Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Prod Rep ; 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39403014

ABSTRACT

Covering: up to 2024Fe(II) and 2-oxoglutarate-dependent dioxygenases (Fe/2OG DOs) are a superfamily of enzymes that play important roles in a variety of catalytic reactions, including hydroxylation, ring formation, ring reconstruction, desaturation, and demethylation. Each member of this family has similarities in their overall structure, but they have varying specific differences, making Fe/2OG DOs attractive for catalytic diversity. With the advancement of current research, more Fe/2OG DOs have been discovered, and their catalytic scope has been further broadened; however, apart from hydroxylation, many reaction mechanisms have not been accurately demonstrated, and there is a lack of a systematic understanding of their molecular basis. Recently, an increasing number of X-ray structures of Fe/2OG DOs have provided new insights into the structural basis of their function and substrate-binding properties. This structural information is essential for understanding catalytic mechanisms and mining potential catalytic reactions. In this review, we summarize most of the Fe/2OG DOs whose structures have been resolved in recent years, focus on their structural features, and explore the relationships between various structural elements and unique catalytic mechanisms and their associated reaction type classification.

2.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838840

ABSTRACT

Pipecolic acid (Pip) and its derivative hydroxypipecolic acids, such as (2S,3R)-3-hydroxypipecolic acid (cis-3-L-HyPip), are components of many natural and synthetic bioactive molecules. Fe(II)/α-ketoglutaric acid (Fe(II)/2-OG)-dependent dioxygenases can catalyze the hydroxylation of pipecolic acid. However, the available enzymes with desired activity and selectivity are limited. Herein, we compare the possible candidates in the Fe(II)/2-OG-dependent dioxygenase family, and cis-P3H is selected for potentially catalyzing selective hydroxylation of L-Pip. cis-P3H was further engineered to increase its catalytic efficiency toward L-Pip. By analyzing the structural confirmation and residue composition in substrate-binding pocket, a "handlebar" mode of molecular interactions is proposed. Using molecular docking, virtual mutation analysis, and dynamic simulations, R97, E112, L57, and G282 were identified as the key residues for subsequent site-directed saturation mutagenesis of cis-P3H. Consequently, the variant R97M showed an increased catalytic efficiency toward L-Pip. In this study, the kcat/Km value of the positive mutant R97M was about 1.83-fold that of the wild type. The mutation R97M would break the salt bridge between R97 and L-Pip and weaken the positive-positive interaction between R97 and R95. Therefore, the force on the amino and carboxyl groups of L-Pip was lightly balanced, allowing the molecule to be stabilized in the active pocket. These results provide a potential way of improving cis-P3H catalytic activity through rational protein engineering.


Subject(s)
Dioxygenases , Dioxygenases/metabolism , Pipecolic Acids , Ketoglutaric Acids/metabolism , Molecular Docking Simulation , Ferrous Compounds
3.
Mikrochim Acta ; 185(1): 4, 2017 12 02.
Article in English | MEDLINE | ID: mdl-29594665

ABSTRACT

A magnetic bead-based SELEX was applied to identify 37 single-stranded DNA aptamers specific for tobramycin after ten rounds of selection. The aptamers were classified into nine families according to sequence analysis. Among them, several aptamers with typical sequences were selected and their dissociation constants (Kds) were determined by a fluorescent method. An aptamer termed "Ap 32", with a Kd value of 56.8 ± 4.6 nM, possesses the highest affinity and satisfactory specificity. Theoretical modeling showed that nucleotides 14-18 and 26-29 play a most significant role in the interaction between aptamer and tobramycin. Subsequently, the sequence of Ap 32 was optimized through rationally designed truncation. The truncated aptamer Ap 32-2 consists of 34 nucleotides and has a Kd that is similar to the original one. It was chosen as the optimal aptamer for use in the assay and was immobilized on gold nanoparticles. On addition of tobramycin, the color turns from red to purple. The findings were used to design a photometric assay (best performed at 520 nm) that has a linear response in the 100 nM to 1.4 µM concentration range, with a 37.9 nM detection limit. The method was successfully applied to the determination of tobramycin in (spiked) honey samples. Graphical abstract A 34-nucleotide aptamer specific for tobramycin was obtained through magnetic beads-based systematic evolution of ligands by exponential enrichment (SELEX) and structural analysis-based rational post-SELEX truncation, and then applied to the determination of tobramycin using a gold nanoparticle-based photometric assay.


Subject(s)
Anti-Bacterial Agents/analysis , Aptamers, Nucleotide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Tobramycin/analysis , Base Sequence , Biosensing Techniques/methods , Color , DNA, Single-Stranded/chemistry , Honey/analysis , Limit of Detection , Microspheres , Particle Size , Photometry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL