Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Biol Chem ; 300(6): 107311, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657866

ABSTRACT

The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.


Subject(s)
Disulfiram , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Stomach Neoplasms , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Humans , Protein Serine-Threonine Kinases/metabolism , Disulfiram/pharmacology , Cell Line, Tumor , Animals , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Mice , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Hepatocyte Growth Factor/metabolism , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics
2.
Nanomedicine ; 35: 102338, 2021 07.
Article in English | MEDLINE | ID: mdl-33197626

ABSTRACT

DNA vaccine is an attractive immune platform for the prevention and treatment of infectious diseases, but existing disadvantages limit its use in preclinical and clinical assays, such as weak immunogenicity and short half-life. Here, we reported a novel liposome-polymer hybrid nanoparticles (pSFV-MEG/LNPs) consisting of a biodegradable core (mPEG-PLGA) and a hydrophilic shell (lecithin/PEG-DSPE-Mal 2000) for delivering a multi-epitope self-replication DNA vaccine (pSFV-MEG). The pSFV-MEG/LNPs with optimal particle size (161.61 ±â€¯15.63 nm) and high encapsulation efficiency (87.60 ±â€¯8.73%) induced a strong humoral (3.22-fold) and cellular immune responses (1.60-fold) compared to PBS. Besides, the humoral and cellular immune responses of pSFV-MEG/LNPs were 1.58- and 1.05-fold than that of pSFV-MEG. All results confirmed that LNPs was a very promising tool to enhance the humoral and cellular immune responses of pSFV-MEG. In addition, the rational design and delivery platform can be used for the development of DNA vaccines for other infectious diseases.


Subject(s)
DNA Replication , Epitopes , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Nanoparticles/therapeutic use , Vaccines, DNA , Animals , Epitopes/genetics , Epitopes/immunology , Liposomes/immunology , Liposomes/pharmacology , Mice , Mice, Inbred BALB C , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology
3.
Bioeng Transl Med ; 7(2): e10290, 2022 May.
Article in English | MEDLINE | ID: mdl-35600646

ABSTRACT

Regulation of the apoptotic pathway plays a critical role in inducing tumor cell death and circumventing drug resistance. Survivin protein is the strongest inhibitor of apoptosis found so far. It is highly expressed in several cancers and is a promising target for cancer therapy. However, clinical applications are limited by incomplete inhibition of survivin expression. Here, we present a novel strategy that extended the release of YM155 (an effective survivin inhibitor that works by inhibiting the activity of survivin promoter) and TATm-survivin (T34A) (TmSm) protein (survivin protein mutant with penetrating peptide, a potential anticancer protein therapeutic) via tumor matrix microenvironment-mediated ferritin heavy chain nanocages (FTH1 NCs), enabling significant inhibition of survivin activity at both transcript and protein levels. FTS (FTH1-matrix metalloproteinase-2-TmSm)/YM155 NC synthesis was easily scaled up, and these NCs could sequentially release TmSm protein through matrix metalloproteinase-2 and promote YM155 to enter the nucleus via transferrin receptor 1 (TfR1) binding, which increased the cytotoxicity and apoptosis of Capan-2 and A549 cells compared to that with individual drugs. Moreover, FTS/YM155 NCs enhanced drug accumulation at tumor sites and had a higher tumor inhibition rate (88.86%) than the compounds alone in A549 tumor-bearing mice. In addition, FTS/YM155 NCs exerted significant survivin downregulation (4.43-fold) and caspase-3 upregulation (4.31-fold) and showed better therapeutic outcomes without inducing organ injury, which highlights their promising future clinical application in precision therapy. This tumor microenvironment-responsive platform could be harnessed to develop an effective therapy via multilevel inhibition of cancer targets.

4.
J Clin Invest ; 132(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35290241

ABSTRACT

The striatin-interacting phosphatase and kinase (STRIPAK) complexes integrate extracellular stimuli that result in intracellular activities. Previously, we discovered that STRIPAK is a key machinery responsible for loss of the Hippo tumor suppressor signal in cancer. Here, we identified the Hippo-STRIPAK complex as an essential player in the control of DNA double-stranded break (DSB) repair and genomic stability. Specifically, we found that the mammalian STE20-like protein kinases 1 and 2 (MST1/2), independent of classical Hippo signaling, directly phosphorylated zinc finger MYND type-containing 8 (ZMYND8) and hence resulted in the suppression of DNA repair in the nucleus. In response to genotoxic stress, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway was determined to relay nuclear DNA damage signals to the dynamic assembly of Hippo-STRIPAK via TANK-binding kinase 1-induced (TBK1-induced) structural stabilization of the suppressor of IKBKE 1- sarcolemma membrane-associated protein (SIKE1-SLMAP) arm. As such, we found that STRIPAK-mediated MST1/2 inactivation increased the DSB repair capacity of cancer cells and endowed these cells with resistance to radio- and chemotherapy and poly(ADP-ribose)polymerase (PARP) inhibition. Importantly, targeting the STRIPAK assembly with each of 3 distinct peptide inhibitors efficiently recovered the kinase activity of MST1/2 to suppress DNA repair and resensitize cancer cells to PARP inhibitors in both animal- and patient-derived tumor models. Overall, our findings not only uncover what we believe to be a previously unrecognized role for STRIPAK in modulating DSB repair but also provide translational implications of cotargeting STRIPAK and PARP for a new type of synthetic lethality anticancer therapy.


Subject(s)
Gastrointestinal Neoplasms , Phosphoric Monoester Hydrolases , Animals , Humans , Mammals , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Signal Transduction/physiology , Synthetic Lethal Mutations , Transcription Factors
5.
Front Cell Dev Biol ; 9: 797005, 2021.
Article in English | MEDLINE | ID: mdl-35047507

ABSTRACT

Quantitative analysis and regulating gene expression in cancer cells is an innovative method to study key genes in tumors, which conduces to analyze the biological function of the specific gene. In this study, we found the expression levels of Survivin protein (BIRC5) and P-glycoprotein (MDR1) in MCF-7/doxorubicin (DOX) cells (drug-resistant cells) were significantly higher than MCF-7 cells (wild-type cells). In order to explore the specific functions of BIRC5 gene in multi-drug resistance (MDR), a CRISPR/Cas9-mediated knocking-in tetracycline (Tet)-off regulatory system cell line was established, which enabled us to regulate the expression levels of Survivin quantitatively (clone 8 named MCF-7/Survivin was selected for further studies). Subsequently, the determination results of doxycycline-induced DOX efflux in MCF-7/Survivin cells implied that Survivin expression level was opposite to DOX accumulation in the cells. For example, when Survivin expression was down-regulated, DOX accumulation inside the MCF-7/Survivin cells was up-regulated, inducing strong apoptosis of cells (reversal index 118.07) by weakening the release of intracellular drug from MCF-7/Survivin cells. Also, down-regulation of Survivin resulted in reduced phosphorylation of PI3K, Akt, and mTOR in MCF-7/Survivin cells and significantly decreased P-gp expression. Previous studies had shown that PI3K/Akt/mTOR could regulate P-gp expression. Therefore, we speculated that Survivin might affect the expression of P-gp through PI3K/Akt/mTOR pathway. In summary, this quantitative method is not only valuable for studying the gene itself, but also can better analyze the biological phenomena related to it.

SELECTION OF CITATIONS
SEARCH DETAIL