Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
New Phytol ; 243(1): 381-397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38741469

ABSTRACT

Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.


Subject(s)
Fungal Proteins , Laccaria , Mycorrhizae , NADPH Oxidases , Reactive Oxygen Species , Symbiosis , Laccaria/physiology , Laccaria/genetics , Laccaria/metabolism , Mycorrhizae/physiology , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Reactive Oxygen Species/metabolism , Phosphorylation , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics
2.
Fungal Genet Biol ; 130: 19-30, 2019 09.
Article in English | MEDLINE | ID: mdl-31028914

ABSTRACT

Hydrogen sulfide (H2S), an emerging small-molecule signalling agent, was recently shown to play a significant role in many physiological processes, but relatively few studies have been conducted on microorganisms compared with mammals and plants. By studying the pretreatment of H2S donor sodium hydrosulfide (NaHS) and the scavenger hypotaurine (HT) and Cystathionine ß-synthase silenced strains, we found that H2S could alleviate the HS-induced ganoderic acids (GAs) biosynthesis. Our transcriptome results also showed that many signaling pathways and metabolic pathways, such as the glycolysis, TCA, oxidative phosphorylation and pentose phosphate pathway, are influenced by H2S. Further experimental results indicated that H2S could affect the physiological process of Ganoderma lucidum by interacting with multiple signals, including ROS, NO, AMPK, sphingolipid, mTOR, phospholipase D and MAPK, and physiological and pharmacological analyses showed that H2S might alleviate the biosynthesis of GAs by inhibiting the intracellular calcium in G. lucidum.


Subject(s)
Heat-Shock Response/physiology , Hydrogen Sulfide/pharmacology , Reishi/drug effects , Reishi/metabolism , Signal Transduction/drug effects , Triterpenes/metabolism , Calcium/metabolism , Cloning, Molecular , Cystathionine beta-Synthase/genetics , Gene Expression , Gene Expression Regulation, Fungal , Gene Silencing , Reishi/genetics , Signal Transduction/genetics , Sulfides , Taurine/analogs & derivatives , Taurine/metabolism , Transcriptome , Transformation, Genetic
3.
Fungal Genet Biol ; 123: 70-77, 2019 02.
Article in English | MEDLINE | ID: mdl-30557614

ABSTRACT

The fungal cell wall is very important for cell growth and survival during stress, and the target of rapamycin (TOR) pathway plays a major role in regulating cell growth in response to environmental cues. Ganoderma lucidum is an important edible and medicinal fungus, and the function of TOR in this organism remains unclear. As shown in the present study, the TOR pathway regulates cell wall integrity (CWI) in G. lucidum. Inhibition of TOR signaling by RNA interference (RNAi) or rapamycin treatment reduced the growth of G. lucidum mycelia, increased contents of the cell wall components chitin and ß-1,3-glucan, and increased cell wall thickness. Furthermore, inhibition of TOR signaling enhanced the relative level of phosphorylated Slt2, a member of the MAPK cascade involved in CWI signaling. Moreover, when treated with rapamycin, significantly lower chitin and ß-1,3-glucan contents were observed in Slt2-silenced strains than in WT strains, indicating that TOR regulates the synthesis of these cell wall components through the Slt2-MAPK pathway. These results indicate a potential relationship between TOR signaling and CWI signaling. Additionally, participation of Slt2-MAPK in TOR-mediated regulation of cell wall component production has not previously been reported in a microorganism.


Subject(s)
Cell Wall/metabolism , Reishi/genetics , Sirolimus/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Wall/genetics , Chitin/chemistry , Chitin/genetics , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/genetics , Phosphorylation , RNA Interference , Reishi/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , TOR Serine-Threonine Kinases/genetics , beta-Glucans/chemistry
4.
Int J Mol Sci ; 20(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817230

ABSTRACT

Ganoderma lucidum is widely recognized as a medicinal basidiomycete. It was previously reported that the plant hormone methyl jasmonate (MeJA) could induce the biosynthesis of ganoderic acids (GAs), which are the main active ingredients of G. lucidum. However, the regulatory mechanism is still unclear. In this study, integrated proteomics and metabolomics were employed on G. lucidum to globally identify differences in proteins and metabolites under MeJA treatment for 15 min (M15) and 24 h (M24). Our study successfully identified 209 differential abundance proteins (DAPs) in M15 and 202 DAPs in M24. We also identified 154 metabolites by GC-MS and 70 metabolites by LC-MS in M24 that are involved in several metabolic pathways. With an in-depth analysis, we found some DAPs and metabolites that are involved in the oxidoreduction process, secondary metabolism, energy metabolism, transcriptional and translational regulation, and protein synthesis. In particular, our results reveal that MeJA treatment leads to metabolic rearrangement that inhibited the normal glucose metabolism, energy supply, and protein synthesis of cells but promoted secondary metabolites, including GAs. In conclusion, our proteomics and metabolomics data further confirm the promoting effect of MeJA on the biosynthesis of GAs in G. lucidum and will provide a valuable resource for further investigation of the molecular mechanisms of MeJA signal response and GA biosynthesis in G. lucidum and other related species.


Subject(s)
Acetates/pharmacology , Cyclopentanes/pharmacology , Metabolome/drug effects , Metabolomics/methods , Oxylipins/pharmacology , Proteome/analysis , Proteomics/methods , Reishi/metabolism , Triterpenes/metabolism , Chromatography, High Pressure Liquid , Energy Metabolism/drug effects , Energy Metabolism/genetics , Gas Chromatography-Mass Spectrometry , Mass Spectrometry
5.
Environ Microbiol ; 20(7): 2456-2468, 2018 07.
Article in English | MEDLINE | ID: mdl-29697195

ABSTRACT

How cells drive the phospholipid signal response to heat stress (HS) to maintain cellular homeostasis is a fundamental issue in biology, but the regulatory mechanism of this fundamental process is unclear. Previous quantitative analyses of lipids showed that phosphatidylinositol (PI) accumulates after HS in Ganoderma lucidum, implying the inositol phospholipid signal may be associated with HS signal transduction. Here, we found that the PI-4-kinase and PI-4-phosphate-5-kinase activities are activated and that their lipid products PI-4-phosphate and PI-4,5-bisphosphate are increased under HS. Further experimental results showed that the cytosolic Ca2+ ([Ca2+ ]c ) and ganoderic acid (GA) contents induced by HS were decreased when cells were pretreated with Li+ , an inhibitor of inositol monophosphatase, and this decrease could be rescued by PI and PI-4-phosphate. Furthermore, inhibition of PI-4-kinases resulted in a decrease in the Ca2+ and GA contents under HS that could be rescued by PI-4-phosphate but not PI. However, the decrease in the Ca2+ and GA contents by silencing of PI-4-phosphate-5-kinase could not be rescued by PI-4-phosphate. Taken together, our study reveals the essential role of the step converting PI to PI-4-phosphate and then to PI-4,5-bisphosphate in [Ca2+ ]c signalling and GA biosynthesis under HS.


Subject(s)
Calcium/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/metabolism , Reishi/metabolism , Cytosol/metabolism , Heat-Shock Response , Homeostasis , Signal Transduction , Triterpenes/metabolism
6.
Appl Environ Microbiol ; 84(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29572207

ABSTRACT

We previously reported that high temperature impacts ganoderic acid (GA) biosynthesis in Ganoderma lucidum via Ca2+ Therefore, to further understand the signal-regulating network of the organism's response to heat stress (HS), we examined the role of nitric oxide (NO) under HS. After HS treatment, the NO level was significantly increased by 120% compared to that under the control conditions. The application of a NO scavenger resulted in a 25% increase in GA compared with that found in the sample treated only with HS. Additionally, the application of a NO donor to increase NO resulted in a 30% lower GA content than that in the sample treated only with HS. These results show that the increase in NO levels alleviates HS-induced GA accumulation. Subsequently, we aimed to detect the effects of the interaction between NO and Ca2+ on GA biosynthesis under HS in G. lucidum Our pharmacological approaches revealed that the NO and Ca2+ signals promoted each other in response to HS. We further constructed the silenced strain of nitrate reductase (NR) and calmodulin (CaM), and the results are in good agreement with the silenced strain and pharmacological experiment. The cross-promotion between NO and Ca2+ signals is involved in the regulation of HS-induced GA biosynthesis in G. lucidum, and this finding is supported by studies with NR-silenced (NRi) and CaM-silenced (CaMi) strains. However, Ca2+ may have a more direct and significant effect on the HS-induced GA increase than NO. These data indicate that NO functions in signaling and has a close relationship with Ca2+ in HS-induced GA biosynthesis.IMPORTANCE HS is an important environmental stress affecting the growth and development of organisms. We previously reported that HS modulates GA biosynthesis in G. lucidum via Ca2+ However, the signal-regulating network of the organism's response to HS has not yet been elucidated. In this study, we found that NO relieved HS-induced GA accumulation, and NO and Ca2+ could exert promoting effects on each other in response to HS. Further research on the effect of NO and Ca2+ on the production of GAs in response to HS indicated that Ca2+ has a notably more direct and significant effect on the HS-induced GA increase than NO. Our results improve our understanding of the mechanism of HS signal transduction in fungi. A greater understanding of the regulation of secondary metabolism in response to environmental stimuli will provide clues regarding the role of these products in fungal biology.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Nitric Oxide/metabolism , Reishi/physiology , Triterpenes/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Heat-Shock Response , Hot Temperature , Reishi/genetics , Secondary Metabolism , Signal Transduction
7.
Appl Microbiol Biotechnol ; 102(4): 1769-1782, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29305696

ABSTRACT

Ganoderma lucidum, which contains many pharmacologically active compounds, is regarded as a traditional medicinal fungus. Nevertheless, the scarcity of basic research limits the commercial value and utilization of G. lucidum. As a class of highly conserved, phosphopeptide-binding proteins present in all eukaryotes, 14-3-3 proteins play vital roles in controlling multiple physiological processes, including signal transduction, primary metabolism, and stress responses. However, knowledge of the roles of 14-3-3 proteins in Basidiomycetes is sparse. In this article, two homologs of 14-3-3 proteins, encoded by the two distinct genes GlBmh1 and GlBmh2, were distinguished in G. lucidum. We found that GlBmh1 and GlBmh2 were expressed at various developmental stages, including in vegetative mycelium cultivated on solid medium and in primordia and fruiting bodies. Moreover, we constructed GlBmh1 single-silenced strains, GlBmh2 single-silenced strains, and 14-3-3 double-silenced mutants for further study. When GlBmh1 and GlBmh2 were inhibited by RNA interference, the growth rate of mycelia was decreased, and the distance between the aerial hyphal branches was reduced; responses to various abiotic stresses such as oxidants and cell wall and osmotic stressors were also changed. Furthermore, the contents of secondary metabolite ganoderic acids (GAs) were increased after GlBmh1 and GlBmh2 were simultaneously silenced. Taken together, we provide evidence that implicates potential roles for the two 14-3-3 proteins in affecting growth and GA biosynthesis, thereby providing new insights into the basic functions of 14-3-3 proteins in G. lucidum.


Subject(s)
14-3-3 Proteins/metabolism , Fungal Proteins/metabolism , Hyphae/growth & development , Reishi/growth & development , Reishi/physiology , Stress, Physiological , Triterpenes/metabolism , 14-3-3 Proteins/genetics , Fungal Proteins/genetics , Gene Expression Profiling , Gene Silencing , Reishi/genetics
8.
Environ Microbiol ; 19(4): 1653-1668, 2017 04.
Article in English | MEDLINE | ID: mdl-28198137

ABSTRACT

Ganoderma lucidum has become a potential model system for evaluating how environmental factors regulate the secondary metabolism of basidiomycetes. Heat stress (HS) is one of the most important environmental factors. It was previously reported that HS could induce the biosynthesis of ganoderic acids (GA). In this study, we found that HS increased GA biosynthesis and also significantly increased cell membrane fluidity. Furthermore, our results showed that addition of the membrane rigidifier dimethylsulfoxide (DMSO) could revert the increased GA biosynthesis elicited by HS. These results indicate that an increase in membrane fluidity is associated with HS-induced GA biosynthesis. Further evidence showed that the GA content was decreased in D9des-silenced strains and could be reverted to WT levels by addition of the membrane fluidizer benzyl alcohol (BA). In contrast, GA content was increased in D9des-overexpression strains and could be reverted to WT levels by the addition of DMSO. Furthermore, both membrane fluidity and GA biosynthesis induced by HS could be reverted by DMSO in WT and D9des-silenced strains. To the best of our knowledge, this is the first report demonstrating that membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in filamentous fungi.


Subject(s)
Heat-Shock Response , Membrane Fluidity , Reishi/metabolism , Hot Temperature , Secondary Metabolism , Triterpenes
9.
Environ Microbiol ; 19(11): 4657-4669, 2017 11.
Article in English | MEDLINE | ID: mdl-28892293

ABSTRACT

Phospholipid-mediated signal transduction plays a key role in responses to environmental changes, but little is known about the role of phospholipid signalling in microorganisms. Heat stress (HS) is one of the most important environmental factors. Our previous study found that HS could induce the biosynthesis of the secondary metabolites, ganoderic acids (GA). Here, we performed a comprehensive mass spectrometry-based analysis to investigate HS-induced lipid remodelling in Ganoderma lucidum. In particular, we observed a significant accumulation of phosphatidic acid (PA) on HS. Further genetic tests in which pld-silencing strains were constructed demonstrated that the accumulation of PA is dependent on HS-activated phospholipase D (PLD) hydrolysing phosphatidylethanolamine. Furthermore, we determined the role of PLD and PA in HS-induced secondary metabolism in G. lucidum. Exogenous 1-butanol, which decreased PLD-mediated formation of PA, reverses the increased GA biosynthesis that was elicited by HS. The pld-silenced strains partly blocked HS-induced GA biosynthesis, and this block can be reversed by adding PA. Taken together, our results suggest that PLD and PA are involved in the regulation of HS-induced secondary metabolism in G. lucidum. Our findings provide key insights into how microorganisms respond to heat stress and then consequently accumulate secondary metabolites by phospholipid remodelling.


Subject(s)
Heat-Shock Response/physiology , Phosphatidic Acids/metabolism , Phospholipase D/metabolism , Reishi/metabolism , Triterpenes/metabolism , 1-Butanol/pharmacology , Enzyme Activation , Hot Temperature , Hydrolysis , Phosphatidylethanolamines/metabolism , Phospholipase D/genetics , RNA Interference , Reishi/genetics , Secondary Metabolism , Signal Transduction
10.
Environ Microbiol ; 19(2): 566-583, 2017 02.
Article in English | MEDLINE | ID: mdl-27554678

ABSTRACT

Ganoderma lucidum is one of the most important medicinal fungi, but the lack of basic study on the fungus has hindered the further development of its value. To investigate the roles of the redox system in G. lucidum, acetic acid (HAc) was applied as a reactive oxygen species (ROS) stress inducer, and hydrogen-rich water (HRW) was used to relieve the ROS stress in this study. Our results demonstrate that the treatment of 5% HRW significantly decreased the ROS content, maintained biomass and polar growth morphology of mycelium, and decreased secondary metabolism under HAc-induced oxidative stress. Furthermore, the roles of HRW were largely dependent on restoring the glutathione system under HAc stress in G. lucidum. To provide further evidence, we used two glutathione peroxidase (GPX)-defective strains, the gpxi strain, the mercaptosuccinic acid (MS, a GPX inhibitor)-treated wide-type (WT) strain, and gpx overexpression strains for further research. The results show that HRW was unable to relieve the HAc-induced ROS overproduction, decreased biomass, mycelium morphology change and increased secondary metabolism biosynthesis in the absence of GPX function. The gpx overexpression strains exhibited resistance to HAc-induced oxidative stress. Thus, we propose that HRW regulates morphology, growth and secondary metabolism via glutathione peroxidase under HAc stress in the fungus G. lucidum. Furthermore, our research also provides a method to study the ROS system in other fungi.


Subject(s)
Glutathione Peroxidase/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Reishi/enzymology , Water/chemistry , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Glutathione/metabolism , Hydrogen , Mycelium/metabolism , Oxidation-Reduction , Reishi/metabolism , Secondary Metabolism
11.
Microbiology (Reading) ; 163(10): 1466-1476, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28901910

ABSTRACT

The alternative oxidase (AOX), which forms a branch of the mitochondrial respiratory electron transport pathway, functions to sustain electron flux and alleviate reactive oxygen species (ROS) production. In this article, a homologous AOX gene was identified in Ganoderma lucidum. The coding sequence of the AOX gene in G. lucidum contains 1038 nucleotides and encodes a protein of 39.48 kDa. RNA interference (RNAi) was used to study the function of AOX in G. lucidum, and two silenced strains (AOXi6 and AOXi21) were obtained, showing significant decreases of approximately 60 and 50 %, respectively, in alternative pathway respiratory efficiency compared to WT. The content of ganoderic acid (GA) in the mutant strains AOXi6 and AOXi21 showed significant increases of approximately 42 and 44 %, respectively, compared to WT. Elevated contents of intermediate metabolites in GA biosynthesis and elevated transcription levels of corresponding genes were also observed in the mutant strains AOXi6 and AOXi21. In addition, the intracellular ROS content in strains AOXi6 and AOXi21 was significantly increased, by approximately 1.75- and 1.93-fold, respectively, compared with WT. Furthermore, adding N-acetyl-l-cysteine (NAC), a ROS scavenger, significantly depressed the intracellular ROS content and GA accumulation in AOX-silenced strains. These results indicate that AOX affects GA biosynthesis by regulating intracellular ROS levels. Our research revealed the important role of AOX in the secondary metabolism of G. lucidum.


Subject(s)
Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Reishi/metabolism , Triterpenes/metabolism , Amino Acid Sequence , Cloning, Molecular , Computational Biology/methods , Cytochromes/metabolism , Gene Expression , Gene Silencing , Metabolic Networks and Pathways , Mitochondrial Proteins/genetics , Models, Biological , Oxidative Stress , Oxidoreductases/genetics , Phylogeny , Plant Proteins/genetics , RNA Interference , Reishi/classification , Reishi/genetics , Sequence Analysis, DNA
12.
Appl Environ Microbiol ; 83(20)2017 10 15.
Article in English | MEDLINE | ID: mdl-28802268

ABSTRACT

Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC-silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC-silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC-silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC-silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC-silenced strains. The content of ganoderic acid was significantly increased in the ODC-silenced strains. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.


Subject(s)
Fungal Proteins/metabolism , Ganoderma/metabolism , Ornithine Decarboxylase/metabolism , Putrescine/metabolism , Reactive Oxygen Species/metabolism , Triterpenes/metabolism , Fungal Proteins/genetics , Ganoderma/enzymology , Ganoderma/genetics , Ornithine Decarboxylase/genetics , Oxidative Stress
13.
Appl Environ Microbiol ; 82(14): 4112-4125, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27129961

ABSTRACT

UNLABELLED: Heat stress (HS) influences the growth and development of organisms. Thus, a comprehensive understanding of how organisms sense HS and respond to it is required. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system due to the complete sequencing of its genome, transgenic systems, and reliable reverse genetic tools. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced the accumulation of ganoderic acid biosynthesis and heat shock proteins (HSPs) in G. lucidum Our data showed that HS induced a significant increase in cytosolic Ca(2+) concentration. Further evidence showed that Ca(2+) might be a factor in the HS-mediated regulation of hyphal branching, ganoderic acid (GA) biosynthesis, and the accumulation of HSPs. Our results further showed that the calcium-permeable channel gene (cch)-silenced and phosphoinositide-specific phospholipase gene (plc)-silenced strains reduced the HS-induced increase in HSP expression compared with that observed for the wild type (WT). This study demonstrates that cytosolic Ca(2+) participates in heat shock signal transduction and regulates downstream events in filamentous fungi. IMPORTANCE: Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system for evaluating how environmental factors regulate the development and secondary metabolism of basidiomycetes. Heat stress (HS) is an important environmental challenge. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced HSP expression and ganoderic acid biosynthesis in G. lucidum Further evidence showed that Ca(2+) might be a factor in the HS-mediated regulation of hyphal branching, GA biosynthesis, and the accumulation of HSPs. This study demonstrates that cytosolic Ca(2+) participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Our research offers a new way to understand the mechanism underlying the physiological and metabolic responses to other environmental factors in G. lucidum This research may also provide the basis for heat shock signal transduction studies of other fungi.


Subject(s)
Calcium/metabolism , Heat-Shock Proteins/biosynthesis , Hot Temperature , Mycelium/radiation effects , Reishi/radiation effects , Stress, Physiological , Triterpenes/metabolism , Calcium Signaling , Cytosol/chemistry , Mycelium/growth & development , Mycelium/metabolism , Reishi/growth & development , Reishi/metabolism
14.
Mycologia ; 108(6): 1104-1113, 2016.
Article in English | MEDLINE | ID: mdl-27760853

ABSTRACT

Ganoderma lucidum is a medicinal macrofungus that is widely used in traditional Chinese medicine. Nonetheless, the scarcity of basic biological studies of this organism has hindered the further development of its commercial value. The pH-responsive transcription factor PacC/Rim101 governs the adaptation to environmental pH, the development and the secondary metabolism of many fungi. In this study, a homologue of PacC/Rim101 that encodes GlPacC was identified in the higher basidiomycete G. lucidum. GlPacC is composed of 807 amino acids and contains three typical C2H2 zinc-finger domains, two potential PEST domains, a putative PKA phosphorylation site, and a putative nuclear localization signal (NLS). GlPacC was transcribed at a high level when the fungus was under neutral and alkaline conditions, and silencing of GlPacC impaired the fungal response to ambient pH. The distance between the hyphal branches (of vegetative hyphae and aerial hyphae) was significantly increased in the GlPacC-silenced strains. The GlPacC-silenced strains grew abnormally or became sickly on solid culture medium and were unable to form primordia and fruiting bodies. The ganoderic acid content, levels of the sqs and ls transcripts, and contents of the metabolic intermediates squalene and lanosterol were all up-regulated in the GlPacC-silenced strains. Our results indicate that GlPacC is functional and plays complex roles in mycelial growth, fruiting body development and ganoderic acid biosynthesis in G. lucidum.


Subject(s)
Fruiting Bodies, Fungal/growth & development , Gene Expression Regulation, Fungal , Hyphae/growth & development , Reishi/growth & development , Reishi/metabolism , Transcription Factors/metabolism , Triterpenes/metabolism , Adaptation, Physiological , Gene Knockdown Techniques , Hydrogen-Ion Concentration , Protein Domains , Reishi/genetics , Transcription Factors/genetics , Transcription, Genetic
15.
Biotechnol Lett ; 36(12): 2529-36, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25216642

ABSTRACT

Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 µg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.


Subject(s)
Acetic Acid/metabolism , Reishi/chemistry , Reishi/metabolism , Triterpenes/analysis , Biosynthetic Pathways/drug effects , Lanosterol/analysis , Reishi/genetics , Squalene/analysis , Transcription, Genetic/drug effects
16.
World J Microbiol Biotechnol ; 29(3): 523-31, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23138457

ABSTRACT

A hydroxymethylglutaryl-CoA synthase gene, designated as GlHMGS (GenBank accession No. JN391469) involved in ganoderic acid (GA) biosynthesis pathway was cloned from Ganoderma lucidum. The full-length cDNA of GlHMGS (GenBank accession No. JN391468) was found to contain an open reading frame of 1,413 bp encoding a polypeptide of 471 amino acid residues. The deduced amino acid sequence of GlHMGS shared high homology with other known hydroxymethylglutaryl-CoA synthase (HMGS) enzymes. In addition, functional complementation of GlHMGS in a mutant yeast strain YSC1021 lacking HMGS activity demonstrated that the cloned cDNA encodes a functional HMGS. A 1,561 bp promoter sequence was isolated and its putative regulatory elements and potential specific transcription factor binding sites were analyzed. GlHMGS expression profile analysis revealed that salicylic acid, abscisic acid and methyl jasmonate up-regulated GlHMGS transcript levels over the control. Further expression analysis revealed that the developmental stage and carbon source had significant effects on GlHMGS transcript levels. GlHMGS expression peaked on day 16 before decreasing with prolonged culture time. The highest mRNA level was observed when the carbon source was maltose. Overexpression of GlHMGS enhanced GA content in G. lucidum. This study provides useful information for further studying this gene and on its function in the ganoderic acid biosynthetic pathway in G. lucidum.


Subject(s)
Gene Expression Regulation, Fungal , Hydroxymethylglutaryl-CoA Synthase , Reishi/enzymology , Triterpenes/metabolism , Amino Acid Sequence , Base Sequence , Biosynthetic Pathways , Biotechnology/methods , Cloning, Molecular , DNA, Complementary/genetics , Drugs, Chinese Herbal , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Molecular Sequence Data , Phylogeny , Promoter Regions, Genetic , Reishi/genetics , Reishi/growth & development , Reishi/metabolism , Sequence Analysis, DNA , Up-Regulation
17.
Int J Med Mushrooms ; 15(3): 223-32, 2013.
Article in English | MEDLINE | ID: mdl-23662611

ABSTRACT

An isopentenyl diphosphate isomerase (IDI) gene, GlIDI, was isolated from Ganoderma lucidum, which produces triterpenes through the mevalonate pathway. The open reading frame of GlIDI encodes a 252 amino acid polypeptide with a theoretical molecular mass of 28.71 kDa and a theoretical isoelectric point of 5.36. GlIDI is highly homologous to other fungal IDIs and contains conserved active residues and nudix motifs shared by the IDI protein family. The color complementation assay indicated that GlIDI can accelerate the accumulation of ß-carotene and confirmed that the cloned complementary DNA encoded a functional GlIDI protein. Gene expression analysis showed that the GlIDI transcription level was relatively low in the mycelia and reached a relatively high level in the mushroom primordia. In addition, its expression level could be up-regulated by 254 µM methyl jasmonate. Our results suggest that this enzyme may play an important role in triterpene biosynthesis.


Subject(s)
Carbon-Carbon Double Bond Isomerases/metabolism , Fungal Proteins/metabolism , Ganoderma/metabolism , Triterpenes/metabolism , Base Sequence , Carbon-Carbon Double Bond Isomerases/genetics , Cloning, Molecular , DNA, Fungal/genetics , Fungal Proteins/genetics , Ganoderma/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal/physiology , Molecular Sequence Data , Phylogeny , Promoter Regions, Genetic , RNA, Fungal/genetics , Transcriptome
18.
J Fungi (Basel) ; 8(9)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36135674

ABSTRACT

Polysaccharides have attracted much attention in the food industry due to their diverse biological activities. To date, research on the mechanism of polysaccharide synthesis has mainly focused on the role of crucial enzymes in the polysaccharide synthesis pathway, but other genes that regulate polysaccharide synthesis have not been well explored. In this study, the GlPP2C1 gene, encoding a phosphoprotein type 2C phosphatase, was cloned, and PP2C-silenced strains (PP2C1i-1 and PP2C1i-3) were screened. Measurements of the polysaccharide content and cell wall tolerance revealed that GlPP2C1 silencing increased the polysaccharide content and enhanced cell wall resistance in Ganoderma lingzhi. The contents of intracellular polysaccharides (IPS), extracellular polysaccharides (EPS) and ß-1,3-D-glucan in PP2C-silenced strains were increased by 25%, 33% and 36%, respectively, compared with those in the WT strains and strains transformed with an empty vector. Further mechanistic studies showed that GlPP2C1 silencing increased the content of Ganoderma lingzhi polysaccharides (GL-PS) through Slt2. In summary, this study revealed the mechanism through which protein phosphatase regulates GL-PS biosynthesis for the first time.

19.
J Fungi (Basel) ; 8(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35205940

ABSTRACT

Ganoderma lucidum is a white-rot fungus that produces a range of lignocellulolytic enzymes to decompose lignin and cellulose. The mitogen-activated protein kinase (MAPK) pathway has been implicated in xylanases and cellulases production. As the downstream transcription factor of Slt2-MAPK, the function of Swi6 in G. lucidum has not been fully studied. In this study, the transcription factor GlSwi6 in G. lucidum was characterized and shown to significantly positively regulate cellulases and xylanases production. Knockdown of the GlSwi6 gene decreased the activities of cellulases and xylanases by approximately 31%~38% and 54%~60% compared with those of the wild-type (WT) strain, respectively. Besides, GlSwi6 can be alternatively spliced into two isoforms, GlSwi6A and GlSwi6B, and overexpression of GlSwi6B increased the activities of cellulase and xylanase by approximately 50% and 60%, respectively. Further study indicates that the existence of GlSwi6B significantly increased the concentration of cytosolic Ca2+. Our study indicated that GlSwi6 promotes the activities of cellulase and xylanase by regulating the Ca2+ signaling. These results connected the GlSwi6 and Ca2+ signaling in the regulation of cellulose degradation, and provide an insight for further improvement of cellulase or xylanase activities in G. lucidum as well as other fungi.

20.
J Comput Chem ; 32(7): 1298-302, 2011 May.
Article in English | MEDLINE | ID: mdl-21425287

ABSTRACT

First-principles calculations of undoped HfO(2) and cobalt-doped HfO(2) have been carried out to study the magnetic properties of the dielectric material. In contrast to previous reports, it was found that the native defects in HfO(2) could not induce strong ferromagnetism. However, the cobalt substituting hafnium is the most stable defect under oxidation condition, and the ferromagnetic (FM) coupling between the cobalt substitutions is favorable in various configurations. We found that the FM coupling is mediated by the threefold-coordinated oxygen atoms in monoclinic HfO(2) and could be further enhanced in electron-rich condition.


Subject(s)
Cobalt/chemistry , Hafnium/chemistry , Magnetics , Oxides/chemistry , Quantum Theory , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL