Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Asian Nat Prod Res ; 26(2): 280-292, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36877100

ABSTRACT

Seven new pentasaccharides (1-7), rehmaglupentasaccharides A-G, were isolated from the air-dried roots of Rehmannia glutinosa. Their structures were established from the spectroscopic data obtained and by chemical evidence. The known verbascose (8) and stachyose (9) were also obtained in the current investigation, and the structure of stachyose was unequivocally defined using X-ray diffraction data. Compounds 1-9 were tested for their cytotoxicity against five human tumor cell lines, influence on dopamine receptor activation, and proliferation effects against Lactobacillus reuteri.


Subject(s)
Rehmannia , Humans , Rehmannia/chemistry , Cell Line , Plant Roots/chemistry
2.
JCI Insight ; 9(3)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38194265

ABSTRACT

Depletion of torsinA from hepatocytes leads to reduced liver triglyceride secretion and marked hepatic steatosis. TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activator, lamina-associated polypeptide 1 (LAP1) or luminal domain-like LAP1 (LULL1). We previously demonstrated that depletion of LAP1 from hepatocytes has more modest effects on liver triglyceride secretion and steatosis development than depletion of torsinA. We now show that depletion of LULL1 alone does not significantly decrease triglyceride secretion or cause steatosis. However, simultaneous depletion of both LAP1 and LULL1 leads to defective triglyceride secretion and marked steatosis similar to that observed with depletion of torsinA. Depletion of both LAP1 and torsinA from hepatocytes generated phenotypes similar to those observed with only torsinA depletion, implying that the 2 proteins act in the same pathway in liver lipid metabolism. Our results demonstrate that torsinA and its activators dynamically regulate hepatic lipid metabolism.


Subject(s)
Carrier Proteins , Lipid Metabolism , Carrier Proteins/genetics , Membrane Proteins/metabolism , Liver/metabolism , Triglycerides/metabolism
3.
bioRxiv ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37547008

ABSTRACT

TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activators lamina-associated polypeptide 1 (LAP1) in the perinuclear space or luminal domain-like LAP1 (LULL1) throughout the endoplasmic reticulum. However, the interaction of torsinA with LAP1 and LULL1 has not yet been shown to modulate a defined physiological process in mammals in vivo . We previously demonstrated that depletion of torsinA from mouse hepatocytes leads to reduced liver triglyceride secretion and marked steatosis, whereas depletion of LAP1 had more modest similar effects. We now show that depletion of LULL1 alone does not significantly decrease liver triglyceride secretion or cause steatosis. However, simultaneous depletion of both LAP1 and LULL1 from hepatocytes leads to defective triglyceride secretion and marked steatosis similar to that observed with depletion of torsinA. Our results demonstrate that torsinA and its activators dynamically regulate a physiological process in mammals in vivo .

4.
CNS Neurosci Ther ; 24(10): 967-977, 2018 10.
Article in English | MEDLINE | ID: mdl-29577640

ABSTRACT

AIM: Multiple sclerosis (MS) is a neurological autoimmune disorder characterized by mistaken attacks of inflammatory cells against the central nervous system (CNS), resulting in demyelination and axonal damage. Kv1.3 channel blockers can inhibit T-cell activation and have been designed for MS therapy. However, little is known about the effects of Kv1.3 blockers on protecting myelin sheaths/axons in MS. This study aimed at investigating the neuroprotection efficacy of a selective Kv1.3 channel blocker ImKTx88 (ImK) in MS animal model. METHODS: Experimental autoimmune encephalomyelitis (EAE) rat model was established. The neuroprotective effect of ImK was assessed by immunohistochemistry and transmission electron microscopy (TEM). In addition, the antiinflammatory effect of ImK by suppressing T-cell activation was assessed by flow cytometry and ELISA in vitro. RESULTS: Our results demonstrated that ImK administration ameliorated EAE clinical severity. Moreover, ImK increased oligodendrocytes survival, preserved axons, and myelin integrity and reduced the infiltration of activated T cells into the CNS. This protective effect of the peptide may be related to its suppression of autoantigen-specific T-cell activation via calcium influx inhibition. CONCLUSION: ImK prevents neurological damage by suppressing T-cell activation, suggesting the applicability of this peptide in MS therapy.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/complications , Kv1.3 Potassium Channel/metabolism , Nervous System Diseases/drug therapy , Nervous System Diseases/etiology , Potassium Channel Blockers/therapeutic use , T-Lymphocytes/physiology , Animals , Animals, Newborn , Cells, Cultured , Disease Models, Animal , Female , Kv1.3 Potassium Channel/antagonists & inhibitors , Microscopy, Electron, Transmission , Mycobacterium tuberculosis/pathogenicity , Myelin Basic Protein/metabolism , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley , T-Lymphocytes/drug effects , T-Lymphocytes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL