Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
Add more filters

Publication year range
1.
Cell Mol Life Sci ; 81(1): 49, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252317

ABSTRACT

Intervertebral disc degeneration (IVDD) is one of the most prevalent spinal degenerative disorders and imposes places heavy medical and economic burdens on individuals and society. Mechanical overloading applied to the intervertebral disc (IVD) has been widely recognized as an important cause of IVDD. Mechanical overloading-induced chondrocyte ferroptosis was reported, but the potential association between ferroptosis and mechanical overloading remains to be illustrated in nucleus pulposus (NP) cells. In this study, we discovered that excessive mechanical loading induced ferroptosis and endoplasmic reticulum (ER) stress, which were detected by mitochondria and associated markers, by increasing the intracellular free Ca2+ level through the Piezo1 ion channel localized on the plasma membrane and ER membrane in NP cells. Besides, we proposed that intracellular free Ca2+ level elevation and the activation of ER stress are positive feedback processes that promote each other, consistent with the results that the level of ER stress in coccygeal discs of aged Piezo1-CKO mice were significantly lower than that of aged WT mice. Then, we confirmed that selenium supplementation decreased intracellular free Ca2+ level by mitigating ER stress through upregulating Selenoprotein K (SelK) expression. Besides, ferroptosis caused by the impaired production and function of Glutathione peroxidase 4 (GPX4) due to mechanical overloading-induced calcium overload could be improved by selenium supplementation through Se-GPX4 axis and Se-SelK axis in vivo and in vitro, eventually presenting the stabilization of the extracellular matrix (ECM). Our findings reveal the important role of ferroptosis in mechanical overloading-induced IVDD, and selenium supplementation promotes significance to attenuate ferroptosis and thus alleviates IVDD, which might provide insights into potential therapeutic interventions for IVDD.


Subject(s)
Ferroptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , Phospholipid Hydroperoxide Glutathione Peroxidase , Selenium , Selenoproteins , Animals , Humans , Mice , Cell Membrane , Ion Channels , Selenoproteins/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
2.
Ecol Lett ; 27(9): e14508, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39354903

ABSTRACT

A self-reinforcing positive feedback is regarded as a critical process for maintaining alternative stable states (ASS); however, identification of ASS and quantification of positive feedbacks remain elusive in natural ecosystems. Here, we used large-scale field surveys to search for ASS and a positive feedback mechanism under a wide range of habitats on the Tibetan Plateau. Using multiple methods, we proved that three stable states exist that accompany alpine marsh degradation. Positive feedbacks between changing soil moisture and plant community composition forced the ecosystem into another stable state, and the alteration of water use efficiency (WUE) of the component species contributed to this shift. This study provides the first empirical evidence that positive feedback loops maintain ASS in the alpine marsh ecosystem on the Tibetan Plateau. Our research revealed the powerful driving role of plants in transitions between states, which may support the conservation and restoration of global alpine marsh ecosystems.


Subject(s)
Soil , Wetlands , Soil/chemistry , Tibet , Water , Plants , Ecosystem
3.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34601563

ABSTRACT

Coronavirus disease 2019 (COVID-19) has attracted research interests from all fields. Phylogenetic and social network analyses based on connectivity between either COVID-19 patients or geographic regions and similarity between syndrome coronavirus 2 (SARS-CoV-2) sequences provide unique angles to answer public health and pharmaco-biological questions such as relationships between various SARS-CoV-2 mutants, the transmission pathways in a community and the effectiveness of prevention policies. This paper serves as a systematic review of current phylogenetic and social network analyses with applications in COVID-19 research. Challenges in current phylogenetic network analysis on SARS-CoV-2 such as unreliable inferences, sampling bias and batch effects are discussed as well as potential solutions. Social network analysis combined with epidemiology models helps to identify key transmission characteristics and measure the effectiveness of prevention and control strategies. Finally, future new directions of network analysis motivated by COVID-19 data are summarized.


Subject(s)
COVID-19 , Models, Biological , Pandemics , Phylogeny , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
4.
New Phytol ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166427

ABSTRACT

Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.

5.
Ecol Appl ; 34(5): e2984, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753679

ABSTRACT

Seed rain and the soil seed bank represent the dispersal of seeds in space and time, respectively, and can be important sources of recruitment of new individuals during plant community regeneration. However, the temporal dynamics of seed rain and the mechanisms by which the seed rain and soil seed bank may play a role in plant community regeneration with increased grazing disturbance remain unclear. Seed rain, soil seed bank, aboveground vegetation, and rodent density were sampled along a grazing gradient in an alpine marsh on the eastern Tibetan Plateau. We described the temporal dynamics of seed dispersal using Bayesian generalized mixed models, and nonmetric multidimensional scaling and the structural equation model were used to examine the effects of grazing disturbance on the relative role of seed rain and soil seed bank on aboveground plant community regeneration. The temporal dynamics of seed rain changed from a unimodal to a bimodal pattern with increased grazing disturbance. Both species diversity and seed density of the seed rain and seed bank increased significantly with increased grazing disturbance. Increased grazing disturbance indirectly increased the similarity of composition between seed rain, seed bank, and aboveground plant community by directly increasing species diversity and abundance of aboveground plant community. However, increased grazing disturbance also indirectly decreased the similarity of seed rain, soil seed bank, and aboveground plant community by directly increasing rodent density. The similarity between seed rain and aboveground plant community was greater than that of the soil seed bank and aboveground plant community with increased grazing disturbance. Grazing disturbance spreads the risk of seed germination and seedling establishment by changing the temporal dynamics of seed dispersal. Plants (positive) and rodents (negative) mediated the role of seed rain and soil seed bank in plant community regeneration. The role of seed rain in plant community regeneration is higher than the seed bank in disturbed alpine marshes. Our findings increase our understanding of the regeneration process of the plant community, and they provide valuable information for the conservation and restoration of alpine marsh ecosystems.


Subject(s)
Herbivory , Rodentia , Seeds , Animals , Rodentia/physiology , Seeds/physiology , Seed Bank , Plants/classification , Tibet , Seed Dispersal
6.
BMC Biol ; 21(1): 192, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37697363

ABSTRACT

BACKGROUND: Lauraceae is well known for its significant phylogenetic position as well as important economic and ornamental value; however, most evergreen species in Lauraceae are restricted to tropical regions. In contrast, camphor tree (Cinnamomum camphora) is the most dominant evergreen broadleaved tree in subtropical urban landscapes. RESULTS: Here, we present a high-quality reference genome of C. camphora and conduct comparative genomics between C. camphora and C. kanehirae. Our findings demonstrated the significance of key genes in circadian rhythms and phenylpropanoid metabolism in enhancing cold response, and terpene synthases (TPSs) improved defence response with tandem duplication and gene cluster formation in C. camphora. Additionally, the first comprehensive catalogue of C. camphora based on whole-genome resequencing of 75 accessions was constructed, which confirmed the crucial roles of the above pathways and revealed candidate genes under selection in more popular C. camphora, and indicated that enhancing environmental adaptation is the primary force driving C. camphora breeding and dominance. CONCLUSIONS: These results decipher the dominance of C. camphora in subtropical urban landscapes and provide abundant genomic resources for enlarging the application scopes of evergreen broadleaved trees.


Subject(s)
Cinnamomum camphora , Cinnamomum camphora/genetics , Phylogeny , Plant Breeding , Sequence Analysis, DNA , Genomics
7.
Biochem Biophys Res Commun ; 677: 20-25, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37542771

ABSTRACT

BACKGROUND: Osteoarthritis is one of the most common degenerative joint disorders, characterized by articular cartilage breakdown, synovitis, osteophytes generation and subchondral bone sclerosis. Pentraxin 3 (PTX3) is a long pentraxin protein, secreted by immune cells, and PTX3 is identified to play a critical role in inflammation and macrophage polarization. However, the underlying mechanism of PTX3 in osteoarthritis under the circumstance of Ptx3-knockout (KO) mice model is still unknown. METHODS: Murine destabilization of the medial meniscus (DMM) OA model was created in Ptx3-knockout (KO) and wildtype mice, respectively. The degenerative status of cartilage was detected by Safranin O, H&E staining, immunohistochemistry (IHC) and micro-CT. OARSI scoring was employed to assess the proteoglycan of cartilage. Serum inflammatory cytokines were examined by ELISA and systematic macrophage polarization in spleen was analyzed by flow cytometry. RESULTS: Safranin O and H&E staining confirmed that the joint cartilage was mostly with reduced degeneration in both the senior KO mice and the DMM model generated from the KO mice, compared to the WT group. This is also supported by micro-CT examination and OARSI scoring. Immunohistochemistry illustrated an up-regulation of Aggrecan and Collagen 2 and down-regulation of ADAMTS-5 and MMP13 in KO mice in comparison with the WT mice. ELISA indicated a dramatical decrease in the serum levels of TNF-α and IL-6 in KO mice. Polarization of M2-like macrophages was observed in the KO group. CONCLUSION: Pentraxin 3 deficiency significantly ameliorated the severity of osteoarthritis by preventing cartilage degeneration and alleviated systematic inflammation by inducing M2 polarization.

8.
New Phytol ; 240(4): 1421-1432, 2023 11.
Article in English | MEDLINE | ID: mdl-37632265

ABSTRACT

Global warming is advancing the timing of spring leaf-out in temperate and boreal plants, affecting biological interactions and global biogeochemical cycles. However, spatial variation in spring phenological responsiveness to climate change within species remains poorly understood. Here, we investigated variation in the responsiveness of spring phenology to temperature (RSP; days to leaf-out at a given temperature) in 2754 Ginkgo biloba twigs of trees distributed across subtropical and temperate regions in China from 24Ā°N to 44Ā°N. We found a nonlinear effect of mean annual temperature on spatial variation in RSP, with the highest response rate at c. 12Ā°C and lower response rates at warmer or colder temperatures due to declines in winter chilling accumulation. We then predicted the spatial maxima in RSP under current and future climate scenarios, and found that trees are currently most responsive in central China, which corresponds to the species' main distribution area. Under a high-emission scenario, we predict a 4-degree latitude shift in the responsiveness maximum toward higher latitudes over the rest of the century. The identification of the nonlinear responsiveness of spring phenology to climate gradients and the spatial shifts in phenological responsiveness expected under climate change represent new mechanistic insights that can inform models of spring phenology and ecosystem functioning.


Subject(s)
Ecosystem , Ginkgo biloba , Temperature , Trees/physiology , Plant Leaves/physiology , Climate Change , Seasons , China
9.
Mol Pharm ; 20(8): 3947-3959, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37358639

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) causes worsening pulmonary function, and no effective treatment for the disease etiology is available now. Recombinant Human Relaxin-2 (RLX), a peptide agent with anti-remodeling and anti-fibrotic effects, is a promising biotherapeutic candidate for musculoskeletal fibrosis. However, due to its short circulating half-life, optimal efficacy requires continuous infusion or repeated injections. Here, we developed the porous microspheres loading RLX (RLX@PMs) and evaluated their therapeutic potential on IPF by aerosol inhalation. RLX@PMs have a large geometric diameter as RLX reservoirs for a long-term drug release, but smaller aerodynamic diameter due to their porous structures, which were beneficial for higher deposition in the deeper lungs. The results showed a prolonged release over 24 days, and the released drug maintained its peptide structure and activity. RLX@PMs protected mice from excessive collagen deposition, architectural distortion, and decreased compliance after a single inhalation administration in the bleomycin-induced pulmonary fibrosis model. Moreover, RLX@PMs showed better safety than frequent gavage administration of pirfenidone. We also found RLX-ameliorated human myofibroblast-induced collagen gel contraction and suppressed macrophage polarization to the M2 type, which may be the reason for reversing fibrosis. Hence, RLX@PMs represent a novel strategy for the treatment of IPF and suggest clinical translational potential.


Subject(s)
Idiopathic Pulmonary Fibrosis , Relaxin , Mice , Humans , Animals , Relaxin/pharmacology , Relaxin/therapeutic use , Bleomycin , Microspheres , Porosity , Lung , Fibrosis , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Collagen
10.
Ecol Appl ; 33(2): e2782, 2023 03.
Article in English | MEDLINE | ID: mdl-36479756

ABSTRACT

Some research indicates that soil seed banks can promote species coexistence through storage effects. However, the seed bank mechanism that maintains plant assembly and its role in degraded grassland restoration are still not clear. We collected seed bank samples from early, mid and late secondary successional stages of an abandoned subalpine meadow on the Tibetan Plateau, and samples from each stage were exposed to full (i.e., natural), mid, and low light treatments in the field to represent light availability at the bottom/understory (soil surface) of a plant community in the early, mid and late stages of succession, respectively. Species richness, seed density, species composition, and community weighted mean values (CWMs) of seed mass of the species whose seeds germinated in soil samples were evaluated. In response to the light treatments, species richness increased significantly with increased light only for the late successional stage, seed density increased significantly with increased light only in the early and mid successional stages, and seed mass decreased significantly with increased light only in the mid and late successional stages. Species composition differed significantly among the light treatments only in the late successional stage. For the successional series, species richness and seed mass of the species that germinated increased significantly with succession only under mid and full light treatments. Seed density decreased significantly with succession in each light treatment. Species composition differed significantly between the early- and late stage and between the mid and late stage in each light treatment. Both the abiotic (light) and biotic (seed mass) factors influence seed bank recruitment to the plant community. Regeneration of small-seeded species in the seed bank was inhibited under low light in the late successional stage. The balance of stochastic and deterministic processes along a successional gradient was determined by regeneration from the seed bank depending on light intensity change. Differences in seed response to light intensity change largely determined plant community assembly. Our findings should help in the development of effective conservation and restoration strategies.


Subject(s)
Ecosystem , Grassland , Seed Bank , Plants , Seeds , Soil
11.
Analyst ; 148(2): 239-247, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36511172

ABSTRACT

Droplet digital PCR (ddPCR) is a technique for absolute quantification of nucleic acid molecules and is widely used in biomedical research and clinical diagnosis. ddPCR partitions the reaction solution containing target molecules into a large number of independent microdroplets for amplification and performs quantitative analysis of target molecules by calculating the proportion of positive droplets by the principle of Poisson distribution. Accurate recognition of positive droplets in ddPCR images is of great importance to guarantee the accuracy of target nucleic acid quantitative analysis. However, hand-designed operators are sensitive to interference and have disadvantages such as low contrast, uneven illumination, low sample copy number, and noise, and their accuracy and robustness still need to be improved. Herein, we developed a deep learning-based high-throughput ddPCR droplet detection framework for robust and accurate ddPCR image analysis, and the experimental results show that our method achieves excellent performance in the recognition of positive droplets (99.71%) within a limited time. By combining the Hough transform and a convolutional neural network (CNN), our novel method can automatically filter out invalid droplets that are difficult to be identified by local or global encoding methods and realize high-precision localization and classification of droplets in ddPCR images under variable exposure, contrast, and uneven illumination conditions without the need for image pre-processing and normalization processes.


Subject(s)
Deep Learning , Nucleic Acids , Polymerase Chain Reaction/methods , Neural Networks, Computer , Poisson Distribution
12.
Environ Sci Technol ; 57(10): 4253-4265, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36862939

ABSTRACT

Bacterial communication plays an important role in coordinating microbial behaviors in a community. However, how bacterial communication organizes the entire community for anaerobes to cope with varied anaerobic-aerobic conditions remains unclear. We constructed a local bacterial communication gene (BCG) database comprising 19 BCG subtypes and 20279 protein sequences. BCGs in anammox-partial nitrification consortia coping with intermittent aerobic and anaerobic conditions as well as gene expressions of 19 species were inspected. We found that when suffering oxygen changes, intra- and interspecific communication by a diffusible signal factor (DSF) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) changed first, which in turn induced changes of autoinducer-2 (AI-2)-based interspecific and acyl homoserine lactone (AHLs)-based intraspecific communication. DSF and c-di-GMP-based communication regulated 455 genes, which covered 13.64% of the genomes and were mainly involved in antioxidation and metabolite residue degradation. For anammox bacteria, oxygen influenced DSF and c-di-GMP-based communication through RpfR to upregulate antioxidant proteins, oxidative damage-repairing proteins, peptidases, and carbohydrate-active enzymes, which benefited their adaptation to oxygen changes. Meanwhile, other bacteria also enhanced DSF and c-di-GMP-based communication by synthesizing DSF, which helped anammox bacteria survive at aerobic conditions. This study evidences the role of bacterial communication as an "organizer" within consortia to cope with environmental changes and sheds light on understanding bacterial behaviors from the perspective of sociomicrobiology.


Subject(s)
Bacterial Proteins , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Cyclic GMP/metabolism
13.
Bioorg Med Chem ; 85: 117242, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37079967

ABSTRACT

The inhibition of histone deacetylases (HDACs) has been considered a promising therapeutic strategy for treatment of many diseases, especially cancer. In the current study, a series of 8-substituted quinoline-2-carboxamide derivatives were designed and synthesized as potent HDAC inhibitors. The most potent compound 21Ā g (IC50Ā =Ā 0.050Ā ĀµM) exhibited 3-fold greater HDAC inhibitory activity compared to the known HDAC inhibitor Vorinostat (IC50Ā =Ā 0.137Ā ĀµM). Additionally, compound 21g exhibited low toxicity against normal cells(IC50 in HUVEC cellĀ >Ā 50Ā ĀµM) and showed good liver microsomal stability, therefore, may serve as a new lead compound for further development.


Subject(s)
Antineoplastic Agents , Hydroxyquinolines , Quinolines , Histone Deacetylase Inhibitors/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Histone Deacetylases/metabolism , Drug Design , Molecular Docking Simulation , Hydroxyquinolines/pharmacology , Quinolines/pharmacology , Cell Proliferation , Structure-Activity Relationship , Histone Deacetylase 1
14.
J Immunol ; 207(6): 1652-1661, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34426543

ABSTRACT

The IκB kinase (IKK) complex plays a vital role in regulating the NF-κB activation. Aberrant NF-κB activation is involved in various inflammatory diseases. Thus, targeting IKK activation is an ideal therapeutic strategy to cure and prevent inflammatory diseases related to NF-κB activation. In a previous study, we demonstrated that IKK-interacting protein (IKIP) inhibits the phosphorylation of IKKα/Ɵ and the activation of NF-κB through disruption of the formation of IKK complex. In this study, we identified a 15-aa peptide derived from mouse IKIP (46-60 aa of IKIP), which specifically suppressed IKK activation and NF-κB targeted gene expression via disrupting the association of IKKƟ and NEMO. Importantly, administration of the peptide reduced LPS-induced acute inflammation and attenuated Zymosan-induced acute arthritis in mice. These findings suggest that this IKIP peptide may be a promising therapeutic reagent in the prevention and treatment of inflammatory diseases.


Subject(s)
I-kappa B Kinase/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , NF-kappa B/metabolism , Peptides/administration & dosage , Signal Transduction/drug effects , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Cell Line, Tumor , Enzyme Activation/drug effects , Enzyme Activation/genetics , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Lipopolysaccharides/adverse effects , Mice , Mice, Knockout , Protein Binding , Signal Transduction/genetics , Zymosan/adverse effects
15.
J Nanobiotechnology ; 21(1): 193, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316836

ABSTRACT

Prolonged and incurable bacterial infections in soft tissue and bone are currently causing large challenges in the clinic. Two-dimensional (2D) materials have been designed to address these issues, but materials with satisfying therapeutic effects are still needed. Herein, CaO2-loaded 2D titanium carbide nanosheets (CaO2-TiOx@Ti3C2, C-T@Ti3C2) were developed. Surprisingly, this nanosheet exhibited sonodynamic ability, in which CaO2 caused the in situ oxidation of Ti3C2 MXene to produce acoustic sensitiser TiO2 on its surface. In addition, this nanosheet displayed chemodynamic features, which promoted a Fenton reaction triggered by self-supplied H2O2. We detected that C-T@Ti3C2 nanosheets increased reactive oxygen species (ROS) production in response to sonodynamic therapy, which displayed an ideal antibacterial effect. Furthermore, these nanoreactors facilitated the deposition of Ca2+, which promoted osteogenic transformation and enhanced bone quality in osteomyelitis models. Herein, a wound healing model and prosthetic joint infection (PJI) model were established, and the C-T@Ti3C2 nanosheets played a protective role in these models. Taken together, the results indicated that the C-T@Ti3C2 nanosheets function as a multifunctional instrument with sonodynamic features, which might reveal information regarding the treatment of bacterial infections during wound healing.


Subject(s)
Bone and Bones , Hydrogen Peroxide , Bone Regeneration , Wound Healing
16.
Eur Spine J ; 32(6): 2110-2119, 2023 06.
Article in English | MEDLINE | ID: mdl-37067599

ABSTRACT

OBJECTIVE: To describe a novel surgical technique note coined as anterior cervical tunnectomy and fusion (ACTF) which applying on removal of posterior vertebral bony protrusions or soft extrusions. METHODS: Total twenty-three patients from January 2016 to January 2021 who experienced with spinal cord compression and performed by ACTF were retrospectively reviewed. Herein, relevant information including patient's gender, age, BMI, intraoperative time, intraoperative blood loss, postoperative complications and postoperative hospitalized stay were collected. Furthermore, JOA and VAS score were both collected. Moreover, imaging parameters were measured and calculated on radiographs. Correlated data were analyzed by t test. Significance was considered when P < 0.05. RESULTS: All patients in this study were validated with favorable outcomes and none of postoperative complications. The Nurick grade of patients dramatically deceased postoperation (P < 0.001). And postoperative VAS score of patients (P < 0.001), as well as JOA score (P < 0.001), was given dramatical significance comparing to preoperation. Furthermore, occupying rate (OR) (P < 0.001) was obviously reduced while space available cord (SAC) (P < 0.001) and diameter of spinal cord (P < 0.001) was significantly increased postoperation. Meanwhile, disc height of involved segment, C2-7 SVA, and C2-C7 Cobb angle were measured on sagittal plane of lateral radiograph. Postoperative disc height of involved segment (P < 0.001) significantly elevated comparing to preoperation. However, there were no significance on C2-7 SVA (P = 0.460) and C2-C7 Cobb angle (P = 0.097). CONCLUSIONS: The novel surgical technique coined by ACTF is a practicable approach during taking charge of bony and soft narrowing behind vertebral space.


Subject(s)
Spinal Cord Diseases , Spinal Fusion , Spondylosis , Humans , Retrospective Studies , Treatment Outcome , Spinal Fusion/methods , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Decompression , Spinal Cord Diseases/surgery , Spondylosis/surgery
17.
Biochem Biophys Res Commun ; 589: 63-70, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34891043

ABSTRACT

Psoriasiform skin inflammation is the common chronic skin inflammatory disease with no effective clinical therapy. Salubrinal is a multifunctional molecule playing a protective role in several conditions. Recently, studies have reported that Salubrinal is a potential therapeutic agent for inflammatory diseases. However, the protective role of Salubrinal in psoriasis-like skin inflammation remains unknown. In this article, imiquimod (IMQ)-induced psoriasis models were established in wild-type mice to explore the role of Salubrinal in the development of psoriasis. As a result, the IMQ-induced mouse models exhibited typical skin inflammation, which was alleviated by the administration of Salubrinal. Furthermore, RAW264.7 macrophage was stimulated with Lipopolysaccharide(LPS) in the presence or absence of Salubrinal. LPS stimulation elevated the expression of various inflammatory biomarkers, while the administration of Salubrinal abolished the function of LPS in RAW264.7 macrophages. In addition, the activation of the nuclear factor-kappa B (NF-κB) signaling pathway in both the LPS-stimulated RAW264.7 macrophage and psoriasis mouse models was antagonized by the administration of Salubrinal. Collectively, Salubrinal might be considered as a promising therapeutic agent for psoriasis-like skin inflammation.


Subject(s)
Cinnamates/pharmacology , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , NF-kappa B/metabolism , Protective Agents/pharmacology , Psoriasis/pathology , Skin/pathology , Thiourea/analogs & derivatives , Animals , Disease Models, Animal , Imiquimod/adverse effects , Inflammation/drug therapy , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Protective Agents/therapeutic use , Psoriasis/drug therapy , RAW 264.7 Cells , Signal Transduction/drug effects , Thiourea/pharmacology , Tumor Necrosis Factor-alpha
18.
BMC Plant Biol ; 22(1): 465, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36171567

ABSTRACT

BACKGROUND: Golden leaf in autumn is a prominent feature of deciduous tree species like Ginkgo biloba L., a landscape tree widely cultivated worldwide. However, little was known about the molecular mechanisms of leaf yellowing, especially its dynamic regulatory network. Here, we performed a suite of comparative physiological and dynamic transcriptional analyses on the golden-leaf cultivar and the wild type (WT) ginkgo to investigate the underlying mechanisms of leaf yellowing across different seasons. RESULTS: In the present study, we used the natural bud mutant cultivar with yellow leaves "Wannianjin" (YL) as materials. Physiological analysis revealed that higher ratios of chlorophyll a to chlorophyll b and carotenoid to chlorophyll b caused the leaf yellowing of YL. On the other hand, dynamic transcriptome analyses showed that genes related to chlorophyll metabolism played key a role in leaf coloration. Genes encoding non-yellow coloring 1 (NYC1), NYC1-like (NOL), and chlorophyllase (CLH) involved in the degradation of chlorophyll were up-regulated in spring. At the summer stage, down-regulated HEMA encoding glutamyl-tRNA reductase functioned in chlorophyll biosynthesis, while CLH involved in chlorophyll degradation was up-regulated, causing a lower chlorophyll accumulation. In carotenoid metabolism, genes encoding zeaxanthin epoxidase (ZEP) and 9-cis-epoxy carotenoid dioxygenase (NCED) showed significantly different expression levels in the WT and YL. Moreover, the weighted gene co-expression network analysis (WGCNA) suggested that the most associated transcriptional factor, which belongs to the AP2/ERF-ERF family, was engaged in regulating pigment metabolism. Furthermore, quantitative experiments validated the above results. CONCLUSIONS: By comparing the golden-leaf cultivar and the wide type of ginkgo across three seasons, this study not only confirm the vital role of chlorophyll in leaf coloration of YL but also provided new insights into the seasonal transcriptome landscape and co-expression network. Our novel results pinpoint candidate genes for further wet-bench experiments in tree species.


Subject(s)
Dioxygenases , Ginkgo biloba , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll A/metabolism , Dioxygenases/genetics , Gene Expression Regulation, Plant , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Transcriptome
19.
Opt Express ; 30(13): 23463-23474, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-36225025

ABSTRACT

The modulation of structural color through various methods has attracted considerable attention. Herein, a new modulation method for the structural colors in all-dielectric photonic crystals (PCs) using energetic ion beams is proposed. One type of periodic PC and two different defective PCs were experimentally investigated. Under carbon-ion irradiation, the color variation primarily originated from the blue shift of the optical spectra. The varying degrees of both the reflection and transmission structural colors mainly depended on the carbon-ion fluences. Such nanostructures are promising for tunable color filters and double-sided chromatic displays based on PCs.

20.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142757

ABSTRACT

Although more than 9100 plant plastomes have been sequenced, RNA editing sites of the whole plastome have been experimentally verified in only approximately 21 species, which seriously hampers the comprehensive evolutionary study of chloroplast RNA editing. We investigated the evolutionary pattern of chloroplast RNA editing sites in 19 species from all 13 families of gymnosperms based on a combination of genomic and transcriptomic data. We found that the chloroplast C-to-U RNA editing sites of gymnosperms shared many common characteristics with those of other land plants, but also exhibited many unique characteristics. In contrast to that noted in angiosperms, the density of RNA editing sites in ndh genes was not the highest in the sampled gymnosperms, and both loss and gain events at editing sites occurred frequently during the evolution of gymnosperms. In addition, GC content and plastomic size were positively correlated with the number of chloroplast RNA editing sites in gymnosperms, suggesting that the increase in GC content could provide more materials for RNA editing and facilitate the evolution of RNA editing in land plants or vice versa. Interestingly, novel G-to-A RNA editing events were commonly found in all sampled gymnosperm species, and G-to-A RNA editing exhibits many different characteristics from C-to-U RNA editing in gymnosperms. This study revealed a comprehensive evolutionary scenario for chloroplast RNA editing sites in gymnosperms, and reported that a novel type of G-to-A RNA editing is prevalent in gymnosperms.


Subject(s)
RNA Editing , RNA, Chloroplast , Base Sequence , Chloroplasts/genetics , Cycadopsida/genetics , Evolution, Molecular , Phylogeny , RNA Editing/genetics , RNA, Chloroplast/genetics
SELECTION OF CITATIONS
SEARCH DETAIL