Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Publication year range
1.
Methods ; 218: 176-188, 2023 10.
Article in English | MEDLINE | ID: mdl-37586602

ABSTRACT

Drug-target interaction (DTI) prediction serves as the foundation of new drug findings and drug repositioning. For drugs/targets, the sequence data contains the biological structural information, while the heterogeneous network contains the biochemical functional information. These two types of information describe different aspects of drugs and targets. Due to the complexity of DTI machinery, it is necessary to learn the representation from multiple perspectives. We hereby try to design a way to leverage information from multi-source data to the maximum extent and find a strategy to fuse them. To address the above challenges, we propose a model, named MOVE (short for integrating multi-source information for predicting DTI via cross-view contrastive learning), for learning comprehensive representations of each drug and target from multi-source data. MOVE extracts information from the sequence view and the network view, then utilizes a fusion module with auxiliary contrastive learning to facilitate the fusion of representations. Experimental results on the benchmark dataset demonstrate that MOVE is effective in DTI prediction.


Subject(s)
Drug Development , Drug Repositioning , Computer Simulation , Drug Development/methods
2.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203841

ABSTRACT

The accurate prediction of binding free energy is a major challenge in structure-based drug design. Quantum mechanics (QM)-based approaches show promising potential in predicting ligand-protein binding affinity by accurately describing the behavior and structure of electrons. However, traditional QM calculations face computational limitations, hindering their practical application in drug design. Nevertheless, the fragment molecular orbital (FMO) method has gained widespread application in drug design due to its ability to reduce computational costs and achieve efficient ab initio QM calculations. Although the FMO method has demonstrated its reliability in calculating the gas phase potential energy, the binding of proteins and ligands also involves other contributing energy terms, such as solvent effects, the 'deformation energy' of a ligand's bioactive conformations, and entropy. Particularly in cases involving ionized fragments, the calculation of solvation free energy becomes particularly crucial. We conducted an evaluation of some previously reported implicit solvent methods on the same data set to assess their potential for improving the performance of the FMO method. Herein, we develop a new QM-based binding free energy calculation method called FMOScore, which enhances the performance of the FMO method. The FMOScore method incorporates linear fitting of various terms, including gas-phase potential energy, deformation energy, and solvation free energy. Compared to other widely used traditional prediction methods such as FEP+, MM/PBSA, MM/GBSA, and Autodock vina, FMOScore showed good performance in prediction accuracies. By constructing a retrospective case study, it was observed that incorporating calculations for solvation free energy and deformation energy can further enhance the precision of FMO predictions for binding affinity. Furthermore, using FMOScore-guided lead optimization against Src homology-2-containing protein tyrosine phosphatase 2 (SHP-2), we discovered a novel and potent allosteric SHP-2 inhibitor (compound 8).


Subject(s)
Entropy , Ligands , Reproducibility of Results , Retrospective Studies , Solvents
3.
Org Biomol Chem ; 21(7): 1395-1398, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36688572

ABSTRACT

Herein, we presented a simple approach for C-H oxidation in the C23 or/and C24 of ursane triterpenoids without any protection of a Δ12,13 double bond. As a result, from commercial ursolic acid (UA), six naturally occurring ursane triterpenoids were synthesized in overall yields of 3.4% to 36.8%, which implied the importance of this approach for the derivation of natural products and their application in biological activity.


Subject(s)
Biological Products , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Pentacyclic Triterpenes , Biological Products/chemistry
4.
Bioorg Med Chem Lett ; 76: 128991, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36130661

ABSTRACT

Cyclin-dependent kinases play an important role in the regulation of cell cycle and transcription. Selective CDK4/6 inhibitors have been demonstrated to be effective in the treatment of cancer. In this article, we described the design and synthesis of a series of pteridine-7(8H)-one derivatives as dual CDK4/6 inhibitors. Among them, the most promising compound L2 exhibited significant inhibitory activity against CDK4 and CDK6 with IC50 values of 16.7 nM and 30.5 nM respectively and showed excellent selectivity to CDK1/2/7/9. Moreover, compound L2 displayed potent antiproliferative activities at low digital micromolar range via inducing apoptosis in breast and colon cancer cells. In all, we developed a new series of pteridine-7(8H)-one derivatives which exhibited promising antitumor activities as selective CDK4/6 inhibitors.


Subject(s)
Antineoplastic Agents , Pteridines , Pteridines/pharmacology , Cyclin-Dependent Kinase 4/metabolism , Cell Proliferation , Cell Cycle , Apoptosis , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Structure-Activity Relationship
5.
Bioorg Chem ; 126: 105860, 2022 09.
Article in English | MEDLINE | ID: mdl-35661525

ABSTRACT

Bruton's tyrosine kinase (BTK) is a promising target in the treatment of B cell malignancies and autoimmune disorders. Developing selective non-covalent BTK inhibitors is an important strategy to overcome the side effects and drug resistance induced by covalent BTK inhibitors. In this article, we designed and synthesized pyrrolo[1,2-a]quinoxalin-4(5H)-one and imidazo[1,2-a]quinoxalin-4(5H)-one based selective noncovalent BTK inhibitors via scaffold hopping from BMS-986142 and investigated their biological activities. Among the synthesized compounds, pyrrolo[1,2-a]quinoxalin-4(5H)-one derivatives 2 and 4 showed great BTK inhibition potency with IC50 value at 7.41 nM and 11.4 nM, respectively. Besides, they showed equivalent or even better potency in U937 and Ramos cells than BMS-986142. The kinase selectivity profiling study illustrated the excellent selectivity of compound 2 against a panel of 468 kinases. In U937 xenograft models, compound 2 could significantly inhibit tumor growth with TGI = 65.61%. In all, we provided a new scaffold as non-covalent selective BTK inhibitors and the representative compounds exhibited potency both in vitro and in vivo.


Subject(s)
Protein Kinase Inhibitors , Quinoxalines , Agammaglobulinaemia Tyrosine Kinase , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Quinoxalines/pharmacology , Structure-Activity Relationship
6.
Bioorg Chem ; 119: 105541, 2022 02.
Article in English | MEDLINE | ID: mdl-34910982

ABSTRACT

Bruton's tyrosine kinase (BTK) is an attractive target for the treatment of malignancy and inflammatory/autoimmune diseases. Most of the covalent BTK inhibitors would induce off-target side effects and drug resistance. To improve the drug safety of BTK inhibitors, non-covalent inhibitors have attracted more and more attention. We designed a series of novel pyrido[3,4-b]indol-1-one derivatives (N-A and N-B) via scaffold hopping from CGI-1746. The structure-activity relationship (SAR) of the newly-synthesized compounds was explored. The results showed that compounds 12 and 18 exhibited potent enzymatic potency against BTK with IC50 values of 0.22 µM and 0.19 µM, respectively. In lymphoma cell lines U-937 cells and Ramos cells, compounds 12 and 18 displayed comparative antiproliferative activity with Ibrutinib. Moreover, compound 12 induced G1-phase cell cycle arrest and apoptosis in U-937 cells. And it could effectively inhibit tumor growth in U-937 xenograft mouse model (TGI = 41.90% at 50 mg/kg). In all, the new pyrido[3,4-b]indol-1-one derivatives have the antitumor potency by BTK inhibition and were worthy of further exploration.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Drug Discovery , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
7.
Molecules ; 27(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35011435

ABSTRACT

Huntington's disease (HD) is a rare single-gene neurodegenerative disease, which can only be treated symptomatically. Currently, there are no approved drugs for HD on the market. Studies have found that MAPK11 can serve as a potential therapeutic target for HD. Regrettably, no MAPK11 small molecule inhibitors have been approved at present. This paper presents three series of compounds that were designed and synthesized based on the structure of skepinone-L, a known MAPK14 inhibitor. Among the synthesized compounds, 13a and 13b, with IC50 values of 6.40 nM and 4.20 nM, respectively, displayed the best inhibitory activities against MAPK11. Furthermore, the structure-activity relationship (SAR) is discussed in detail, which is constructive in optimizing the MAPK11 inhibitors for better activity and effect against HD.


Subject(s)
Drug Design , Mitogen-Activated Protein Kinase 11/antagonists & inhibitors , Mitogen-Activated Protein Kinase 11/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Binding Sites , Chemistry Techniques, Synthetic , Humans , Molecular Conformation , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 30(8): 127048, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32122740

ABSTRACT

Janus kinases (JAKs) including JAK1, JAK2, JAK3, and TYK2 are members of a family of intracellular nonreceptor tyrosine kinases, which have been demonstrated to be critical in the cell signaling pathway and involved in inflammatory diseases and cancer. V617F mutation in JAK2 has been implicated in polycythaemia vera (PV), essential thrombocythaemia (ET) and myelofibrosis (MF). Here, we described the design, synthesis, and biological evaluation of a series of 2-aminopyridine derivatives. The results of enzymatic activity assays supported compound 16m-(R) as a potential and selective JAK2 inhibitor, which exhibited high inhibitory activity with an IC50 of 3 nM against JAK2, and 85- and 76-fold selectivity over JAK1 and JAK3, respectively. Structure-activity relationships (SAR) and mechanistic analysis demonstrated that 16m-(R) might be a promising selective JAK2 inhibitor for further study.


Subject(s)
Aminopyridines/pharmacology , Drug Discovery , Janus Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Aminopyridines/chemical synthesis , Aminopyridines/chemistry , Cell Line , Dose-Response Relationship, Drug , Humans , Janus Kinase 2/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 30(16): 127327, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32631532

ABSTRACT

The efficacy of EGFR inhibitors is frequently affected by acquired resistance. EGFR19D/T790M/C797S mutation is one of the primary reasons for the emergence of resistance after treatment with the third-generation EGFR inhibitors such as AZD9291, CO1686 and Olmutinib. To overcome the resistance mutation 19D/T790M/C797S, we designed and prepared a series of indole derivatives with the terminal hydroxyl of alkyl chain to increase extra interaction with the Asp855 in the conservative DFG site. Activity evaluation, structure-activity relationship and docking analysis were also carried out. Among them, compound 12e displayed significant inhibitory activity against EGFR19D/T790M/C797S (IC50 = 15.3 nM) and good selectivity over EGFR WT (IC50 > 1000 nM), L858R/T790M (IC50, 156.6 nM) and L858R/T790M/C797S (IC50, 218.3 nM) respectively. Furthermore, 12e exhibited good growth inhibition activity, induced G1 phase cell cycle arrest and apoptosis in BaF3/EGFR19D/T790M/C797S cells by suppressing EGFR phosphorylation signaling pathway. In all, our study might provide a novel structural design method and lay the solid foundation for the development of the 4th generation EGFR19D/T790M/C797S inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Molecular Docking Simulation , Molecular Structure , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
10.
Mol Carcinog ; 58(6): 1056-1067, 2019 06.
Article in English | MEDLINE | ID: mdl-30790360

ABSTRACT

Osteosarcoma is the primary human malignant tumor affecting bone. This cancer most frequently arises in children and adolescents, with a second peak in those over the age of 50. Currently, surgery followed by radiotherapy and chemotherapy are the main treatments, but long-term positive effects are very poor. Aurora B kinase is a serine/threonine kinase that is a key regulator of cell cycle and mitosis. Tissue array analysis revealed that Aurora B kinase is overexpressed in osteosarcoma compared with normal bone tissue. We developed a compound, HOI-07 (i.e., (E)-3-((E)-4-(benzo[d] [1,3]dioxol-5-yl)-2-oxobut-3-en-1-ylidene)indolin-2-one), as a specific Aurora B kinase inhibitor and examined its effectiveness against osteosarcoma cell growth in this study. This compound inhibited Aurora B kinase activity in osteosarcoma and induced apoptosis, caused G2-M phase arrest, and attenuated osteosarcoma anchorage-independent cell growth. Moreover, knocking down the expression of Aurora B effectively reduced the sensitivity of osteosarcoma to HOI-07. Results of a xenograft mouse study indicated that HOI-07 treatment effectively suppressed the growth of 143B and KHOS xenografts, without affecting the body weight of mice. The expression of phosphorylated histone H3 (Ser10) was reduced in mice treated with HOI-07. Overall, we identified HOI-07 as a specific Aurora B kinase inhibitor for osteosarcoma treatment and this compound warrants further investigation.


Subject(s)
Aurora Kinase B/metabolism , Benzodioxoles/administration & dosage , Bone Neoplasms/drug therapy , Indoles/administration & dosage , Osteosarcoma/drug therapy , Up-Regulation/drug effects , Animals , Benzodioxoles/pharmacology , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indoles/pharmacology , Mice , Osteosarcoma/metabolism , Osteosarcoma/pathology , Treatment Outcome , Xenograft Model Antitumor Assays
11.
Bioorg Med Chem Lett ; 29(12): 1507-1513, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30981578

ABSTRACT

Janus Kinase 2 (JAK2) is a kind of intracellular non-receptor protein tyrosine kinase and has been certified as an important target for the treatment of myeloproliferative neoplasms and rheumatoid arthritis. However, the low selectivity and potential safety issues restrict the clinical applications of JAK2 inhibitors. Here we found that crizotinib showed good inhibitory activity against JAK2 by enzymatic assays (IC50 = 27 nM). Then we carried out structure-based drug design and synthesized a series of compounds with an aminopyridine scaffold. Finally, compound 12k and 12l were identified as the promising inhibitors of JAK2, which exhibited high inhibitory activity (IC50 = 6 nM and 3 nM, respectively) and selectivity for JAK2 over JAK1 and JAK3, and showed potent antiproliferative activities toward HEL human erythroleukemia cells. Moreover, 12k suppressed symptoms of the collagen-induced arthritis (CIA) model in rats.


Subject(s)
Janus Kinase 2/antagonists & inhibitors , Pyrimidines/therapeutic use , Animals , Humans , Molecular Structure , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship
12.
Bioorg Med Chem ; 27(15): 3390-3395, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31221612

ABSTRACT

Aberrant activation of B cell receptor (BCR) signal transduction cascade contributes to the propagation and maintenance of B cell malignancies. The discovery of mall molecules with high potency and selectivity against Bruton's tyrosine kinase (BTK), a key signaling molecule in this cascade, is particularly urgent in modern treatment regimens. Herein, a series of pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione derivatives were reported as potent BTK inhibitors. Compounds 17 and 18 displayed strong BTK inhibitory activities in the enzymatic inhibition assay, with the IC50 values of 1.2 and 0.8 nM, respectively, which were comparable to that of ibrutinib (IC50 = 0.6 nM). Additionally, compound 17 had a more selective profile over EGFR than ibrutinib. According to the putative binding poses, the molecular basis of this series of compounds with respect to potency against BTK and selectivity over EGFR was elucidated. In further experiments at cellular level, compounds 17 and 18 significantly inhibited the proliferation of Ramos and TMD8 cells. And they arrested 75.4% and 75.2% of TMD8 cells in G1 phase, respectively, at the concentration of 1 µM.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
13.
Inflammopharmacology ; 27(5): 1021-1036, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30941613

ABSTRACT

BACKGROUND: Naringenin, a flavonoid compound, has a wide variety of uses in the pharmaceutical industry for its antioxidant and anti-inflammatory potential. OBJECTIVES: The current experiment aimed to investigate the anticancer effect of naringenin in triple-negative human breast cancer cells (MDA-MR-231) and an animal model with 7,12-dimethylbenz[a] anthracene (DMBA)-induced breast cancer in female rats to determine the mechanisms and molecular targets. METHODS: The cytotoxic effects of naringenin against MDA-MB-231 cells were assessed by MTT assay. Apoptosis and cell cycle alterations were analyzed via flow cytometry. Morphological and biochemical changes in DMBA-induced cancer with naringenin treatment were assayed using our protocol. The potential mechanisms of action were verified via qRT-PCR. RESULTS: Naringenin was found to inhibit cell proliferation in a time- and concentration-dependent manner. This effect was associated with cell cycle arrest at the G0/G1 phase, along with apoptosis and deposition at the sub-G1 phase (75%). Treatment with naringenin reduced tumor incidence (45.55, 40, and 27.67%) and tumor burden (78.7, 35.4, and 1.2 g) in a dose-dependent manner. Naringenin treatment altered the biochemical and antioxidant parameters related to inflammation necessary for anticancer activity. The qRT-PCR studies further confirmed the mitochondrial-mediated apoptotic effects of naringenin. CONCLUSION: On the basis of these results, we can conclude that naringenin exerts an anticancer effect in the MDA-MB-231 cell line that arrests cell development at the G0/G1 phase, and in vivo it alters the mitochondrial-mediated intrinsic pathway responsible for apoptosis.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Movement/drug effects , Flavanones/pharmacology , Inflammation/drug therapy , Signal Transduction/drug effects , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , G1 Phase/drug effects , Humans , Inflammation/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Rats , Rats, Wistar , Resting Phase, Cell Cycle/drug effects
14.
Hell J Nucl Med ; 22(1): 78-79, 2019.
Article in English | MEDLINE | ID: mdl-30968863

ABSTRACT

Dear Editor, Angiogenesis is an essential physiological process that involves formation of new blood vessels from the pre-existing ones and is one of the fundamental processes required for normal growth and development. The ability to non-invasively evaluate angiogenesis might provide new insights into cancer biology pathway. This approach might lead to opportunities to more appropriately select patients likely to respond to anti-angiogenic drugs. Polyamidoamine dendrimers are a member of a versatile, new class of dendritic polymers and are the most well characterized and widely used polymers. In the present study we have utilized them for imaging of a crucial process of angiogenesis in a cancer model of mice. Amongst, several PET radionuclides, there has been a renewed interest in 68Ga for many reasons. Gallium-68 is well suited for use as a radiolabel for PET because of its comparatively shorter half-life of 68min. The emission of two divergent photons per decay allows the construction of three-dimensional images. Furthermore, the advances in generator technology for 68Ga production and its favorable chemistry for radiocomplexation have paved the way for emerging applications of 68Ga radiopharmaceuticals. A recent study reported the blood pharmacokinetics of different generations of PAMAM dendrimers (generations 3-6) derivatized with large chelating ligands to facilitate complexation of gadolinium ions for imaging applications. It was observed that the resulted PAMAM gadolinium complexes cleared from the blood circulation in a biphasic manner (fast component-10min; slow component-1h). The rapid clearance of the dendrimers from blood observed in our study was in accordance with previous observations. The biodistribution studies of 68Ga-DOTA-G4 PAMAM showed the major uptake at an early time interval of 15min in the kidneys. This confirmed that kidneys are the major excretory organs for DOTA conjugated G4 PAMAM dendrimers. The radioactivity in kidneys, as compared with other organs was higher initially and declined with time. A study in the recent past also reported a high uptake of indium-111 (111In)-DOTA analog-PAMAM dendrimer in rats' kidneys, immediately after administration of radioactivity. A considerable amount of radioactivity was also recovered from lungs which were higher in case of 68Ga-DOTA-G4 PAMAM conjugate. Lung is an important component of the reticulo-endothelial system (RES) and thus is involved in the clearance of macromolecules. Additionally, due to its rich vasculature, lungs are likely targets for the location of intravenously injected dendrimer nanoparticles. The animal biodistribution data in tumor bearing mice demonstrated that the tumor uptake (at 1h) of 68Ga-DOTA-G4 PAMAM dendrimer was 0.33%. It has been reported that using higher generation PAMAM dendrimers, magnetic resonance imaging (MRI) agents affect the biodistribution patterns in animal tumor models. Animal PET imaging data showed that maximum tumor to background ratio was obtained at 1h post injection of 68Ga DOTA-G4 PAMAM dendrimer suggesting that the designed nanoprobes could efficiently target tumor tissues and be retained there due to their enhanced permeability and retention (EPR) effect. Dendrimers can achieve passive EPR mediated targeting to a tumor by controlling their size and physicochemical properties. Further, an earlier study reported that branched PAMAM dendrimer showed significantly higher accumulation in ovarian tumor bearing mice than the conventional linear N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer of comparable molecular weight. The use of radiolabeled dendrimers due to their topology, functionality and dimensions has been described as a promising approach for the molecular visualization of tumor angiogenesis. So, the successful radiolabeling of 68Ga-DOTA-G4 PAMAM dendrimers is encouraging as it showed good localization of both the radiolabeled by 68Ga and 111In products in the tumor.


Subject(s)
Dendrimers/pharmacokinetics , Gallium Radioisotopes/chemistry , Neoplasms/diagnostic imaging , Nylons/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Animals , Dendrimers/chemistry , Nylons/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry
15.
Molecules ; 23(6)2018 May 24.
Article in English | MEDLINE | ID: mdl-29794978

ABSTRACT

The inhibition of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) potentially represents a new treatment option for malaria, as P. falciparum relies entirely on a de novo pyrimidine biosynthetic pathway for survival. Herein, we report a series of pyrimidone derivatives as novel inhibitors of PfDHODH. The most potent compound, 26, showed high inhibition activity against PfDHODH (IC50 = 23 nM), with >400-fold species selectivity over human dihydroorotate dehydrogenase (hDHODH). The brand-new inhibitor scaffold targeting PfDHODH reported in this work may lead to the discovery of new antimalarial agents.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/enzymology , Pyrimidinones/chemical synthesis , Dihydroorotate Dehydrogenase , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Models, Molecular , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Species Specificity , Structure-Activity Relationship
16.
J Med Chem ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943626

ABSTRACT

Degradation of target proteins has been considered to be a promising therapeutic approach, but the rational design of compounds for degradation remains a challenge. In this study, we reasonably designed and synthesized only 10 compounds to discover effective CDK4/6 protein degraders. Among the newly synthesized compounds, 7f achieved dual degradation of CDK4/6 protein, with DC50 values of 10.5 and 2.5 nM, respectively. Compound 7f also exhibited inhibitory proliferative activity against Jurkat cells with an IC50 value of 0.18 µM. Furthermore, 7f induced cell apoptosis and G1 phase cell cycle arrest in a dose-dependent manner in Jurkat cells. In conclusion, these findings demonstrate the potential of 7f as a CDK4/6 degrader and a potential therapeutic strategy against cancer, thereby expanding the potential of CDK4/6 dual PROTACs.

17.
J Med Chem ; 67(11): 9686-9708, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38809692

ABSTRACT

High extracellular concentrations of adenosine triphosphate (ATP) in the tumor microenvironment generate adenosine by sequential dephosphorylation of CD39 and CD73, resulting in potent immunosuppression to inhibit T cell and natural killer (NK) cell function. CD73, as the determining enzyme for adenosine production, has been shown to correlate with poor clinical tumor prognosis. Conventional inhibitors as analogues of adenosine 5'-monophosphate (AMP) may have a risk of further metabolism to adenosine analogues. Here, we report a new series of malonic acid non-nucleoside inhibitors coordinating with zinc ions of CD73. Compound 12f was found to be a superior CD73 inhibitor (IC50 = 60 nM) by structural optimization, and its pharmacokinetic properties were investigated. In mouse tumor models, compound 12f showed excellent efficacy and reversal of immunosuppression in combination with chemotherapeutic agents or checkpoint inhibitors, suggesting that it deserves further development as a novel CD73 inhibitor.


Subject(s)
5'-Nucleotidase , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/metabolism , Animals , Humans , Mice , Malonates/pharmacology , Malonates/chemistry , Malonates/chemical synthesis , Zinc/chemistry , Zinc/metabolism , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Drug Discovery , Cell Line, Tumor
18.
Bioorg Med Chem Lett ; 23(12): 3496-9, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23664215

ABSTRACT

Through structure-based virtual screening, some dozen of benzene sulfonamides with novel scaffolds are identified as potent inhibitors against carbonic anhydrase (CA) IX with IC50 values ranging from 2.86 to 588.34 nM. Among them, compounds 1 and 9 show high selectivity against tumor-target CA IX over CA II (the selectivity ratios are 21.3 and 136.6, respectively). The possible binding poses of hit compounds are also explored and the selectivity is elucidated by molecular docking simulations. The hit compounds discovered in this work would provide novel scaffolds for further hit-to-lead optimization.


Subject(s)
Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Drug Evaluation, Preclinical/methods , Humans , Molecular Docking Simulation , Structure-Activity Relationship
19.
Bioorg Med Chem ; 21(7): 1724-34, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23434140

ABSTRACT

A series of novel indolin-2-ones inhibitors against p90 ribosomal S6 protein kinase 2 (RSK2) were designed and synthesized and their structure-activity relationship (SAR) was studied. The most potent inhibitor, compound 3s, exhibited potent inhibition against RSK2 with an IC50 value of 0.5 µM and presented a satisfactory selectivity against 23 kinases. The interactions of these inhibitors with RSK2 were investigated based on the proposed binding poses with molecular docking simulation. Four compounds and six compounds exhibited moderate anti-proliferation activities against PC 3 cells and MCF-7 cells, respectively.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Female , Humans , Male , Molecular Docking Simulation , Prostatic Neoplasms/drug therapy , Ribosomal Protein S6 Kinases, 90-kDa/chemistry , Structure-Activity Relationship
20.
J Enzyme Inhib Med Chem ; 28(4): 747-52, 2013 Aug.
Article in English | MEDLINE | ID: mdl-22545939

ABSTRACT

The 90 kDa ribosomal S6 kinases (RSKs), especially RSK2, have attracted attention for the development of new anticancer agents. Through structural optimization of the hit compound 1 from our previous study, a series of barbituric acid aryl hydrazone analogues were designed and synthesized as potential RSK2 inhibitors. The most potent one, compound 9, showed a higher activity against RSK2 with an IC50 value of 1.95 µM. To analyze and elucidate their structure-activity relationship, the homology model of RSK2 N-terminal kinase domain was built and molecular docking simulations were performed, which provide helpful clues to design new inhibitors with desired activities.


Subject(s)
Barbiturates/pharmacology , Hydrazones/pharmacology , Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Barbiturates/chemical synthesis , Barbiturates/chemistry , Dose-Response Relationship, Drug , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL