Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
Add more filters

Publication year range
1.
Cell ; 182(2): 317-328.e10, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32526205

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive malignancy with its global incidence and mortality rate continuing to rise, although early detection and surveillance are suboptimal. We performed serological profiling of the viral infection history in 899 individuals from an NCI-UMD case-control study using a synthetic human virome, VirScan. We developed a viral exposure signature and validated the results in a longitudinal cohort with 173 at-risk patients who had long-term follow-up for HCC development. Our viral exposure signature significantly associated with HCC status among at-risk individuals in the validation cohort (area under the curve: 0.91 [95% CI 0.87-0.96] at baseline and 0.98 [95% CI 0.97-1] at diagnosis). The signature identified cancer patients prior to a clinical diagnosis and was superior to alpha-fetoprotein. In summary, we established a viral exposure signature that can predict HCC among at-risk patients prior to a clinical diagnosis, which may be useful in HCC surveillance.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Virus Diseases/pathology , Adult , Aged , Area Under Curve , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Case-Control Studies , Cohort Studies , Databases, Genetic , Female , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Middle Aged , Polymorphism, Single Nucleotide , ROC Curve , Risk Factors , Virus Diseases/complications , Young Adult , alpha-Fetoproteins/analysis
2.
Mol Cell ; 84(3): 522-537.e8, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38151017

ABSTRACT

The anti-cancer target hRpn13 is a proteasome substrate receptor. However, hRpn13-targeting molecules do not impair its interaction with proteasomes or ubiquitin, suggesting other critical cellular activities. We find that hRpn13 depletion causes correlated proteomic and transcriptomic changes, with pronounced effects in myeloma cells for cytoskeletal and immune response proteins and bone-marrow-specific arginine deiminase PADI4. Moreover, a PROTAC against hRpn13 co-depletes PADI4, histone deacetylase HDAC8, and DNA methyltransferase MGMT. PADI4 binds and citrullinates hRpn13 and proteasomes, and proteasomes from PADI4-inhibited myeloma cells exhibit reduced peptidase activity. When off proteasomes, hRpn13 can bind HDAC8, and this interaction inhibits HDAC8 activity. Further linking hRpn13 to transcription, its loss reduces nuclear factor κB (NF-κB) transcription factor p50, which proteasomes generate by cleaving its precursor protein. NF-κB inhibition depletes hRpn13 interactors PADI4 and HDAC8. Altogether, we find that hRpn13 acts dually in protein degradation and expression and that proteasome constituency and, in turn, regulation varies by cell type.


Subject(s)
Histone Deacetylases , Intracellular Signaling Peptides and Proteins , NF-kappa B , Protein-Arginine Deiminase Type 4 , Transcription Factors , Humans , Epigenesis, Genetic , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteome/metabolism , Proteomics , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transcriptome , Intracellular Signaling Peptides and Proteins/metabolism , Protein-Arginine Deiminase Type 4/metabolism , Cell Line, Tumor
3.
Immunity ; 50(1): 91-105.e4, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30638736

ABSTRACT

Memory CD4+ T cells mediate long-term immunity, and their generation is a key objective of vaccination strategies. However, the transcriptional circuitry controlling the emergence of memory cells from early CD4+ antigen-responders remains poorly understood. Here, using single-cell RNA-seq to study the transcriptome of virus-specific CD4+ T cells, we identified a gene signature that distinguishes potential memory precursors from effector cells. We found that both that signature and the emergence of memory CD4+ T cells required the transcription factor Thpok. We further demonstrated that Thpok cell-intrinsically protected memory cells from a dysfunctional, effector-like transcriptional program, similar to but distinct from the exhaustion pattern of cells responding to chronic infection. Mechanistically, Thpok- bound genes encoding the transcription factors Blimp1 and Runx3 and acted by antagonizing their expression. Thus, a Thpok-dependent circuitry promotes both memory CD4+ T cells' differentiation and functional fitness, two previously unconnected critical attributes of adaptive immunity.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , T-Lymphocyte Subsets/physiology , Transcription Factors/metabolism , Animals , Antigens, Viral/immunology , Cell Differentiation , Cells, Cultured , Core Binding Factor Alpha 3 Subunit/metabolism , Humans , Immunologic Memory/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1/metabolism , Protein Binding , Sequence Analysis, RNA , Single-Cell Analysis , Transcription Factors/genetics , Transcriptome
4.
Immunity ; 51(3): 465-478.e6, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31422869

ABSTRACT

The generation of high-affinity neutralizing antibodies, the objective of most vaccine strategies, occurs in B cells within germinal centers (GCs) and requires rate-limiting "help" from follicular helper CD4+ T (Tfh) cells. Although Tfh differentiation is an attribute of MHC II-restricted CD4+ T cells, the transcription factors driving Tfh differentiation, notably Bcl6, are not restricted to CD4+ T cells. Here, we identified a requirement for the CD4+-specific transcription factor Thpok during Tfh cell differentiation, GC formation, and antibody maturation. Thpok promoted Bcl6 expression and bound to a Thpok-responsive region in the first intron of Bcl6. Thpok also promoted the expression of Bcl6-independent genes, including the transcription factor Maf, which cooperated with Bcl6 to mediate the effect of Thpok on Tfh cell differentiation. Our findings identify a transcriptional program that links the CD4+ lineage with Tfh differentiation, a limiting factor for efficient B cell responses, and suggest avenues to optimize vaccine generation.


Subject(s)
Cell Differentiation/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Proto-Oncogene Proteins c-maf/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcription Factors/immunology , Transcription, Genetic/immunology , Animals , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Gene Expression Regulation/immunology , Germinal Center/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL
5.
Am J Pathol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032602

ABSTRACT

Although hyponatremia and salt wasting are common in patients with HIV/AIDS, the understanding of their contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the distal tubules and on the expression level of the Slc12a3 gene, encoding the sodium-chloride cotransporter (which is responsible for sodium reabsorption in distal nephron segments), single-nucleus RNA sequencing was performed on kidney cortices from three wild-type (WT) and three Vpr transgenic (Vpr Tg) mice. The results show that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05); in Vpr Tg mice, Slc12a3 expression was not significantly different in DCT cells. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT mice (P < 0.01). Immunohistochemistry revealed fewer Slc12a3+Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis between Vpr Tg and WT samples in the DCT cluster showed down-regulation of the Ier3 gene, which is an inhibitor of apoptosis. The in vitro knockdown of Ier3 by siRNA transfection induced apoptosis in mouse DCT cells. These observations suggest that the salt-wasting effect of Vpr in Vpr Tg mice is likely mediated by Ier3 down-regulation in DCT1 cells and loss of Slc12a3+Pvalb+ DCT1 segments.

6.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35121655

ABSTRACT

The tumor microenvironment (TME) provides potential targets for cancer therapy. However, how signals originating in cancer cells affect tumor-directed immunity is largely unknown. Deletions in the CHUK locus, coding for IκB kinase α (IKKα), correlate with reduced lung adenocarcinoma (ADC) patient survival and promote KrasG12D-initiated ADC development in mice, but it is unknown how reduced IKKα expression affects the TME. Here, we report that low IKKα expression in human and mouse lung ADC cells correlates with increased monocyte-derived macrophage and regulatory T cell (Treg) scores and elevated transcription of genes coding for macrophage-recruiting and Treg-inducing cytokines (CSF1, CCL22, TNF, and IL-23A). By stimulating recruitment of monocyte-derived macrophages from the bone marrow and enforcing a TNF/TNFR2/c-Rel signaling cascade that stimulates Treg generation, these cytokines promote lung ADC progression. Depletion of TNFR2, c-Rel, or TNF in CD4+ T cells or monocyte-derived macrophages dampens Treg generation and lung tumorigenesis. Treg depletion also attenuates carcinogenesis. In conclusion, reduced cancer cell IKKα activity enhances formation of a protumorigenic TME through a pathway whose constituents may serve as therapeutic targets for KRAS-initiated lung ADC.


Subject(s)
Adenocarcinoma of Lung/immunology , Cytokines/immunology , I-kappa B Kinase/immunology , Lung Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Transformation, Neoplastic/immunology , Humans , Immunosuppression Therapy/methods , Macrophages/immunology , Mice , Mice, Inbred C57BL , Monocytes/immunology , Receptors, Tumor Necrosis Factor, Type II/immunology , Signal Transduction/immunology
7.
Article in English | MEDLINE | ID: mdl-38961841

ABSTRACT

HIV disease remains prevalent in the USA and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid-X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 weeks of age. Multi-omic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidney, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Further, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared to those of WT mice. Restoration of NAD levels in kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.

8.
Mol Pharm ; 21(4): 2043-2057, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38471114

ABSTRACT

The capillarization of hepatic sinusoids resulting from the activation of hepatic stellate cells poses a significant challenge, impeding the effective delivery of therapeutic agents to the Disse space for liver fibrosis treatment. Therefore, overcoming these barriers and achieving efficient drug delivery to activated hepatic stellate cells (aHSCs) are pressing challenge. In this study, we developed a synergistic sequential drug delivery approach utilizing neutrophil membrane hybrid liposome@atorvastatin/amlisentan (NCM@AtAm) and vitamin A-neutrophil membrane hybrid liposome @albumin (VNCM@Bai) nanoparticles (NPs) to breach the capillary barrier for targeted HSC cell delivery. Initially, NCM@AtAm NPs were successfully directed to the site of hepatic fibrosis through neutrophil-mediated inflammatory targeting, resulting in the normalization of liver sinusoidal endothelial cells (LSECs) and restoration of fenestrations under the combined influence of At and Am. Elevated tissue levels of the p-Akt protein and endothelial nitric oxide synthase (eNOS) indicated the normalization of LSECs following treatment with At and Am. Subsequently, VNCM@Bai NPs traversed the restored LSEC fenestrations to access the Disse space, facilitating the delivery of Bai into aHSCs under vitamin A guidance. Lastly, both in vitro and in vivo results demonstrated the efficacy of Bai in inhibiting HSC cell activation by modulating the PPAR γ/TGF-ß1 and STAT1/Smad7 signaling pathways, thereby effectively treating liver fibrosis. Overall, our designed synergistic sequential delivery system effectively overcomes the barrier imposed by LSECs, offering a promising therapeutic strategy for liver fibrosis treatment in clinical settings.


Subject(s)
Endothelial Cells , Hepatic Stellate Cells , Humans , Endothelial Cells/metabolism , Bionics , Capillaries/metabolism , Liposomes/metabolism , Neutrophils/metabolism , Vitamin A/metabolism , Vitamin A/pharmacology , Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism
9.
Analyst ; 149(2): 490-496, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38062995

ABSTRACT

Caspase-3 is an important biomarker for the process of apoptosis, which is a key target for cancer treatment. Due to its low concentration in single cells and the structural similarity of caspase family proteins, it is exceedingly challenging to accurately determine the intracellular caspase-3 during apoptosis in situ. Herein, a biosensing strategy based on the target-induced SERS "hot spot" formation has been developed for the simultaneous highly sensitive and selective detection of intracellular caspase-3 level. The nanosensor is composed of gold nanoparticles modified with the probe molecule 4-mercaptophenylboronic acid (4-MPBA) and a peptide chain. The well-designed peptide chain contains two distinct functional domains, one with a sulfhydryl group for bonding to the gold nanoparticles and the other a fragment specifically recognized by caspase-3. When caspase-3 is present, the negatively charged segment (NH2-Asp-Asp-Asp-Glu-Val-Asp-OH) of the peptide chain is specifically hydrolyzed, leaving a positively charged fragment coated on the surface of the gold nanoparticles. At this time, the golden nanoparticles undergo significant coupling aggregation due to the electrostatic interaction, resulting in a large number of SERS "hot spot" formation. The SERS signal of the 4-MPBA located at the nano-gap is significantly boosted because of the local plasma enhancement effect. The highly sensitive determination of caspase-3 can be achieved according to the altered SERS signal intensity of 4-MPBA. The turn-on of the SERS signal-induced target contributes to the excellent selectivity and the formation of the SERS "hot spot" effect that further improves the sensitivity of caspase-3 detection. The advantages of this biosensing technique allow for the precise in situ monitoring of the dynamic changes in caspase-3 levels during apoptosis. In addition, the differences in caspase-3 levels during the apoptosis of various cell types were compared. Monitoring the caspase-3 levels can be used to track the cellular apoptosis process, evaluate the effect of drugs on cancer cells in real time, and provide guidance for the selection of the appropriate drug dosage.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Caspase 3 , Gold/chemistry , Metal Nanoparticles/chemistry , Apoptosis , Biosensing Techniques/methods , Peptides , Spectrum Analysis, Raman/methods
10.
Appl Opt ; 63(7): 1867-1874, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437291

ABSTRACT

Extreme ultraviolet (EUV) radiation plays a key role in the fields of material science, attosecond metrology, and lithography. However, the reflective optical components typically used in EUV systems contribute to their bulky size, weight, and increased costs for fabrication. In this paper, we theoretically investigate transmissive metalens designs capable of focusing the EUV light based on the Pancharatnam-Berry phase. The designed metalens is composed of nanoscale elliptical holes, which can guide and manipulate EUV light due to the higher refractive index of the vacuum holes compared to that of the surrounding material. We designed an EUV metalens with a diameter of 10 µm, which supports a focal length of 24 µm and a numerical aperture of up to 0.2. It can focus 55-nm EUV incident light to a diffraction-limited spot, and the focusing efficiency is calculated to be as high as about 7% over a broad EUV frequency range (50-65 nm). This study reveals the possibility of applying a dielectric metalens in the EUV region without a transmissive optical material.

11.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256049

ABSTRACT

The incidence and mortality of hepatocellular carcinoma (HCC) in Sub-Saharan Africa is projected to increase sharply by 2040 against a backdrop of limited diagnostic and therapeutic options. Two large South African-based case control studies have developed a serum-based miRNome for Hepatitis B-associated hepatocellular carcinoma (HBV-HCC), as well as identifying their gene targets and pathways. Using a combination of RNA sequencing, differential analysis and filters including a unique molecular index count (UMI) ≥ 10 and log fold change (LFC) range > 2: <-0.5 (p < 0.05), 91 dysregulated miRNAs were characterized including 30 that were upregulated and 61 were downregulated. KEGG analysis, a literature review and other bioinformatic tools identified the targeted genes and HBV-HCC pathways of the top 10 most dysregulated miRNAs. The results, which are based on differentiating miRNA expression of cases versus controls, also develop a serum-based miRNA diagnostic panel that indicates 95.9% sensitivity, 91.0% specificity and a Youden Index of 0.869. In conclusion, the results develop a comprehensive African HBV-HCC miRNome that potentially can contribute to RNA-based diagnostic and therapeutic options.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , South Africa/epidemiology , Hepatitis B/complications , Hepatitis B/genetics , MicroRNAs/genetics
12.
Phys Chem Chem Phys ; 25(27): 17850-17859, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37378864

ABSTRACT

We report a type of micro-electro-mechanical system (MEMS) H2S gas sensors with excellent sensing performance at the ppb level (lowest detection limit is 5 ppb). The sensors were fabricated with ZnO/Co3O4 sensing materials derived from Zn/Co-MOFs by annealing at a suitable temperature of 500 °C. ZnO/Co3O4-500 exhibits the highest response when exposed to 10 ppb H2S gas at 120 °C, and the response/recovery times are 10 s/21 s. Moreover, it exhibits outstanding selectivity, long-term stability (retained 95% response after 45 days), and moisture resistance (only a minor fluctuation of 2% even at 90% RH). This can be ascribed to the fact that ZnO/Co3O4-500 has regular morphology, abundant oxygen vacancies (52.8%) and high specific surface area (96.5 m2 g-1). This work provides not only a high performance H2S MEMS gas sensor but also a systematic study of the effect of the annealing temperature on the sensing performance of ZnO/Co3O4 sensing materials derived from bimetal organic frameworks.

13.
J Nanobiotechnology ; 21(1): 299, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37633923

ABSTRACT

Metabolic reprogramming in cancer cells plays a crucial role in cancer development, metastasis and invasion. Cancer cells have a unique metabolism profile that could switch between glycolysis and oxidative phosphorylation (OXPHOS) in order to satisfy a higher proliferative rate and enable survival in tumor microenvironment. Although dietary-based cancer starvation therapy has shown some positive outcomes for cancer treatment, it is difficult for patients to persist for a long time due to the adverse effects. Here in this study, we developed a specific M1 macrophage-derived membrane-based drug delivery system for breast cancer treatment. Both metformin and 3-Bromopyruvate were loaded into the engineered cell membrane-based biomimetic carriers (Met-3BP-Lip@M1) for the shutdown of energy metabolism in cancer cells via simultaneous inhibition of both glycolysis and oxygen consumption. The in vitro studies showed that Met-3BP-Lip@M1 had excellent cancer cell uptake and enhanced cancer cell apoptosis via cell cycle arrest. Our results also demonstrated that this novel biomimetic nanomedicine-based cancer starvation therapy synergistically improved the therapeutic efficiency against breast cancer cells by blocking energy metabolic pathways, which resulted in a significant reduction of cancer cell proliferation, 3D tumor spheroid growth as well as in vivo tumor growth.


Subject(s)
Biomimetics , Neoplasms , Humans , Energy Metabolism , Glycolysis , Oxidative Phosphorylation , Cell Membrane , Neoplasms/drug therapy
14.
J Med Genet ; 59(1): 18-22, 2022 01.
Article in English | MEDLINE | ID: mdl-33067352

ABSTRACT

Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary tumour susceptibility disease caused by germline pathogenic variation of the VHL tumour suppressor gene. Affected individuals are at risk of developing multiple malignant and benign tumours in a number of organs.In this report, a male patient in his 20s who presented to the Urologic Oncology Branch at the National Cancer Institute with a clinical diagnosis of VHL was found to have multiple cerebellar haemangioblastomas, bilateral epididymal cysts, multiple pancreatic cysts, and multiple, bilateral renal tumours and cysts. The patient had no family history of VHL and was negative for germline VHL mutation by standard genetic testing. Further genetic analysis demonstrated a germline balanced translocation between chromosomes 1 and 3, t(1;3)(p36.3;p25) with a breakpoint on chromosome 3 within the second intron of the VHL gene. This created a pathogenic germline alteration in VHL by a novel mechanism that was not detectable by standard genetic testing.Karyotype analysis is not commonly performed in existing genetic screening protocols for patients with VHL. Based on this case, protocols should be updated to include karyotype analysis in patients who are clinically diagnosed with VHL but demonstrate no detectable mutation by existing genetic testing.


Subject(s)
Germ-Line Mutation , Translocation, Genetic , Von Hippel-Lindau Tumor Suppressor Protein/genetics , von Hippel-Lindau Disease/genetics , Cerebellar Neoplasms/etiology , DNA Mutational Analysis , Hemangioblastoma/etiology , Humans , Kidney Neoplasms/etiology , Male , Exome Sequencing , von Hippel-Lindau Disease/complications
15.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175530

ABSTRACT

Epithelial ovarian cancer (EOC) remains the fifth leading cause of cancer-related death in women worldwide, partly due to the survival of chemoresistant, stem-like tumor-initiating cells (TICs) that promote disease relapse. We previously described a role for the NF-κB pathway in promoting TIC chemoresistance and survival through NF-κB transcription factors (TFs) RelA and RelB, which regulate genes important for the inflammatory response and those associated with cancer, including microRNAs (miRNAs). We hypothesized that NF-κB signaling differentially regulates miRNA expression through RelA and RelB to support TIC persistence. Inducible shRNA was stably expressed in OV90 cells to knockdown RELA or RELB; miR-seq analyses identified differentially expressed miRNAs hsa-miR-452-5p and hsa-miR-335-5p in cells grown in TIC versus adherent conditions. We validated the miR-seq findings via qPCR in TIC or adherent conditions with RELA or RELB knocked-down. We confirmed decreased expression of hsa-miR-452-5p when either RELA or RELB were depleted and increased expression of hsa-miR-335-5p when RELA was depleted. Either inhibiting miR-452-5p or mimicking miR-335-5p functionally decreased the stem-like potential of the TICs. These results highlight a novel role of NF-κB TFs in modulating miRNA expression in EOC cells, thus opening a better understanding toward preventing recurrence of EOC.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Female , Humans , Carcinoma, Ovarian Epithelial/genetics , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Recurrence, Local , NF-kappa B/genetics , NF-kappa B/metabolism , Ovarian Neoplasms/genetics
16.
Gut ; 71(6): 1161-1175, 2022 06.
Article in English | MEDLINE | ID: mdl-34340996

ABSTRACT

OBJECTIVE: Hepatocellular carcinoma (HCC) represents a typical inflammation-associated cancer. Tissue resident innate lymphoid cells (ILCs) have been suggested to control tumour surveillance. Here, we studied how the local cytokine milieu controls ILCs in HCC. DESIGN: We performed bulk RNA sequencing of HCC tissue as well as flow cytometry and single-cell RNA sequencing of enriched ILCs from non-tumour liver, margin and tumour core derived from 48 patients with HCC. Simultaneous measurement of protein and RNA expression at the single-cell level (AbSeq) identified precise signatures of ILC subgroups. In vitro culturing of ILCs was used to validate findings from in silico analysis. Analysis of RNA-sequencing data from large HCC cohorts allowed stratification and survival analysis based on transcriptomic signatures. RESULTS: RNA sequencing of tumour, non-tumour and margin identified tumour-dependent gradients, which were associated with poor survival and control of ILC plasticity. Single-cell RNA sequencing and flow cytometry of ILCs from HCC livers identified natural killer (NK)-like cells in the non-tumour tissue, losing their cytotoxic profile as they transitioned into tumour ILC1 and NK-like-ILC3 cells. Tumour ILC composition was mediated by cytokine gradients that directed ILC plasticity towards activated tumour ILC2s. This was liver-specific and not seen in ILCs from peripheral blood mononuclear cells. Patients with high ILC2/ILC1 ratio expressed interleukin-33 in the tumour that promoted ILC2 generation, which was associated with better survival. CONCLUSION: Our results suggest that the tumour cytokine milieu controls ILC composition and HCC outcome. Specific changes of cytokines modify ILC composition in the tumour by inducing plasticity and alter ILC function.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Cytokines/metabolism , Humans , Immunity, Innate , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear , Liver Neoplasms/metabolism , Lymphocytes , RNA/metabolism , Tumor Microenvironment
17.
J Am Chem Soc ; 144(12): 5233-5240, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35298144

ABSTRACT

Catalytic sequential hydrosilylation of 1,3-enynes and 1,4-enynes promoted by cobalt complexes derived from bisphosphines are presented. Site- and stereoselective Si-H addition of primary silanes to 1,3-enynes followed by sequential intramolecular diastereo- and enantioselective Si-H addition afforded enantioenriched cyclic alkenylsilanes with simultaneous construction of a carbon-stereogenic center and a silicon-stereogenic center. Reactions of 1,4-enynes proceeded through sequential isomerization of the alkene moiety followed by site- and stereoselective hydrosilylation. A wide range of alkenylsilanes were afforded in high efficiency and selectivity. Functionalization of the enantioenriched silanes containing a stereogenic center at silicon delivered a variety of chiral building blocks that are otherwise difficult to access.


Subject(s)
Cobalt , Silanes , Catalysis , Molecular Structure , Silicon , Stereoisomerism
18.
Neurochem Res ; 47(5): 1419-1428, 2022 May.
Article in English | MEDLINE | ID: mdl-35129772

ABSTRACT

Zinc is highly enriched in the central nervous system. Numerous evidences suggest that high concentration of zinc acts as a critical mediator of neuronal death in the ischemic brain, however, the possible mechanisms of neurotoxicity of zinc during cerebral ischemia/reperfusion (I/R) remain elusive. Endoplasmic reticulum (ER) is a storage location of intracellular zinc. ER stress related genes were up-regulated during zinc-induced neuronal death in vascular-type senile dementia. In the present study, we investigated whether intracellular accumulated zinc aggravates I/R injury through ER stress and ER stress-associated apoptosis. Male Sprague-Dawley rats were subjected to 90 min middle cerebral artery occlusion (MCAO) and received either vehicle or zinc chelator TPEN 15 mg/kg. The expression of ER stress related factors glucose-regulated protein 78 (GRP78) and phosphorylated eukaryotic initiation factor 2α (p-eIF2α), ER stress related apoptotic proteins CCAAT-enhancer-binding protein homologous protein (CHOP) and caspase-12, as well as anti-apoptotic factor B-cell lymphoma-2 (Bcl-2) were assessed 24 h after reperfusion. Our results showed that the levels of GRP78 and p-eIF2α, as well as CHOP and caspase-12, were increased in ischemic brain, indicating that cerebral I/R triggers ER stress. Furthermore, GRP78, CHOP and caspase-12 were all colocalized with the zinc-specific dyes NG, suggesting that there is certain relationship between cytosolic labile zinc and ER stress following cerebral ischemia. Chelating zinc with TPEN reversed the expression of GRP78, p-eIF2α in ischemic rats. Moreover, CHOP and NeuN double staining positive cells, as well as caspase-12 and TUNEL double staining positive cells were also decreased after TPEN treatment, indicating that chelating zinc might inhibit ER stress and decreased ER stress associated neuronal apoptosis. In addition, TPEN treatment reversed the downregulated level of Bcl-2, which localized in the ER membrane and involved in the dysfunction of ER, confirming that the anti-apoptosis effects of chelating zinc following I/R are exerted via inhibition of the ER stress. Taken together, this study demonstrated that excessive zinc activates ER stress and zinc induced neuronal cell death is at least partially due to ER stress specific neuronal apoptosis in ischemic penumbra, which may provide an important mechanism of cerebral I/R injury.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Apoptosis , Brain Ischemia/metabolism , Endoplasmic Reticulum Stress , Male , Rats , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Zinc
19.
Mol Pharm ; 19(9): 3042-3056, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35876318

ABSTRACT

Exosomes are a type of extracellular vesicles secreted by cells in normal or pathological conditions for cell-cell communication. With immunomodulatory characteristics and potential therapeutic properties, immune-cell-derived exosomes play an important role in cancer therapy. They express various antigens on their surface, which can be employed for antigen presentation, immunological activation, and metabolic regulation, leading to the killing of cancerous cells. In addition, immune-cell-derived exosomes have received extensive attention as a drug delivery platform in effective antitumor therapy due to their excellent biocompatibility, low immunogenicity, and high loading capacity. In this review, the biological and therapeutic characteristics of immune-cell-derived exosomes are comprehensively outlined. The antitumor mechanism of exosomes secreted by immune cells, including macrophages, dendritic cells, T cells, B cells, and natural killer cells, are systematically summarized. Moreover, the applications of immune-cell-derived exosomes as nanocarriers to transport antitumor agents (chemotherapeutic drugs, genes, proteins, etc.) are discussed. More importantly, the existing challenges of immune-cell-derived exosomes are pointed out, and their antitumor potentials are also discussed.


Subject(s)
Exosomes , Neoplasms , Antigen Presentation , Drug Delivery Systems , Exosomes/metabolism , Humans , Killer Cells, Natural/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
20.
J Nanobiotechnology ; 20(1): 359, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35918698

ABSTRACT

The conversion of tumor-promoting M2 macrophage phenotype to tumor-suppressing M1 macrophages is a promising therapeutic approach for cancer treatment. However, the tumor normally provides an abundance of M2 macrophage stimuli, which creates an M2 macrophage-dominant immunosuppressive microenvironment. In our study, docetaxel (DTX) as chemotherapeutic modularity was loaded into M1 macrophage-derived exosomes (M1-Exo) with M1 proinflammatory nature to establish DTX-M1-Exo drug delivery system. We found that DTX-M1-Exo induced naïve M0 macrophages to polarize to M1 phenotype, while failed to repolarize to M2 macrophages upon Interleukin 4 restimulation due to impaired mitochondrial function. This suggests that DTX-M1-Exo can achieve long-term robust M1 activation in immunosuppressive tumor microenvironment. The in vivo results further confirmed that DTX-M1-Exo has a beneficial effect on macrophage infiltration and activation in the tumor tissues. Thus, DTX-M1-Exo is a novel macrophage polarization strategy via combined chemotherapy and immunotherapy to achieve great antitumor therapeutic efficacy.


Subject(s)
Exosomes , Neoplasms , Docetaxel/pharmacology , Exosomes/genetics , Humans , Immunotherapy , Macrophages , Neoplasms/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL