Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(7): 1701-1718.e28, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38503283

ABSTRACT

Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.


Subject(s)
RNA , Stress Granules , Cytoplasm , RNA, Messenger/genetics , Stress, Physiological , Humans , HeLa Cells
2.
Small ; 20(1): e2304050, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712104

ABSTRACT

Semiconductor-based step-scheme (S-scheme) heterojunctions possess many merits toward mimicking natural photosynthesis. However, their applications for solar-to-chemical energy conversion are hindered by inefficient charge utilization and unsatisfactory surface reactivity. Herein, two synergistic protocols are demonstrated to overcome these limitations based on the construction of a hollow plasmonic p-metal-n S-scheme heterojunction photoreactor with spatially separated dual noble-metal-free cocatalysts. On one side, plasmonic Au, inserted into the heterointerfaces of CuS@ZnIn2 S4 core-shell nanoboxes, not only accelerates the transfer and recombination of useless charges, enabling a more thorough separation of useful ones for CO2 reduction and H2 O oxidation but also generates hot electrons and holes, respectively injects them into ZnIn2 S4 and CuS, further increasing the number of active carriers participating in redox reactions. On the other side, Fe(OH)x and Ti3 C2 cocatalysts, separately located on the CuS and ZnIn2 S4 surface, enrich the redox sites, adjust the reduction potential and pathway for selective CO2 -to-CH4 transformation, and balance the transfer and consumption of photocarriers. As expected, significantly enhanced activity and selectivity in CH4 production are achieved by the smart design along with nearly stoichiometric ratios of reduction and oxidation products. This study paves the way for optimizing artificial photosynthetic systems via rational interfacial channel introduction and surface cocatalyst modification.

3.
J Virol ; 97(6): e0037023, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37219458

ABSTRACT

DNA replication of E1-deleted first-generation adenoviruses (AdV) in cultured cancer cells has been reported repeatedly and it was suggested that certain cellular proteins could functionally compensate for E1A, leading to the expression of the early region 2 (E2)-encoded proteins and subsequently virus replication. Referring to this, the observation was named E1A-like activity. In this study, we investigated different cell cycle inhibitors with respect to their ability to increase viral DNA replication of dl70-3, an E1-deleted adenovirus. Our analyses of this issue revealed that in particular inhibition of cyclin-dependent kinases 4/6 (CDK4/6i) increased E1-independent adenovirus E2-expression and viral DNA replication. Detailed analysis of the E2-expression in dl70-3 infected cells by RT-qPCR showed that the increase in E2-expression originated from the E2-early promoter. Mutations of the two E2F-binding sites in the E2-early promoter (pE2early-LucM) caused a significant reduction in E2-early promoter activity in trans-activation assays. Accordingly, mutations of the E2F-binding sites in the E2-early promoter in a virus named dl70-3/E2Fm completely abolished CDK4/6i induced viral DNA replication. Thus, our data show that E2F-binding sites in the E2-early promoter are crucial for E1A independent adenoviral DNA replication of E1-deleted vectors in cancer cells. IMPORTANCE E1-deleted AdV vectors are considered replication deficient and are important tools for the study of virus biology, gene therapy, and large-scale vaccine development. However, deletion of the E1 genes does not completely abolish viral DNA replication in cancer cells. Here, we report, that the two E2F-binding sites in the adenoviral E2-early promoter contribute substantially to the so-called E1A-like activity in tumor cells. With this finding, on the one hand, the safety profile of viral vaccine vectors can be increased and, on the other hand, the oncolytic property for cancer therapy might be improved through targeted manipulation of the host cell.


Subject(s)
Adenoviridae , Cell Cycle , DNA Replication , Virus Replication , Adenoviridae/genetics , Adenoviridae/metabolism , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Binding Sites , Cell Cycle/drug effects , Cell Line, Tumor , Cells/drug effects , Cells/virology , DNA Replication/drug effects , DNA, Viral/metabolism , Gene Expression Regulation, Viral/drug effects , Mutation , Promoter Regions, Genetic/genetics , Protein Kinase Inhibitors/pharmacology , Virus Replication/physiology , Humans
4.
FASEB J ; 37(1): e22713, 2023 01.
Article in English | MEDLINE | ID: mdl-36520086

ABSTRACT

Parenteral nutrition (PN)-induced villus atrophy is a major cause of intestinal failure (IF) for children suffering from short bowel syndrome (SBS), but the precise mechanism remains unclear. Herein, we report a pivotal role of farnesoid X receptor (FXR) signaling and fatty acid oxidation (FAO) in PN-induced villus atrophy. A total of 14 pediatric SBS patients receiving PN were enrolled in this study. Those patients with IF showed longer PN duration and significant intestinal villus atrophy, characterized by remarkably increased enterocyte apoptosis concomitant with impaired FXR signaling and decreased FAO genes including carnitine palmitoyltransferase 1a (CPT1a). Likewise, similar changes were found in an in vivo model of neonatal Bama piglets receiving 14-day PN, including villus atrophy and particularly disturbed FAO process responding to impaired FXR signaling. Finally, in order to consolidate the role of the FXR-CPT1a axis in modulating enterocyte apoptosis, patient-derived organoids (PDOs) were used as a mini-gut model in vitro. Consequently, pharmacological inhibition of FXR by tauro-ß-muricholic acid (T-ßMCA) evidently suppressed CPT1a expression leading to reduced mitochondrial FAO function and inducible apoptosis. In conclusion, impaired FXR/CPT1a axis and disturbed FAO may play a pivotal role in PN-induced villus atrophy, contributing to intestinal failure in SBS patients.


Subject(s)
Gastrointestinal Diseases , Intestinal Failure , Short Bowel Syndrome , Animals , Swine , Short Bowel Syndrome/complications , Carnitine O-Palmitoyltransferase/metabolism , Parenteral Nutrition/adverse effects , Atrophy
5.
J Fluoresc ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884826

ABSTRACT

Two novel naphthalimide derivatives PTZNI-Cz and PTZNI-TPA were successfully designed and synthesized, in which phenothiazine, triphenylamine and carbazole were used as electron donors and naphthalimide was used as the electron acceptor. Their photophysical, electrochemical, and thermal properties were investigated. These derivatives showed remarkable aggregation-induced emission (AIE) effect. Furthermore, the maximum emission peaks of PTZNI-Cz and PTZNI-TPA in the thin film state are at 610 nm and 623 nm respectively, which is typical of red fluorescent materials.

6.
Small ; 19(2): e2204774, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36394158

ABSTRACT

Construction of core-shell semiconductor heterojunctions and plasmonic metal/semiconductor heterostructures represents two promising routes to improved light harvesting and promoted charge separation, but their photocatalytic activities are respectively limited by sluggish consumption of charge carriers confined in the cores, and contradictory migration directions of plasmon-induced hot electrons and semiconductor-generated electrons. Herein, a semiconductor/metal/semiconductor stacked core-shell design is demonstrated to overcome these limitations and significantly boost the photoactivity in CO2  reduction. In this smart design, sandwiched Au serves as a "stone", which "kills two birds" by inducing localized surface plasmon resonance for hot electron generation and mediating unidirectional transmission of conduction band electrons and hot electrons from TiO2  core to MoS2  shell. Meanwhile, upward band bending of TiO2  drives core-to-shell migration of holes through TiO2 -MoS2  interface. The co-existence of TiO2  â†’ Au â†’ MoS2  electron flow and TiO2  â†’ MoS2  hole flow contributes to spatial charge separation on different locations of MoS2  outer layer for overall redox reactions. Additionally, reduction potential of photoelectrons participating in the CO2  reduction is elaborately adjusted by tuning the thickness of MoS2  shell, and thus the product selectivity is delicately regulated. This work provides fresh hints for rationally controlling the charge transfer pathways toward high-efficiency CO2  photoreduction.

7.
Small ; 19(42): e2302717, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37340893

ABSTRACT

Step-scheme (S-scheme) heterojunctions have exhibited great potential in photocatalysis due to their extraordinary light harvesting and high redox capacities. However, inadequate S-scheme recombination of useless carriers in weak redox abilities increases the probability of their recombination with useful ones in strong redox capabilities. Herein, a versatile protocol is demonstrated to overcome this impediment based on the insertion of nano-piezoelectrics into the heterointerfaces of S-scheme heterojunctions. Under light excitation, the piezoelectric inserter promotes interfacial charge transfer and produces additional photocarriers to recombine with useless electrons and holes, ensuring a more thorough separation of powerful ones for CO2 reduction and H2 O oxidation. When introducing extra ultrasonic vibration, a piezoelectric polarization field is established, which allows efficient separation of charges generated by the embedded piezoelectrics and expedites their recombination with weak carriers, further increasing the number of strong ones participating in the redox reactions. Encouraged by the greatly improved charge utilization, significantly enhanced photocatalytic and piezophotocatalytic activities in CH4 , CO, and O2 production are achieved by the designed stacked catalyst. This work highlights the importance in strengthening the necessary charge recombination in S-scheme heterojunctions and presents an efficient and novel strategy to synergize photocatalysis and piezocatalysis for renewable fuels and value-added chemicals production.

8.
J Fluoresc ; 33(6): 2503-2513, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37162634

ABSTRACT

Here, two novel naphthalimide derivatives SNI-Cz and SNI-DCz with AIE were designed and synthesized. The correctness of the two structures was characterized by NMR and HRMS. Their crystal structures, photophysical properties, electrochemical properties, thermal stabilities, fluorescence lifetime and yields have been characterized. Photoluminescence experiments revealed that SNI-DCz had superior properties due to the D-π-A-π-D structure and sliding away stacking of molecules. SNI-DCz exhibited weak fluorescence in pure DMF, with a significant AIE effect observed in the 40% water mixture and a sharp increase in fluorescence intensity was also observed. Cyclic voltammetry and thermogravimetric analysis indicated that SNI-DCz had good electron affinity and thermal stability. The excellent properties of SNI-DCz made it a promising emitter for optoelectronics.

9.
Cogn Emot ; 37(6): 1116-1122, 2023.
Article in English | MEDLINE | ID: mdl-37287280

ABSTRACT

Previous research has shown that the proactive deprioritization of emotional distractors through the provision of information about the distractors or passive habituation of emotional distractors may attenuate emotion-induced blindness (EIB) in the rapid serial visual presentation stream. However, whether prior memory encoding of emotional distractors could bias the EIB effect remains unknown. To address this question, this study employed a three-phase paradigm integrating an item-method direct forgetting (DF) procedure with a classic EIB procedure. Participants completed a memory coding phase to either remember or forget negative pictures, then performed an intermediate phase of the EIB test, and finally finished a recognition test. Critically, the same to-be-forgotten (TBF) and to-be-remembered (TBR) negative pictures in the memory learning phase were used as emotional distractors in the intermediate EIB test. The results replicated the typical DF effect by showing higher recognition accuracies for TBR pictures compared to those for TBF pictures. More importantly, the TBF negative distractors attenuated the EIB effect compared to the TBR negative distractors, but showed a comparable EIB effect as the novel negative distractors. These findings indicate that prior memory encoding manipulations of negative distractors could bias subsequent EIB effects, providing an important approach to modulate the EIB effect.


Subject(s)
Electroencephalography , Evoked Potentials , Humans , Electroencephalography/methods , Emotions , Recognition, Psychology , Mental Recall , Bias , Cues
10.
Angew Chem Int Ed Engl ; 62(17): e202300459, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36849710

ABSTRACT

Utilizing weak interactions to effectively recover and separate precious metals in solution is of great importance but the practice remains a challenge. Herein, we report a novel strategy to achieve precise recognition and separation of gold by regulating the hydrogen-bond (H-bond) nanotrap within the pore of covalent organic frameworks (COFs). It is found that both COF-HNU25 and COF-HNU26 can efficiently capture AuIII with fast kinetics, high selectivity, and uptake capacity. In particular, the COF-HNU25 with the high density of H-bond nanotraps exhibits an excellent gold uptake capacity of 1725 mg g-1 , which is significantly higher than that (219 mg g-1 ) of its isostructural COF (COF-42) without H-bond nanostrap in the pores. Importantly, the uptake capacity is strongly correlated to the number of H-bonds between phenolic OH in the COF and [AuCl4 ]- in water, and multiple H-bond interactions are the key driving force for the excellent gold recovery and reusability of the adsorbent.

11.
Small ; 18(40): e2203171, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36047970

ABSTRACT

Earth-abundant layered tungsten disulfide (WS2 ) is a well-known electrocatalyst for acidic hydrogen evolution, but it becomes rather sluggish for alkaline hydrogen or oxygen evolution due to the low-density edge sites, poor conductivity, and unfavorable water dissociation behavior. Here, an interfacial engineering strategy to construct an efficient bifunctional electrocatalyst by in situ growing N-doped WS2 nanoparticles on highly conductive cobalt nitride (N-WS2 /Co3 N) for concurrent hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) is demonstrated. Benefiting from the good conductivity of Co3 N, rich well-oriented edge sites and water-dissociation sites at the nanoscale interfaces between N-WS2 and Co3 N, the resultant N-WS2 /Co3 N exhibits remarkable HER activity in 1 m potasium hydroxide (KOH) requiring a small overpotential of 67 mV at 10 mA cm-2 with outstanding long-term durability at 500 mA cm-2 , representing the best alkaline hydrogen-evolving activity among reported WS2 catalysts. In particular, this hybrid catalyst also shows exceptional catalytic activities toward theurea oxidation reaction featured by very low potentials of 1.378 and 1.41 V to deliver 100 and 500 mA cm-2 along with superb large-current stability in 1 m KOH + 0.5 m urea. Moreover, the assembled two-electrode cell delivers the industrially practical current density of 500 mA cm-2 at a low cell voltage of 1.72 V with excellent durability in alkaline urea-containing solutions, outperforming most MoS2 -like bifunctional electrocatalysts for overall water splitting reported hitherto. This work provides a promising avenue for the development of high-performance WS2 -based electrocatalysts for alkaline water splitting.

12.
J Fluoresc ; 32(5): 1833-1842, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35727382

ABSTRACT

Two blue donor-acceptor fluorophores with 1,4,5-triphenylimidazole as the electron-transporting unit and phenothiazine as the hole-transporting unit were synthesized by grafting 1,4,5-triphenylimidazole moieties onto 3- and 3,7-position of the phenothiazine core and characterized by spectroscopic methods. Their thermal stability, photophysical, electrochemical and electroluminescence properties were systematically investigated. These compounds exhibit good thermal stability and show blue emission in dichloromethane solution and thin solid films. The solution-processed doped devices were fabricated by using these fluorophores as the emitting dopant in 1,3-bis(N-carbazolyl)benzene host, in which the device fabricated from the fluorophore containing two 1,4,5-triphenylimidazole moieties exhibited blue emission with a luminance of 648 cd/m2 and external quantum efficiency of 1.48%.

13.
Zhongguo Zhong Yao Za Zhi ; 47(2): 392-402, 2022 Jan.
Article in Zh | MEDLINE | ID: mdl-35178981

ABSTRACT

Obvious epigenetic differentiation occurred on Lycium barbarum in different cultivation areas in China. To investigate the difference and change rule of DNA methylation level and pattern of L. barbarum from different cultivation areas in China, the present study employed fluorescence-assisted methylation-sensitive amplified polymorphism(MSAP) to analyze the methylation level and polymorphism of 53 genomic DNA samples from Yinchuan Plain in Ningxia, Bayannur city in Inner Mongolia, Jingyuan county and Yumen city in Gansu, Delingha city in Qinghai, and Jinghe county in Xinjiang. The MSAP technical system suitable for the methylation analysis of L. barbarum genomic DNA was established and ten pairs of selective primers were selected. Among amplified 5'-CCGG-3' methylated sites, there were 35.85% full-methylated sites and 39.88% hemi-methylated sites, showing a high degree of epigenetic differentiation. Stoichiometric analysis showed that the ecological environment was the main factor affecting the epigenetic characteristics of L. barbarum, followed by cultivated varieties. Precipitation, air temperature, and soil pH were the main ecological factors affecting DNA methylation in different areas. This study provided a theoretical basis for the analysis of the epigenetic mechanism of L. barbarum to adapt to the diffe-rent ecological environments and research ideas for the introduction, cultivation, and germplasm traceability of L. barbarum.


Subject(s)
Lycium , China , DNA Methylation , DNA Primers , Epigenesis, Genetic , Lycium/genetics
14.
Chemistry ; 27(36): 9391-9397, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33856718

ABSTRACT

As an important member of crystalline porous polymers, acylhydrazone-linked covalent organic frameworks (COFs) have gained much attention in recent years. However, the low structural stability imparts a limit on their practical applications. To tackle this problem, we report a simple strategy to increase the chemical stability of acylhydrazone-linked COFs by incorporating azobenzene groups in the conjugated framework. Through reinforcing the π-π stacking interactions between the adjacent layers with increased π-surface, it is surprising to find that the resulting materials exhibit extreme stability in harsh environments, such as in strong acid, strong base, aqueous educing agent and boiling water, even exposed to air for one year. As a proof-of-concept, such frameworks have been used to remove various organic micropollutants such as antibiotics, plastic components, endocrine disruptors, and carcinogens from water with high capacity, fast speed and excellent reusability over a wide pH range at environmentally relevant concentrations. The results provide a new avenue to significantly enhance the stability of COFs for practical applications.


Subject(s)
Metal-Organic Frameworks , Polymers , Porosity , Water
15.
Angew Chem Int Ed Engl ; 60(8): 3928-3933, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33037752

ABSTRACT

Pickering emulsions are an excellent platform for interfacial catalysis. However, developing simple and efficient strategies to achieve product separation and catalyst and emulsifier recovery is still a challenge. Herein, we report the reversible transition between emulsification and demulsification of a light-responsive Pickering emulsion, triggered by alternating between UV and visible light irradiation. The Pickering emulsion is fabricated from Pd-supported silica nanoparticles, azobenzene ionic liquid surfactant, n-octane, and water. This phase behavior is attributed to the adsorption of azobenzene ionic liquid surfactant on the surface of the nanoparticles and the light-responsive activity of ionic liquid surfactant. The Pickering emulsion can be used as a microreactor that enables catalytic reaction, product separation as well as emulsifier and catalyst recycling. Catalytic hydrogenation of unsaturated hydrocarbons at room temperature and atmospheric pressure has been performed in this system to demonstrate product separation and emulsifier and catalyst re-use.

16.
Chromosome Res ; 27(3): 167-178, 2019 09.
Article in English | MEDLINE | ID: mdl-31037501

ABSTRACT

MicroRNAs (miRNAs) play various roles in the regulation of human disease, including cardiovascular diseases. MiR-153 has been previously shown to be involved in regulating neuron survival during cerebral ischemia/reperfusion (I/R) injury. However, whether miR-153 is involved in I/R-induced cardiomyocyte apoptosis remains to be elucidated. In this study, we aimed to explore the role of miR-153 in the regulation of I/R-induced cardiomyocyte apoptosis and to investigate the miR-153-mediated molecular signaling pathway responsible for its effect on cardiomyocytes using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that OGD/R treatment induced significant upregulation of miR-153 in cardiomyocytes causing reactive oxygen species (ROS) production and cell apoptosis signaling activation and subsequently leading to cardiomyocyte apoptosis. Suppression of miR-153 protected cardiomyocytes against OGD/R treatment. We further identified that nuclear factor-like 2 (Nrf2) is a functional target of miR-153. Nrf2/ heme oxygenase-1 (HO-1) signaling plays a critical role in miR-153 regulated OGD/R-induced cardiomyocyte apoptosis. Our study indicates that the inhibition of miR-153 or restoration of Nrf2 may serve as a potential therapeutic strategy for ischemia/reperfusion injury prevention.


Subject(s)
Apoptosis/drug effects , MicroRNAs/physiology , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/pathology , Glucose/metabolism , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/metabolism , Humans , MicroRNAs/metabolism , Myocardial Reperfusion Injury/pathology , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/metabolism , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
17.
Article in English | MEDLINE | ID: mdl-31358591

ABSTRACT

Angola was the main origin country for the imported malaria in Henan Province, China. Antimalarial drug resistance has posed a threat to the control and elimination of malaria. Several molecular markers were confirmed to be associated with the antimalarial drug resistance, such as pfcrt, pfmdr1, pfdhfr, pfdhps, and K13. This study evaluated the drug resistance of the 180 imported Plasmodium falciparum isolates from Angola via nested PCR using Sanger sequencing. The prevalences of pfcrt C72V73M74N75K76, pfmdr1 N86Y184S1034N1042D1246, pfdhfr A16N51C59S108D139I164, and pfdhps S436A437A476K540A581 were 69.4%, 59.9%, 1.3% and 6.3%, respectively. Three nonsynonymous (A578S, M579I, and Q613E) and one synonymous (R471R) mutation of K13 were found, the prevalences of which were 2.5% and 1.3%, respectively. The single nucleotide polymorphisms (SNPs) in pfcrt, pfmdr1, pfdhfr, and pfdhps were generally shown as multiple mutations. The mutant prevalence of pfcrt reduced gradually, but pfdhfr and pfdhps still showed high mutant prevalence, while pfmdr1 was relatively low. The mutation of the K13 gene was rare. Molecular surveillance of artemisinin (ART) resistance will be used as a tool to evaluate the real-time efficacy of the artemisinin-based combination therapies (ACTs) and the ART resistance situation.


Subject(s)
Dihydropteroate Synthase/genetics , Drug Resistance/genetics , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Tetrahydrofolate Dehydrogenase/genetics , Amino Acid Substitution , Angola/epidemiology , Antimalarials/pharmacology , Artemisinins/pharmacology , China/epidemiology , Dihydropteroate Synthase/metabolism , Epidemiological Monitoring , Gene Expression , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Membrane Transport Proteins/metabolism , Molecular Epidemiology , Multidrug Resistance-Associated Proteins/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Travel
18.
Parasitology ; 146(3): 372-379, 2019 03.
Article in English | MEDLINE | ID: mdl-30259821

ABSTRACT

Efficacious antimalarial drugs are important for malaria control and elimination, and continuous monitoring of their efficacy is essential. The prevalence and distribution of Pfmdr1 were evaluated in African migrant workers in Henan Province. Among 632 isolates, 13 haplotypes were identified, NYSND (39.87%, 252/632), YYSND (2.85%, 18/632), NFSND (31.01%, 196/632), NYSNY (0.47%, 3/632), YFSND (13.77%, 87/632), NFSNY (0.32%, 2/632), YYSNY (2.06%, 13/632), YFSNY (0.16%, 1/632), N/Y YSND (1.90%, 12/632), N Y/F SND (6.17%, 39/632), N/Y Y/F SND (0.47%, 3/632), YYSN D/Y (0.16%, 1/632) and N/Y FSND (0.79%, 5/632). The highest frequency of NYSND was observed in individuals from North Africa (63.64%, 7/11), followed by South Africa (61.33%, 111/181), Central Africa (33.33%, 56/168), West Africa (28.94%, 68/235) and East Africa (27.03%, 10/37) (χ2 = 54.605, P < 0.05). The highest frequency of NFSND was observed in East Africa (48.65%, 18/37), followed by West Africa (39.14%, 92/235), Central Africa (26.79%, 45/168), South Africa (22.65%, 41/181) and North Africa (9.09%, 1/11) (χ2 = 22.368 P < 0.05). The mutant prevalence of codons 86 and 184 decreased. These data may provide complementary information on antimalarial resistance that may be utilized in the development of a treatment regimen for Henan Province.


Subject(s)
Communicable Diseases, Imported/epidemiology , Malaria, Falciparum/epidemiology , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Transients and Migrants , Adolescent , Adult , Africa/ethnology , Aged , China/epidemiology , Communicable Diseases, Imported/parasitology , Female , Haplotypes/genetics , Humans , Malaria, Falciparum/parasitology , Male , Middle Aged , Multidrug Resistance-Associated Proteins/metabolism , Prevalence , Young Adult
19.
Int J Mol Sci ; 20(7)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987314

ABSTRACT

The reversible phase transfer of compounds between two immiscible liquid phases has many applications in a wide range of fields, and ionic liquids have been widely used as potential functional solvents and catalysts. However, photo-triggered reversible phase transfer of ionic liquids between the organic phase and water phase has not been reported so far. In the present work, the reversible phase transfer of six kinds of azobenzene-based ionic liquid surfactants between the organic phase and water phase is investigated by alternative irradiation of UV and visible light. Factors affecting the transfer efficiency, such as chemical structure and concentration of the ionic liquid surfactants, equilibrium photo-isomerization degree, and the aggregation state of ionic liquid surfactants are investigated in detail. It is shown that transfer efficiency greater than 89% was achieved under optimal conditions, equilibrium photo-isomerization degree of the ionic liquid surfactants is the main factor to determine their transfer efficiencies, and the aggregation of cis-isomers is not beneficial for the transfer.


Subject(s)
Azo Compounds/chemistry , Ionic Liquids/chemistry , Oils/chemistry , Surface-Active Agents/chemistry , Water/chemistry
20.
Molecules ; 24(7)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934963

ABSTRACT

Recently, the efficient chemical fixation of carbon dioxide (CO2) into high value chemicals without using noble metal catalysts has become extremely appealing from the viewpoint of sustainable chemistry. In this work, a one-pot three component reaction of propargylic alcohols, anines and CO2 that can proceed in an atom economy and environmentally benign manner by combination of CuI and tetrabutylphosphonium imidazol ([P4444][Im]) as a catalyst was described. Catalysis studies indicate that this catalytic system is an effective catalyst for the conversion of CO2 into oxazolidinones at room temperature and ambient pressure without any solvent. The results provide a useful way to design novel noble metal-free catalyst systems for the transformation of CO2 into other valuable compounds.


Subject(s)
Carbon Dioxide/chemistry , Ionic Liquids/chemistry , Oxazolidinones/chemistry , Temperature , Alcohols/chemistry , Amines/chemistry , Catalysis , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL