Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Anal Chem ; 93(34): 11792-11799, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34407610

ABSTRACT

The exosome has emerged as a promising noninvasive biomarker for the early diagnosis of cancer. Therefore, it is highly desirable to develop simple, inexpensive, and user-friendly biosensors for convenient, sensitive, and quantitative exosome assay. Herein, we developed a simple and cost-efficient electrochemical biosensor by combining a metal-organic framework (MOF)-functionalized paper and a screen-printed electrode (SPE) for portable, ultrasensitive, and quantitative determination of cancer-derived exosomes. In principle, the biosensor relied on recognition of the exosome by Zr-MOFs and aptamer to initiate the hybridization chain reaction (HCR) and the formation of DNAzyme for signal amplification. Benefiting from the high signal amplification ability of HCR, the label-free paper-based biosensor is capable of ultrasensitive exosome assay with a detection limit down to 5 × 103 particles/mL, which is superior to that of most reported methods. Moreover, the proposed paper-based biosensor possessed the advantages of low cost, simple operation, and high sensitivity, making it affordable and deliverable for point-of-care (POC) diagnosis in resource-limited settings.


Subject(s)
Biosensing Techniques , Exosomes , Metal-Organic Frameworks , Electrochemical Techniques , Limit of Detection , Nucleic Acid Hybridization
2.
Anal Chem ; 92(6): 4592-4599, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32081006

ABSTRACT

Despite the recent developments on the construction of point-of-care testing (POCT) devices, it is still a big challenge to build portable POCT tools for simple, sensitive, selective, and quantitative determination of disease-related biomarkers. With this in mind, we developed a simple and user-friendly POCT tool for onsite analysis of DNA adenine methyltransferase (Dam) activity by using DNA tetrahedra-based hydrogel to trap glucose-producing enzymes for target recognition and signal transduction. The enzyme-encapsulated DNA hydrogel and the substrate of enzyme were separately modified on papers and then combined onto a commercial glucose test strip for the sensitive evaluation of Dam activity via using a personal glucose meter (PGM) for quantitative signal readout. Taking advantage of the great amount of enzyme entrapped in DNA hydrogel and the high signal amplification ability of enzyme, this POCT tool is capable of highly sensitive and selective determination of Dam activity with a direct detection limit down to 0.001 U/mL, which is superior to that of most previously reported biosensors. Furthermore, this device can also be applied to screen inhibitor and analyze Dam activity in spiked serum samples, indicating the great potential for clinical practice and diagnostic applications. Additionally, all the reactions for Dam assay are performed on paper, which is simple and deliverable to end-users for medical diagnostics at home or in-field.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose/analysis , DNA/chemistry , Paper , Point-of-Care Testing , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Humans , Hydrogels/chemistry , Hydrogels/metabolism , Particle Size , Site-Specific DNA-Methyltransferase (Adenine-Specific)/chemistry , Surface Properties
3.
Biosens Bioelectron ; 199: 113906, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34968952

ABSTRACT

Developing portable, quantitative, and user-friendly analytical tools for sensitive pesticide assay is of significant importance for guaranteeing food safety. Herein, a novel electrochemical biosensor was constructed by integrating laser-induced graphene (LIG) electrode on polyimide (PI) foil and MnO2 nanosheets loaded on the paper for point-of-care test (POCT) of organophosphorus (OPs) residues. The principle of this biosensor relied on acetylcholinesterase (AChE)-catalyzed hydrolytic product-triggered disintegration of MnO2 nanosheets for releasing assistant DNA to initiate nicking enzyme-aided recycling amplification. In the presence of OPs, the activity of AChE was inhibited and could not initiate the cleavage of the electroactive molecules-labeled hairpin probe on the electrode, resulting in the maintenance of the electrochemical response to realize a "sign-on" determination of OPs. The proposed biosensor exhibited satisfactory analytical performance for OPs assay with a linear range from 3 to 4000 ng/mL and a limit of detection down to 1.2 ng/mL. Moreover, the biosensor was useful for evaluating the residual level of pesticides in the vegetables. Therefore, this novel biosensor holds great promise for OPs assay and opens a new avenue on the development of higher-performance POCT device for sensing applications in the environment and food safety fields.


Subject(s)
Biosensing Techniques , Graphite , Pesticides , Acetylcholinesterase , DNA , Lasers , Manganese Compounds , Organophosphorus Compounds , Oxides
4.
Biosens Bioelectron ; 173: 112832, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33234387

ABSTRACT

This work established an immobilization-free photoelectrochemical (PEC) biosensor for ultrasensitive determination of carcinoembryonic antigen (CEA) based on the DNA-functionalized metal-organic frameworks (MOFs) and T7 exonuclease-aided recycling amplification. In this proposal, MOFs were served as nanocarriers for efficient encapsulation of electron donors, while an ingeniously designed hairpin probe (HP) employed as the recognition element. The recognition of CEA by its aptamer sequence in HP triggered the conformational change and the T7 exonuclease-aided recycling amplification, which opened the pore of MOFs to release a large number of electron donors, producing a significantly increased photocurrent. Benefitting from the high loading ability of MOFs and the excellent amplification efficiency of the T7 exonuclease-assisted recycling process, the proposed biosensor is capable of ultrasensitive and highly selective determination of CEA with a detection limit down to 0.36 fg mL-1 and a wide linear range from 1.0 fg mL-1 to 10 ng mL-1. Moreover, the proposed biosensor can also apply to measure CEA in spiked serum samples, indicating that this PEC biosensor holds excellent potential for application in bioanalysis and early disease diagnosis.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Nucleic Acids , DNA , Electrochemical Techniques , Limit of Detection
5.
Biosens Bioelectron ; 194: 113581, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34461568

ABSTRACT

Precise microRNA (miRNA) analysis is significant importance for early disease diagnosis. Herein, a novel flexible photoelectrochemical (PEC) biosensor for miRNA determination was developed by employing CdS NPs-modified carbon cloth (CC) on polyimide (PI) film as photoelectric material to provide the PEC responses and an efficient four-stage reaction system as the target recognition and signal amplification unit to improve the analytical performance. In this PEC biosensor, the presence of target miR-21 would trigger the catalytic hairpin assembly (CHA) and the following hybridization chain reaction (HCR) to produce a long dsDNA labeled with numerous biotins, which would further capture a large amount of alkaline phosphatase (ALP) for catalyzing the generation of ascorbic acid (AA). As an efficient electron donor, AA could be oxidized by the photoelectrode, which would initiate a redox cycling amplification process to regenerate AA, resulting in the enhancement of the photocurrent response. Benefitting from the synergistic nucleic acid-based, enzyme catalytic, and chemical signal amplification strategies, the proposed biosensing strategy enabled ultrasensitive miRNA determination. As expected, the PEC biosensor performed satisfactory analytical performances with a linear range of 1 fM to 1 nM and the detection limit down to 0.41 fM. Furthermore, the PEC biosensing strategy exhibited recommendable selectivity, stability, flexibility, and practical applicability. Therefore, this sensing platform provides promising potential for application in bioassay and early diagnosis of disease.


Subject(s)
Biosensing Techniques , MicroRNAs , DNA , Electrochemical Techniques , Nucleic Acid Hybridization
SELECTION OF CITATIONS
SEARCH DETAIL