence, as THBru did. In conclusion, this study identifies THBru as a potent antiaging medicine that induces PHB2-mediated mitophagy and suggests its clinical application prospects.


Subject(s)
Berberine , Cardiomyopathies , Animals , Mice , Signal Transduction , Berberine/pharmacology , Berberine/therapeutic use , Mitophagy , Aging
18.
Acta Biochim Biophys Sin (Shanghai) ; 55(6): 1001-1019, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37184281

ABSTRACT

The functional capacity of organisms declines in the process of aging. In the case of breast tissue, abnormal mammary gland development can lead to dysfunction in milk secretion, a primary function, as well as the onset of various diseases, such as breast cancer. In the process of aging, the terminal duct lobular units (TDLUs) within the breast undergo gradual degeneration, while the proportion of adipose tissue in the breast continues to increase and hormonal levels in the breast change accordingly. Here, we review changes in morphology, internal structure, and cellular composition that occur in the mammary gland during aging. We also explore the emerging mechanisms of breast aging and the relationship between changes during aging and breast-related diseases, as well as potential interventions for delaying mammary gland aging and preventing breast disease.


Subject(s)
Breast Neoplasms , Mammary Glands, Human , Humans , Female , Breast , Aging
19.
Small ; 18(9): e2105021, 2022 03.
Article in English | MEDLINE | ID: mdl-35088527

ABSTRACT

Atherosclerosis (AS) is associated with high morbidity and mortality, thus imposing a growing burden on modern society. Herb-derived bicyclol (BIC) is a versatile bioactive compound that can be used to treat AS. However, its efficacy in AS is not yet described. Here, it is shown that BIC normalizes gut microflora dysbiosis induced by a high fat diet in Apoe(-/-) mice. Metagenome-wide association study analysis verifies that the modulation on carbohydrate-active enzymes and short-chain fatty acid generating genes in gut flora is among the mechanisms. The gut healthiness, especially the gut immunity and integrity, is restored by BIC intervention, leading to improved systemic immune cell dynamic and liver functions. Accordingly, the endothelial activation, macrophage infiltration, and cholesterol ester accumulation in the aortic arch are alleviated by BIC to lessen the plaque onset. Moreover, it is proved that the therapeutic effect of BIC on AS is transmissible by fecal microbiota transplantation. The current study, for the first time, demonstrates the antiatherosclerotic effects of BIC and shows that its therapeutic value can at least partially be attributed to its manipulation of gut microbiota.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , Animals , Atherosclerosis/drug therapy , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Dysbiosis , Mice , Mice, Inbred C57BL
20.
Liver Int ; 42(8): 1803-1813, 2022 08.
Article in English | MEDLINE | ID: mdl-35567757

ABSTRACT

BACKGROUND AND AIMS: Evidence for using bicyclol in drug-induced liver injury (DILI) is limited. This study aimed to explore the efficacy and safety of bicyclol in acute DILI. METHODS: This was a multicenter, randomized, double-blinded, double-dummy, active-controlled, superiority and phase II trial. Patients with idiosyncratic acute DILI were randomized 1: 1:1 to low-dose bicyclol (25 mg times a day [TID]), high-dose bicyclol (50 mg TID) and polyene phosphatidylcholine (control) groups. The primary endpoint was the decrease from baseline in serum alanine aminotransferase (ALT) levels at post-treatment for 4 weeks. RESULTS: Overall, 241 patients were included in the full analysis set, with 81, 82 and 78 patients in the low-dose bicyclol, high-dose bicyclol, and control groups respectively. ALT levels decreased across groups (-249.2 ± 151.1, -273.6 ± 203.1, and -180.8 ± 218.2 U/L in the low-dose bicyclol, high-dose bicyclol and control groups, respectively; both p < .001, the bicyclol-dependent groups vs. control group). The ALT normalization rates at weeks 1, 2, 4, 6 and 8 were higher in the bicyclol-dependent groups than in the control group (p = .002 at week 1 and all p < .001 at weeks 2, 4, 6 and 8 respectively). The median times to ALT normalization in the low-dose bicyclol, high-dose bicyclol and control groups were 29, 16 and 43 days respectively. Adverse events, serious adverse events and adverse drug reactions were similar across groups. CONCLUSIONS: Bicyclol (25 and 50 mg TID) appeared efficacious and safe for treating idiosyncratic acute DILI, while bicyclol 50 mg TID showed higher efficacy. TRIAL REGISTRATION NUMBER: www. CLINICALTRIALS: gov (registration no. NCT02944552).


Subject(s)
Biphenyl Compounds , Chemical and Drug Induced Liver Injury , Alanine Transaminase , Biphenyl Compounds/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL