Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
BMC Plant Biol ; 24(1): 705, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054416

ABSTRACT

BACKGROUND: Drought stress limits significantly the crop productivity. However, plants have evolved various strategies to cope with the drought conditions by adopting complex molecular, biochemical, and physiological mechanisms. Members of the nuclear factor Y (NF-Y) transcription factor (TF) family constitute one of the largest TF classes and are involved in plant responses to abiotic stresses. RESULTS: TaNF-YB2, a NY-YB subfamily gene in T. aestivum, was characterized in this study focusing on its role in mediating plant adaptation to drought stress. Yeast two-hybrid (Y-2 H), biomolecular fluoresence complementation (BiFC), and Co-immunoprecipitation (Co-IP) assays indicated that TaNF-YB2 interacts with the NF-YA member TaNF-YA7 and NF-YC family member TaNF-YC7, which constitutes a heterotrimer TaNF-YB2/TaNF-YA7/TaNF-YC7. The TaNF-YB2 transcripts are induced in roots and aerial tissues upon drought signaling; GUS histochemical staining analysis demonstrated the roles of cis-regulatory elements ABRE and MYB situated in TaNF-YB2 promoter to contribute to target gene response to drought. Transgene analysis on TaNF-YB2 confirmed its functions in regulating drought adaptation via modulating stomata movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis. TaNF-YB2 possessed the abilities in transcriptionally activating TaP5CS2, the P5CS family gene involving proline biosynthesis and TaSOD1, TaCAT5, and TaPOD5, the genes encoding antioxidant enzymes. Positive correlations were found between yield and the TaNF-YB2 transcripts in a core panel constituting 45 wheat cultivars under drought condition, in which two types of major haplotypes including TaNF-YB2-Hap1 and -Hap2 were included, with the former conferring more TaNF-YB2 transcripts and stronger plant drought tolerance. CONCLUSIONS: TaNF-YB2 is transcriptional response to drought stress. It is an essential regulator in mediating plant drought adaptation by modulating the physiological processes associated with stomatal movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis, depending on its role in transcriptionally regulating stress response genes. Our research deepens the understanding of plant drought stress underlying NF-Y TF family and provides gene resource in efforts for molecular breeding the drought-tolerant cultivars in T. aestivum.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Triticum , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Triticum/genetics , Triticum/physiology , Triticum/metabolism , Stress, Physiological/genetics , Adaptation, Physiological/genetics , Genes, Plant , Drought Resistance
2.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175676

ABSTRACT

Abscisic acid receptors (ABR) play crucial roles in transducing the ABA signaling initiated by osmotic stresses, which has a significant impact on plant acclimation to drought by modulating stress-related defensive physiological processes. We characterized TaPYL5, a member of the ABR family in wheat (Triticum aestivum), as a mediator of drought stress adaptation in plants. The signals derived from the fusion of TaPYL5-GFP suggest that the TaPYL5 protein was directed to various subcellular locations, namely stomata, plasma membrane, and nucleus. Drought stress significantly upregulated the TaPYL5 transcripts in roots and leaves. The biological roles of ABA and drought responsive cis-elements, specifically ABRE and recognition sites MYB, in mediating gene transcription under drought conditions were confirmed by histochemical GUS staining analysis for plants harbouring a truncated TaPYL5 promoter. Yeast two-hybrid and BiFC assays indicated that TaPYL5 interacted with TaPP2C53, a clade A member of phosphatase (PP2C), and the latter with TaSnRK2.1, a kinase member of the SnRK2 family, implying the formation of an ABA core signaling module TaPYL5/TaPP2C53/TaSnRK2.1. TaABI1, an ABA responsive transcription factor, proved to be a component of the ABA signaling pathway, as evidenced by its interaction with TaSnRK2.1. Transgene analysis of TaPYL5 and its module partners, as well as TaABI1, revealed that they have an effect on plant drought responses. TaPYL5 and TaSnRK2.1 positively regulated plant drought acclimation, whereas TaPP2C53 and TaABI1 negatively regulated it. This coincided with the osmotic stress-related physiology shown in their transgenic lines, such as stomata movement, osmolytes biosynthesis, and antioxidant enzyme function. TaPYL5 significantly altered the transcription of numerous genes involved in biological processes related to drought defense. Our findings suggest that TaPYL5 is one of the most important regulators in plant drought tolerance and a valuable target for engineering drought-tolerant cultivars in wheat.


Subject(s)
Droughts , Triticum , Triticum/metabolism , Plant Proteins/metabolism , Plants/metabolism , Signal Transduction , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Stress, Physiological , Plants, Genetically Modified/metabolism
3.
BMC Plant Biol ; 22(1): 423, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050643

ABSTRACT

BACKGROUND: Abscisic acid receptors (ABR) involve transduction of the ABA signaling in plants, impacting largely on stress-defensive physiological processes and plant osmotic stress response. In this study, we characterized TaPYL4, a gene of ABR family in T. aestivum, in mediating plant drought tolerance given scarcity of functional characterization on wheat ABR members thus far. RESULTS: TaPYL4 harbors nine conserved domains shared by its PYL counterparts, targeting onto plasma membrane and nucleus after endoplasmic reticulum assortment. TaPYL4 interacts with TaPP2C2 whereas the latter with TaSnRK2.1, which establish a core module of the ABA signaling pathway. TaPYL4 expression was upregulated in root and aerial tissues upon drought stress. Overexpressing TaPYL4 conferred plants improved growth traits whereas knockdown expression of target gene alleviated growth feature compared with wild type under drought treatment. The TaPYL4-enhanced drought adaptation associates gene function in positively regulating stomata movement, osmolyte biosynthesis, and root system architecture (RSA) establishment. Expression analysis on the P5CS family genes involving proline biosynthesis indicated that TaP5CS1 exerts critical roles in promoting osmolytes accumulation in drought-challenged TaPYL4 lines. TaPIN9, a PIN-FORMED gene modulating cellular auxin translocation, was validated to function as a crucial mediator in defining RSA establishment underlying TaPYL4 regulation. Transcriptome analysis revealed that TaPYL4 controls transcription of numerous genes, which impact on physiological processes associated with 'biological process', 'molecular component', and 'cellular process'. Moreover, the differentially expressed genes mediated by TaPYL4 were closely related to stress defensive pathways. CONCLUSIONS: Our investigation suggested that TaPYL4 acts as a positive regulator in plant drought tolerance and a valuable target for engineering drought-tolerant cultivars in T. aestivum.


Subject(s)
Droughts , Triticum , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Osmotic Pressure , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Triticum/metabolism
4.
Cancer Cell Int ; 20: 411, 2020.
Article in English | MEDLINE | ID: mdl-32863770

ABSTRACT

BACKGROUND: Dysregulation of lncRNAs is frequent in glioma and has emerged as an important mechanism involved in tumorigenesis. Previous analysis of Chinese Glioma Genome Atlas (CGGA) database indicated that LBX2-AS1 expression is one of differentially expression lncRNA between lower grade glioma (LGG) (grade II and III) and glioblastoma multiforme (GBM). However, the function and mechanism of LBX2-AS1 in glioma has not been evaluated yet. METHODS: Here, we analyzed the expression of LBX2-AS1 in GTEx data (normal brain), TCGA-LGG and TCGA-GBM. RT-PCR was performed to detect LBX2-AS1 in surgery obtained normal brain and glioma. CCK-8 kit and Annexin V-FITC-PI Apoptosis Detection Kit were used to study the function of LBX2-AS1 on glioma proliferation and apoptosis. Bioinformatic analysis, RNA immunoprecipitation, RT-PCR, western blotting and dual luciferase reporter assay were carried out to investigate the target miRNA of LBX2-AS1. The discovered mechanism was validated by the rescue assay. RESULTS: Following study of GTEx and TCGA data, LBX2-AS1 was significantly elevated in glioma compared with normal brain and in GBM compared with LGG. Higher expression of LBX2-AS1 was associated with poor prognosis of patients with glioma. Expression of LBX2-AS1 was positively correlated with pathology classification of glioma. Knockdown of LBX2-AS1 inhibited cell proliferation and induced cell apoptosis in glioma. LBX2-AS1 have complimentary binding site for tumor suppressor miR-491-5p and we showed that LBX2-AS1 sponged miR-491-5p to upregulate TRIM28 expression in glioma cells. TRIM28 overexpression attenuated the effect of LBX2-AS1 knockdown on glioma cells. CONCLUSIONS: In conclusion, LBX2-AS1 was an increased lncRNA in glioma. Mechanistically, LBX2-AS1 promoted glioma cell proliferation and resistance to cell apoptosis via sponging miR-491-5p.

5.
BMC Plant Biol ; 18(1): 167, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30103700

ABSTRACT

BACKGROUND: Nitrate (NO3-) is the major source of nitrogen (N) for higher plants aside from its function in transducing the N signaling. Improving N use efficiency of crops has been an effective strategy for promotion of the sustainable agriculture worldwide. The regulatory pathways associating with N uptake and the corresponding biochemical processes impact largely on plant N starvation tolerance. Thus, exploration of the molecular mechanism underlying nitrogen use efficiency (NUE) and the gene wealth will pave a way for molecular breeding of N starvation-tolerant crop cultivars. RESULTS: In the current study, we characterized the function of TaNBP1, a guanine nucleotide-binding protein subunit beta gene of wheat (T. aestivum), in mediating the plant N starvation response. TaNBP1 protein harbors a conserved W40 domain and the TaNBP1-GFP (green fluorescence protein) signals concentrate at positions of cytoplasm membrane and cytosol. TaNBP1 transcripts are induced in roots and leaves upon N starvation stress and that this upregulated expression is recovered by N recovery treatment. TaNBP1 overexpression confers improved phenotype, enlarged root system architecture (RSA), and increased biomass for plants upon N deprivation relative to the wild type, associating with its role in enhancing N accumulation and improving reactive oxygen species (ROS) homeostasis. Nitrate transporter (NRT) gene NtNRT2.2 and antioxidant enzyme genes NtSOD1, NtSOD2, and NtCAT1 are transcriptionally regulated under TaNBP1 and contribute to the improved N acquisition and the increased AE activities of plants. CONCLUSIONS: Altogether, TaNBP1 is transcriptional response to N starvation stress. Overexpression of this gene enhances plant N starvation adaptation via improvement of N uptake and cellular ROS homeostasis by modifying transcription of NRT gene NtNRT2.2 and antioxidant enzyme genes NtSOD1, NtSOD2, and NtCAT1, respectively. Our research helps to understand the mechanism underlying plant N starvation response and benefits to genetically engineer crop cultivars with improved NUE under the N-saving cultivation conditions.


Subject(s)
GTP-Binding Proteins/genetics , Genes, Plant/genetics , Nitrogen/deficiency , Plant Proteins/genetics , Triticum/genetics , Adaptation, Physiological/genetics , Antioxidants/metabolism , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/physiology , Genes, Plant/physiology , Homeostasis/genetics , Nitrogen/metabolism , Plant Proteins/metabolism , Plant Proteins/physiology , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Sequence Alignment , Stress, Physiological , Nicotiana , Transcriptome , Triticum/metabolism , Triticum/physiology
7.
Quant Imaging Med Surg ; 14(6): 3951-3958, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846305

ABSTRACT

Background: With the increase of pancreatic tumor patients in recent years, there is an urgent need to find a way to treat pancreatic tumors. Surgery is one of the best methods for the treatment of pancreatic tumors, the success of which depends on the evaluation of peripancreatic vessels before surgery. Computed tomography (CT), as a non-invasive, fast, and economical auxiliary examination method, is undoubtedly one of the best means of clinical auxiliary examination. In this study, we investigated the impact of single-energy spectral CT imaging on the image quality of peripancreatic blood vessels and the clinical value of low-keV imaging in enhancing the image quality of peripancreatic arteriovenous vessels. Methods: We prospectively enrolled 103 patients who underwent abdominal vascular-enhanced CT examinations at the Affiliated Hospital of Hebei University between December 2022 and May 2023 and who were all scanned with the dual-energy feature on the United Imaging ATLAS scanner. The images were reconstructed at 70 keV, mixed energy, and optimized single energy in the post-processing station of United Imaging Healthcare Technology Co., Ltd. The CT value and contrast-to-noise ratio (CNR) of the superior mesenteric artery (SMA), gastroduodenal artery (GDA), inferior pancreaticoduodenal artery (IPDA), and superior mesenteric vein (SMV) were compared across energy levels, and then the image quality was subjectively evaluated. One-way analysis of variance and rank-sum tests were utilized for the statistical analysis. Results: The CT values of SMA, GDA, IPDA, and SMV in the optimal single energy group were 358.37±70.24, 323.36±88.23, 300.76±76.27, and 257.74±20.56 Hounsfield unit (HU), respectively, which were superior to those in the mixed energy (241.66±47.69, 235.17±53.71, 207.36±45.17, and 187.39±23.21 HU) and 70 keV groups (260.89±54.27, 252.41±58.87, 223.17±43.65, and 203.18±18.17 HU) (P<0.05). The diagnostic efficacy was greater in the optimal single energy group than in the other 2 groups (4.63±0.50, 3.91±0.57, and 4.23±0.83) (P<0.05). Conclusions: The optimal single energy for showing peripancreatic blood vessels is 62±7 keV when utilizing single-energy spectral CT imaging.

8.
J Imaging Inform Med ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627269

ABSTRACT

Is the radiomic approach, utilizing diffusion-weighted imaging (DWI), capable of predicting the various pathological grades of intrahepatic mass-forming cholangiocarcinoma (IMCC)? Furthermore, which model demonstrates superior performance among the diverse algorithms currently available? The objective of our study is to develop DWI radiomic models based on different machine learning algorithms and identify the optimal prediction model. We undertook a retrospective analysis of the DWI data of 77 patients with IMCC confirmed by pathological testing. Fifty-seven patients initially included in the study were randomly assigned to either the training set or the validation set in a ratio of 7:3. We established four different classifier models, namely random forest (RF), support vector machines (SVM), logistic regression (LR), and gradient boosting decision tree (GBDT), by manually contouring the region of interest and extracting prominent radiomic features. An external validation of the model was performed with the DWI data of 20 patients with IMCC who were subsequently included in the study. The area under the receiver operating curve (AUC), accuracy (ACC), precision (PRE), sensitivity (REC), and F1 score were used to evaluate the diagnostic performance of the model. Following the process of feature selection, a total of nine features were retained, with skewness being the most crucial radiomic feature demonstrating the highest diagnostic performance, followed by Gray Level Co-occurrence Matrix lmc1 (glcm-lmc1) and kurtosis, whose diagnostic performances were slightly inferior to skewness. Skewness and kurtosis showed a negative correlation with the pathological grading of IMCC, while glcm-lmc1 exhibited a positive correlation with the IMCC pathological grade. Compared with the other three models, the SVM radiomic model had the best diagnostic performance with an AUC of 0.957, an accuracy of 88.2%, a sensitivity of 85.7%, a precision of 85.7%, and an F1 score of 85.7% in the training set, as well as an AUC of 0.829, an accuracy of 76.5%, a sensitivity of 71.4%, a precision of 71.4%, and an F1 score of 71.4% in the external validation set. The DWI-based radiomic model proved to be efficacious in predicting the pathological grade of IMCC. The model with the SVM classifier algorithm had the best prediction efficiency and robustness. Consequently, this SVM-based model can be further explored as an option for a non-invasive preoperative prediction method in clinical practice.

9.
Plant Physiol Biochem ; 188: 81-96, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35988390

ABSTRACT

Members of nuclear factor-Y (NF-Y) transcription factors play important roles in regulating physiological processes associated with abiotic stress responses. In this study, we characterized TaNF-YA7-5B, a gene encoding wheat NY-YA subunit, in mediating plant adaptation to PEG-inducing dehydration stress. TaNF-YA7-5B shares high similarities to its homologs across various plant species. The TaNF-YA7-5B protein is specified by its conserved domains as plant NF-YA members and targets onto nucleus after endoplasmic reticulum assortment. Yeast two-hybrid assays indicated that TaNF-YA7-5B interacts with TaNF-YB2 and TaNF-YC7, two members of NF-YB and NF-YC subfamilies, suggesting a heterotrimer constituted by TaNF-YA7-5B and above NF-YB and -YC partners. TaNF-YA7-5B displayed induced expression upon drought and whose PEG-inducing dehydration-elevated transcripts were restored under normal recovery condition, suggesting its involvement in plant PEG-inducing dehydration response through modifying transcription efficiency. Overexpressing TaNF-YA7-5B conferred plant improved growth under PEG-inducing dehydration, which was ascribed largely to the gene function in regulating stomata closing and leaf water retention, osmolyte biosynthesis, and cellular ROS homeostasis. The expression of P5CS gene TaP5CS2 and antioxidant enzyme (AE) genes, namely, TaSOD3, TaCAT1, and TaPOD4, was upregulated and downregulated in lines with overexpression and knockdown of TaNF-YA7-5B, respectively; transgene analysis on them validated their functions in positively regulating proline accumulation and ROS scavenging under PEG-inducing dehydration. RNA-seq analysis revealed modified transcription of numerous genes underlying TaNF-YA7-5B enriched by GO terms 'biological process', 'cellular components', and 'molecular function'. Therefore, TaNF-YA7-5B is a crucial regulator for plant drought adaptation through comprehensively integrating diverse physiological processes associated with drought acclimation.


Subject(s)
Droughts , Triticum , CCAAT-Binding Factor , Dehydration , Gene Expression Regulation, Plant , Osmotic Pressure , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/metabolism
11.
Front Oncol ; 12: 723089, 2022.
Article in English | MEDLINE | ID: mdl-35646701

ABSTRACT

Objective: To investigate the value of diffusion-weighted imaging (DWI) combined with the hepatobiliary phase (HBP) Gd-BOPTA enhancement in differentiating intrahepatic mass-forming cholangiocarcinoma (IMCC) from atypical liver abscess. Materials and Methods: A retrospective analysis was performed on 43 patients with IMCCs (IMCC group) and 25 patients with atypical liver abscesses (liver abscess group). The DWI signal, the absolute value of the contrast noise ratio (│CNR│) at the HBP, and visibility were analyzed. Results: A relatively high DWI signal and a relatively high peripheral signal were presented in 29 patients (67.5%) in the IMCC group, and a relatively high DWI signal was displayed in 15 patients (60.0%) in the atypical abscess group with a relatively high peripheral signal in only one (6.7%) patient and a relatively high central signal in 14 (93.3%, 14/15). A significant (P<0.001) difference existed in the pattern of signal between the two groups of patients. On T2WI, IMCC was mainly manifested by homogeneous signal (53.5%), whereas atypical liver abscesses were mainly manifested by heterogeneous signal and relatively high central signal (32%, and 64%), with a significant difference (P<0.001) in T2WI imaging presentation between the two groups. On the HBP imaging, there was a statistically significant difference in peripheral │CNR│ (P< 0.001) and visibility between two groups. The sensitivity of the HBP imaging was significantly (P=0.002) higher than that of DWI. The sensitivity and accuracy of DWI combined with enhanced HBP imaging were significantly (P=0.002 and P<0.001) higher than those of either HBP imaging or DWI alone. Conclusion: Intrahepatic mass-forming cholangiocarcinoma and atypical liver abscesses exhibit different imaging signals, and combination of DWI and hepatobiliary-phase enhanced imaging has higher sensitivity and accuracy than either technique in differentiating intrahepatic mass-forming cholangiocarcinoma from atypical liver abscesses.

12.
Curr Med Imaging ; 18(7): 757-763, 2022.
Article in English | MEDLINE | ID: mdl-35040416

ABSTRACT

BACKGROUND AND AIM: The study aims to investigate the feasibility of further radiation dose reduction via the application of a high iodine delivery rate combined with automatic current modulation technology (high noise index) in head and neck computed tomography angiography. METHODS: Sixty-four patients who underwent routine head and neck computed tomographic angiography were randomly divided into two groups: a low-dose group of 32 cases and an ultra-low-dose group of 32 cases. The same image reconstruction technique was applied in both groups using the 50% adaptive statistical iterative reconstruction method. Quantitative and qualitative image quality assessment of the carotid artery, computed tomographic dose index volume, dose length product, and effective dose of the two groups were analyzed. RESULTS: The two groups were not significantly (P>0.05) different in age, gender, and body mass index. Significant (P<0.001) reduction of radiation dose was observed in all the parameters of computed tomographic dose index volume (18.12%), dose length product (19.91%), and effective dose (19.84%) in the ultra-low-dose group. Quantitative and qualitative image assessment produced similar results between the two groups, except for the higher mean vascular computed tomographic values found in the ultra-low dose group. CONCLUSION: Application of a higher iodine delivery rate combined with automatic current modulation technology (high noise index) in an existing low tube voltage protocol can further decrease the radiation dose and the total volume of contrast agent while maintaining similar image quality for patients undergoing computed tomography angiography of the head and neck, which can be recommended as the conventional scanning method.


Subject(s)
Computed Tomography Angiography , Radiation Dosage , Angiography , Computed Tomography Angiography/methods , Drug Tapering , Humans , Iodine , Radiographic Image Interpretation, Computer-Assisted/methods , Signal-To-Noise Ratio
13.
Plant Physiol Biochem ; 164: 160-172, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33991861

ABSTRACT

Elucidating physiological mechanisms underlying the plant N uptake benefits breeding of high N use efficiency (NUE) crop cultivars. In this study, we investigated the growth and N uptake-associated processes in wheat under N deprivation and deficit irrigation, using two contrasting NUE cultivars. Compared with sufficient-N (SN), deficient-N (DN) treatment reduced plant biomass, N accumulation, and yields in two cultivars (high NUE Shinong 086 and N deprivation-sensitive Jimai 585), suggesting that N deprivation negatively regulates plant growth and N uptake. Shinong 086 was better on growth and N uptake-associated traits than Jimai 585 due to the improved root biomass across soil profile, which was consistent with the decrease of available N contents in soil layers. These results suggested that the improved root system architecture (RAS) enhances plant acquirement for soil N under N- and water-deprivation condition, contributing to the plant N uptake and yield formation capacities. Transcriptome investigation revealed that numerous genes were differentially expressed (DE) in the N-deprived Shinong 086 plants, which involve the regulation of complicate biochemical pathways. These results suggested that the modified RAS and N uptake in high NUE plants are accomplished underlying the regulation of numerous DE genes. TaWRKY20, a gene in ZFP transcription factor family, was functionally characterized for the role in mediating plant N uptake. Overexpression of it conferred plants improved growth and N uptake under DN due to its regulation on TaNRT2.1 and TaNRT2.2, two nitrate transporter genes. Our investigation provides insights in high NUE mechanisms in wheat under N deprivation.


Subject(s)
Physiological Phenomena , Triticum , Biological Transport , Nitrogen , Plant Breeding
14.
Onco Targets Ther ; 13: 9225-9234, 2020.
Article in English | MEDLINE | ID: mdl-32982309

ABSTRACT

INTRODUCTION: Colorectal neoplasia differentially expressed (CRNDE) was reported to promote carcinogenesis in several cancers. However, the role of CRNDE in glioblastoma multiforme (GBM) needs to be further explored. METHODS: CRNDE expression levels in GBM tissues and cells were explored using real-time quantitative PCR at first. Effects of CRNDE on GBM cell behaviors were detected by conducting in vitro experiments. Interactions of CRNDE, microRNA-337-3p (miR-337-3p), and ELMO domain containing 2 (ELMOD2) were verified by bioinformatics analysis tools and dual-luciferase reporter assay. Expression correlations of CRNDE and ELMOD2 in GBM tissues were analyzed at GEPIA website. RESULTS: CRNDE expression was upregulated in GBM tissues and cells compared with normal counterparts. CRDNE knockdown inhibits proliferation and migration, but promotes apoptosis in GBM cell, while CRNDE overexpression caused opposite effects. Mechanisms exploration indicated CRNDE serves as sponge of miR-337-3p to upregulate ELMOD2 expression. Furthermore, we showed CRNDE and ELMOD2 were positively correlated in GBM tissues. DISCUSSION: In conclusion, our study highlighted the importance of CRNDE/miR-337-3p/ELMOD2 axis in GBM progression and offered novel strategies for GBM treatment.

15.
J Plant Physiol ; 255: 153305, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33129075

ABSTRACT

NHX5 and NHX6, endosomal Na+,K+/H+ antiporters in Arabidopsis thaliana, play a vital role in growth and development. Our previous study has shown that NHX5 and NHX6 function as H+ leak to regulate auxin-mediated growth in Arabidopsis. In this report, we investigated the function of NHX5 and NHX6 in controlling PIN6-mediated auxin homeostasis and growth in Arabidopsis. Phenotypic analyses found that NHX5 and NHX6 were critical for the function of PIN6, an auxin transporter. We further showed that PIN6 depended on NHX5 and NHX6 in regulating auxin homeostasis. NHX5 and NHX6 were colocalized with PIN6, but they did not interact physically. The conserved acidic residues that are vital for the activity of NHX5 and NHX6 were critical for PIN6 function. Together, NHX5 and NHX6 may regulate PIN6 function by their transport activity.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Homeostasis/drug effects , Indoleacetic Acids/metabolism , Sodium-Hydrogen Exchangers/metabolism , Gene Expression Regulation, Plant , Genetic Variation , Ions/metabolism , Phenotype , Plants, Genetically Modified/metabolism , Potassium/metabolism , Sodium Chloride/metabolism , Sodium-Hydrogen Exchangers/genetics
16.
Plant Physiol Biochem ; 136: 127-142, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30665058

ABSTRACT

Salt stress suppresses plant growth, development, and crop productivity. In this study, we characterized the role of TaZFP1, a C2H2 type-zinc finger protein family member of T. aestivum, in salt stress tolerance. TaZFP1 possesses a conserved C2H2 motif (CX2-4CX12HX3-5H) shared by plant ZFP proteins, translocates to the nucleus after endoplasmic reticulum (ER) assortment, and displays a ZF 3-D structure similar to its eukaryote homologs. The transcripts of TaZFP1 were upregulated during salt stress condition and this effect was restored under normal conditions. Compared to wild type (WT), the transgenic lines of TaZFP1 overexpression or knockdown displayed improved phenotypes, biomass, photosynthesis parameters (Pn, ΨPSII, and NPQ), osmolytes contents (i.e. proline and soluble sugar), and enhanced antioxidant enzyme (AE) activity following salt stress treatment. A set of genes associated with proline synthesis (i.e., NtP5CS1 and NtP5CS2) and encoding AEs (i.e., NtSOD2, NtCAT1, and NtPOD4) were upregulated in the salt-challenged transgenic lines of TaZFP1 expression. Additionally, the transgenic lines exhibited similar stomata movement patterns and leaf water retention properties under salinity conditions compared to those induced by exogenous abscisic acid (ABA) treatment, suggesting that the TaZFP1-mediated salt response is dependent on the ABA signaling. High throughput RNAseq analysis revealed significant alteration of gene transcription in transgenic lines upon salt stress. Among them, the differentially expressed genes (DEGs) represented by the gene ontology (GO) terms were associated with organic acid, carboxylic acid, carbohydrate, and coenzyme as well as organonitrogen compounds, translation, peptide metabolism, and peptide biosynthesis. A set of upregulated DEGs were found to be thylakoid- and photosystem-associated, which is consistent with the TaZFP1-mediated improvement in photosynthesis in salt-stressed transgenic lines. Our investigation indicated that the TaZFP1-mediated salt tolerance is ascribed to the regulation of gene functions related to photosynthesis, osmolytes metabolism and ROS homeostasis mediated by ABA signaling.


Subject(s)
Genes, Plant/genetics , Kruppel-Like Transcription Factors/physiology , Plant Proteins/physiology , Salt-Tolerant Plants/genetics , Triticum/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/physiology , Kruppel-Like Transcription Factors/genetics , Photosynthesis/genetics , Photosynthesis/physiology , Phylogeny , Plant Proteins/genetics , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Salt Stress , Salt-Tolerant Plants/metabolism , Salt-Tolerant Plants/physiology , Nicotiana , Triticum/metabolism , Triticum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL