Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(23): e2302873120, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37253005

ABSTRACT

Efficient photocatalytic H2 production from wastewater instead of pure water is a dual solution to the environmental and energy crisis, but due to the rapid recombination of photoinduced charge in the photocatalyst and inevitable electron depletion caused by organic pollutants, a significant challenge of dual-functional photocatalysis (simultaneous oxidative and reductive reactions) in single catalyst is designing spatial separation path for photogenerated charges at atomic level. Here, we designed a Pt-doped BaTiO3 single catalyst with oxygen vacancies (BTPOv) that features Pt-O-Ti3+ short charge separation site, which enables excellent H2 production performance (1519 µmol·g-1·h-1) while oxidizing moxifloxacin (k = 0.048 min-1), almost 43 and 98 times than that of pristine BaTiO3 (35 µmol·g-1·h-1 and k = 0.00049 min-1). The efficient charge separation path is demonstrated that the oxygen vacancies extract photoinduced charge from photocatalyst to catalytic surface, and the adjacent Ti3+ defects allow rapid migration of electrons to Pt atoms through the superexchange effect for H* adsorption and reduction, while the holes will be confined in Ti3+ defects for oxidation of moxifloxacin. Impressively, the BTPOv shows an exceptional atomic economy and potential for practical applications, a best H2 production TOF (370.4 h-1) among the recent reported dual-functional photocatalysts and exhibiting excellent H2 production activity in multiple types of wastewaters.

2.
Proc Natl Acad Sci U S A ; 120(13): e2300085120, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36952382

ABSTRACT

The peroxymonosulfate (PMS)-triggered radical and nonradical active species can synergistically guarantee selectively removing micropollutants in complex wastewater; however, realizing this on heterogeneous metal-based catalysts with single active sites remains challenging due to insufficient electron cycle. Herein, we design asymmetric Co-O-Bi triple-atom sites in Co-doped Bi2O2CO3 to facilitate PMS oxidation and reduction simultaneously by enhancing the electron transfer between the active sites. We propose that the asymmetric Co-O-Bi sites result in an electron density increase in the Bi sites and decrease in the Co sites, thereby PMS undergoes a reduction reaction to generate SO4•- and •OH at the Bi site and an oxidation reaction to generate 1O2 at the Co site. We suggest that the synergistic effect of SO4•-, •OH, and 1O2 enables efficient removal and mineralization of micropollutants without interference from organic and inorganic compounds under the environmental background. As a result, the Co-doped Bi2O2CO3 achieves almost 99.3% sulfamethoxazole degradation in 3 min with a k-value as high as 82.95 min-1 M-1, which is superior to the existing catalysts reported so far. This work provides a structural regulation of the active sites approach to control the catalytic function, which will guide the rational design of Fenton-like catalysts.

3.
J Neurosci ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844343

ABSTRACT

During the second-to-third trimester, the neuronal pathways of the fetal brain experience rapid development, resulting in the complex architecture of the inter-wired network at birth. While diffusion MRI-based tractography has been employed to study the prenatal development of structural connectivity network (SCN) in preterm neonatal and post-mortem fetal brains, the in-utero development of SCN in the normal fetal brain remains largely unknown. In this study, we utilized in-utero dMRI data from human fetuses of both sexes between 26 to 38 gestational weeks to investigate the developmental trajectories of the fetal brain SCN, focusing on intra-hemispheric connections. Our analysis revealed significant increases in global efficiency, mean local efficiency, and clustering coefficient, along with significant decrease in shortest path length, while small-worldness persisted during the studied period, revealing balanced network integration and segregation. Widespread short-ranged connectivity strengthened significantly. The nodal strength developed in a posterior-to-anterior and medial-to-lateral order, reflecting a spatiotemporal gradient in cortical network connectivity development. Moreover, we observed distinct lateralization patterns in the fetal brain SCN. Globally, there was a leftward lateralization in network efficiency, clustering coefficient, and small-worldness. The regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge, except for the Wernicke's area, indicating lateralized brain wiring is an innate property of the human brain starting from the fetal period. Our findings provided a comprehensive view of the development of the fetal brain SCN and its lateralization, as a normative template that may be used to characterize atypical development.Significance Statement We studied the normal development of intra-hemispheric cortico-cortical structural connectivity networks (SCNs) of the fetal brain from 26 to 38 gestational weeks using in-utero diffusion MRI data. Graph-theory-based analysis revealed significant enhancement in network efficiency and clustering, as well as persisted small-worldness with age, revealing balanced integration and segregation in the fetal brain SCN during the studied period, supported by regional developmental patterns. Leftward lateralization in network efficiency, clustering coefficient and small-worldness was observed. Regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge. We also summarized the challenges of investigating the fetal brain SCN development, and provided suggestions for future studies.

4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35165149

ABSTRACT

The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene-neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene-neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain.


Subject(s)
Brain/embryology , Embryo, Mammalian/metabolism , Embryonic Development/physiology , Gene Expression Regulation, Developmental/physiology , Magnetic Resonance Imaging/methods , Animals , Brain/metabolism , Computer Simulation , Mice , Models, Biological
5.
J Neurosci ; 43(4): 559-570, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36639904

ABSTRACT

Thalamus is a critical component of the limbic system that is extensively involved in both basic and high-order brain functions. However, how the thalamic structure and function develops at macroscopic and microscopic scales during the perinatal period development is not yet well characterized. Here, we used multishell high-angular resolution diffusion MRI of 144 preterm-born and full-term infants in both sexes scanned at 32-44 postmenstrual weeks (PMWs) from the Developing Human Connectome Project database to investigate the thalamic development in morphology, microstructure, associated connectivity, and subnucleus division. We found evident anatomic expansion and linear increases of fiber integrity in the lateral side of thalamus compared with the medial part. The tractography results indicated that thalamic connection to the frontal cortex developed later than the other thalamocortical connections (parieto-occipital, motor, somatosensory, and temporal). Using a connectivity-based segmentation strategy, we revealed that functional partitions of thalamic subdivisions were formed at 32 PMWs or earlier, and the partition developed toward the adult pattern in a lateral-to-medial pattern. Collectively, these findings revealed faster development of the lateral thalamus than the central part as well as a posterior-to-anterior developmental gradient of thalamocortical connectivity from the third trimester to early infancy.SIGNIFICANCE STATEMENT This is the first study that characterizes the spatiotemporal developmental pattern of thalamus during the third trimester to early infancy. We found that thalamus develops in a lateral-to-medial pattern for both thalamic microstructures and subdivisions; and thalamocortical connectivity develops in a posterior-to-anterior gradient that thalamofrontal connectivity appears later than the other thalamocortical connections. These findings may enrich our understanding of the developmental principles of thalamus and provide references for the atypical brain growth in neurodevelopmental disorders.


Subject(s)
Connectome , Magnetic Resonance Imaging , Male , Adult , Infant, Newborn , Female , Pregnancy , Humans , Infant , Pregnancy Trimester, Third , Diffusion Magnetic Resonance Imaging , Connectome/methods , Thalamus , Neural Pathways/diagnostic imaging , Cerebral Cortex
6.
BMC Genomics ; 25(1): 588, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862895

ABSTRACT

BACKGROUND: The skeletal muscle growth rate and body size of Tibetan pigs (TIB) are lower than Large white pigs (LW). However, the underlying genetic basis attributing to these differences remains uncertain. To address this knowledge gap, the present study employed whole-genome sequencing of TIB (slow growth) and LW (fast growth) individuals, and integrated with existing NCBI sequencing datasets of TIB and LW individuals, enabling the identification of a comprehensive set of genetic variations for each breed. The specific and predominant SNPs in the TIB and LW populations were detected by using a cutoff value of 0.50 for SNP allele frequency and absolute allele frequency differences (△AF) between the TIB and LW populations. RESULTS: A total of 21,767,938 SNPs were retrieved from 44 TIB and 29 LW genomes. The analysis detected 2,893,106 (13.29%) and 813,310 (3.74%) specific and predominant SNPs in the TIB and LW populations, and annotated to 24,560 genes. Further GO analysis revealed 291 genes involved in biological processes related to striated and/or skeletal muscle differentiation, proliferation, hypertrophy, regulation of striated muscle cell differentiation and proliferation, and myoblast differentiation and fusion. These 291 genes included crucial regulators of muscle cell determination, proliferation, differentiation, and hypertrophy, such as members of the Myogenic regulatory factors (MRF) (MYOD, MYF5, MYOG, MYF6) and Myocyte enhancer factor 2 (MEF2) (MEF2A, MEF2C, MEF2D) families, as well as muscle growth inhibitors (MSTN, ACVR1, and SMAD1); KEGG pathway analysis revealed 106 and 20 genes were found in muscle growth related positive and negative regulatory signaling pathways. Notably, genes critical for protein synthesis, such as MTOR, IGF1, IGF1R, IRS1, INSR, and RPS6KA6, were implicated in these pathways. CONCLUSION: This study employed an effective methodology to rigorously identify the potential genes associated with skeletal muscle development. A substantial number of SNPs and genes that potentially play roles in the divergence observed in skeletal muscle growth between the TIB and LW breeds were identified. These findings offer valuable insights into the genetic underpinnings of skeletal muscle development and present opportunities for enhancing meat production through pig breeding.


Subject(s)
Gene Frequency , Muscle Development , Muscle, Skeletal , Polymorphism, Single Nucleotide , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Swine/genetics , Swine/growth & development , Muscle Development/genetics , Whole Genome Sequencing , Tibet , Genome
7.
Neuroimage ; 297: 120669, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852805

ABSTRACT

The relationship between brain entropy (BEN) and early brain development has been established through animal studies. However, it remains unclear whether the BEN can be used to identify age-dependent functional changes in human neonatal brains and the genetic underpinning of the new neuroimaging marker remains to be elucidated. In this study, we analyzed resting-state fMRI data from the Developing Human Connectome Project, including 280 infants who were scanned at 37.5-43.5 weeks postmenstrual age. The BEN maps were calculated for each subject, and a voxel-wise analysis was conducted using a general linear model to examine the effects of age, sex, and preterm birth on BEN. Additionally, we evaluated the correlation between regional BEN and gene expression levels. Our results demonstrated that the BEN in the sensorimotor-auditory and association cortices, along the 'S-A' axis, was significantly positively correlated with postnatal age (PNA), and negatively correlated with gestational age (GA), respectively. Meanwhile, the BEN in the right rolandic operculum correlated significantly with both GA and PNA. Preterm-born infants exhibited increased BEN values in widespread cortical areas, particularly in the visual-motor cortex, when compared to term-born infants. Moreover, we identified five BEN-related genes (DNAJC12, FIG4, STX12, CETN2, and IRF2BP2), which were involved in protein folding, synaptic vesicle transportation and cell division. These findings suggest that the fMRI-based BEN can serve as an indicator of age-dependent brain functional development in human neonates, which may be influenced by specific genes.

8.
BMC Med ; 22(1): 247, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886774

ABSTRACT

BACKGROUND: Analyzing distance-dependent functional connectivity density (FCD) yields valuable insights into patterns of brain activity. Nevertheless, whether alterations of FCD in non-acute stroke patients are associated with the anatomical distance between brain regions remains unclear. This study aimed to explore the distance-related functional reorganization in non-acute stroke patients following left and right hemisphere subcortical lesions, and its relationship with clinical assessments. METHODS: In this study, we used resting-state fMRI to calculate distance-dependent (i.e., short- and long-range) FCD in 25 left subcortical stroke (LSS) patients, 22 right subcortical stroke (RSS) patients, and 39 well-matched healthy controls (HCs). Then, we compared FCD differences among the three groups and assessed the correlation between FCD alterations and paralyzed motor function using linear regression analysis. RESULTS: Our findings demonstrated that the left inferior frontal gyrus displayed distance-independent FCD changes, while the bilateral supplementary motor area, cerebellum, and left middle occipital gyrus exhibited distance-dependent FCD alterations in two patient subgroups compared with HCs. Furthermore, we observed a positive correlation between increased FCD in the bilateral supplementary motor area and the motor function of lower limbs, and a negative correlation between increased FCD in the left inferior frontal gyrus and the motor function of both upper and lower limbs across all stroke patients. These associations were validated by using a longitudinal dataset. CONCLUSIONS: The FCD in the cerebral and cerebellar cortices shows distance-related changes in non-acute stroke patients with motor dysfunction, which may serve as potential biomarkers for predicting motor outcomes after stroke. These findings enhance our comprehension of the neurobiological mechanisms driving non-acute stroke. TRIAL REGISTRATION: All data used in the present study were obtained from a research trial registered with the ClinicalTrials.gov database (NCT05648552, registered 05 December 2022, starting from 01 January 2022).


Subject(s)
Magnetic Resonance Imaging , Stroke , Adult , Aged , Female , Humans , Male , Middle Aged , Brain/physiopathology , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Stroke/physiopathology , Stroke/diagnostic imaging
9.
J Magn Reson Imaging ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38284561

ABSTRACT

BACKGROUND: Tractography based on diffusion MRI (dMRI) is a useful tool to study white matter of the developing brain. However, its application in fetal brains is limited due to motion artifacts and low resolution of in utero dMRI, leading to reduced reliability, which was scarcely investigated in previous studies. PURPOSE: To identify reliably traceable fibers in fetal brains and assess whether reproducibility varies with gestational age (GA) and varies between brain regions. STUDY TYPE: Prospective cohort study. SUBJECTS: A total of 44 healthy fetuses with GAs between 25 and 37 (31 ± 6). FIELD STRENGTH/SEQUENCE: 3-T, diffusion-weighted echo-planar imaging sequence (2-5 repeated dMRI scans within the same session per subject). ASSESSMENT: We fitted dMRI with constrained spherical deconvolution model and conducted tractography on eight fibers. We extracted volume, fractional anisotropy, and fiber count for each fiber and assessed the reproducibility of these metrics between repeated scans within each subject. Data were divided into two age-based subgroups (≤30 weeks, N = 28, and >30 weeks, N = 16) for further tests. STATISTICAL TESTS: The reproducibility were compared between fibers by analysis of variance and two-sample t tests. Multiple comparisons were corrected by the false discovery rate (5% was accepted). RESULTS: The reproducibility of the anterior thalamic radiation, inferior longitudinal fasciculus (ILF), genu of the corpus callosum (GCC), and body of the corpus callosum (BCC) significantly decreased with advancing GA (correlation coefficient = 0.525-0.823), as confirmed by group comparisons between fetuses in early GA (≤30 weeks) and late GA (>30 weeks) groups. Corticospinal tract, inferior fronto-occipital fasciculus, and GCC showed high reproducibility for fiber count (weighted dice average = 0.846 vs. 0.814), while BCC and ILF exhibited the lowest reproducibility in both age groups. DATA CONCLUSION: The study indicates that the reliability of fetal brain tractography depends on GA and varies among different fibers. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

10.
Chemphyschem ; 25(4): e202300726, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38059760

ABSTRACT

As a promising strategy to improve photocatalytic efficiency, spin polarization has attracted enormous attention in recent years, which could be involved in various steps of photoreaction. The Pauli repulsion principle and the spin selection rule dictate that the behavior of two electrons in a spatial eigenstate is based on their spin states, and this fact opens up a new avenue for manipulating photocatalytic efficiency. In this review, recent advances in modulating the photocatalytic activity with spin polarization are systematically summarized. Fundamental insights into the influence of spin-polarization effects on photon absorption, carrier separation, and migration, and the behaviors of reaction-related substances from the photon uptake to reactant desorption are highlighted and discussed in detail, and various photocatalytic applications for environmental purification and energy conversion are presented. This review is expected to deliver a timely overview of the recent developments in spin-polarization-modulated photocatalysis for environmental purification and energy conversion in terms of their practical applications.

11.
Horm Metab Res ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38569514

ABSTRACT

Remnant cholesterol (RC) is closely related to metabolic diseases. Our study aims to explore the relationship between RC and hyperuricemia. This cross-sectional study included 14 568 adults aged 20 years or older from the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2018 in the United States. RC is calculated by subtracting high-density lipoprotein cholesterol (HDL-c) and low-density lipoprotein cholesterol (LDL-c) from total cholesterol (TC). Hyperuricemia is defined by serum uric acid (SUA) levels≥7 mg/dl in men and≥6 mg/dl in women. The independent association between RC and hyperuricemia was evaluated. As the quartile range of RC levels increases, the prevalence of hyperuricemia also rises (7.84% vs. 13.71% vs. 18.61% vs. 26.24%, p<0.001). After adjusting for confounding factors, the fourth quartile of RC was associated with an increased risk of hyperuricemia compared with the first quartile (OR=2.942, 95% CI 2.473-3.502, p<0.001). Receiver Operating Characteristic (ROC) analysis shows that RC outperforms other single lipid indices in hyperuricemia. Further Restricted Cubic Splines (RCS) analysis suggests a nonlinear relationship between RC levels and hyperuricemia. Elevated RC levels were found to be linked to hyperuricemia. Further studies on RC hold promise for both preventing and addressing hyperuricemia.

12.
Neurosurg Rev ; 47(1): 235, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795181

ABSTRACT

PURPOSE: This study investigated the value of whole tumor apparent diffusion coefficient (ADC) histogram parameters and magnetic resonance imaging (MRI) semantic features in predicting meningioma progesterone receptor (PR) expression. MATERIALS AND METHODS: The imaging, pathological, and clinical data of 53 patients with PR-negative meningiomas and 52 patients with PR-positive meningiomas were retrospectively reviewed. The whole tumor was outlined using Firevoxel software, and the ADC histogram parameters were calculated. The differences in ADC histogram parameters and MRI semantic features were compared between the two groups. The predictive values of parameters for PR expression were assessed using receiver operating characteristic curves. The correlation between whole-tumor ADC histogram parameters and PR expression in meningiomas was also analyzed. RESULTS: Grading was able to predict the PR expression in meningiomas (p = 0.012), though the semantic features of MRI were not (all p > 0.05). The mean, Perc.01, Perc.05, Perc.10, Perc.25, and Perc.50 histogram parameters were able to predict meningioma PR expression (all p < 0.05). The predictive performance of the combined histogram parameters improved, and the combination of grade and histogram parameters provided the optimal predictive value, with an area under the curve of 0.849 (95%CI: 0.766-0.911) and sensitivity, specificity, ACC, PPV, and NPV of 73.08%, 81.13%, 77.14%, 79.20%, and 75.40%, respectively. The mean, Perc.01, Perc.05, Perc.10, Perc.25, and Perc.50 histogram parameters were positively correlated with PR expression (all p < 0.05). CONCLUSION: Whole tumor ADC histogram parameters have additional clinical value in predicting PR expression in meningiomas.


Subject(s)
Diffusion Magnetic Resonance Imaging , Meningeal Neoplasms , Meningioma , Receptors, Progesterone , Humans , Meningioma/diagnostic imaging , Meningioma/pathology , Meningioma/metabolism , Female , Middle Aged , Male , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Receptors, Progesterone/metabolism , Adult , Diffusion Magnetic Resonance Imaging/methods , Aged , Retrospective Studies , Predictive Value of Tests
13.
J Environ Manage ; 365: 121685, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963964

ABSTRACT

Ternary alkali-activated binder was prepared by blast furnace slag (GGBS), recycled powder (RP) and waste glass powder (WGP) using simplex centroid design method. By measuring the fluidity, setting time, drying shrinkage and mechanical property of specimen, the complementary effect of GGBS, RP and WGP was discussed. The reaction mechanism and microstructure were explored by X-ray diffraction and scanning electron microscopy. The results reveal that the addition of RP could significantly reduce the fluidity and setting time of paste, while WGP can obviously improve the rheological property and play a retarding role. The workability of paste can be effectively regulated by mixing RP and WGP together. Whether added alone or in combination, RP and WGP can effectively improve the shrinkage performance. In the ternary system, GGBS can be rapidly activated and form a skeleton structure. The fine RP particles can play a good role in filling the structure, and the pozzolanic reaction of WGP gradually occurs, which makes the microstructure more compact. The incorporation of GGBS, RP and WGP can promote the growth of hydration products, improve the density of microstructure, and form a certain complementary effect.

14.
Angew Chem Int Ed Engl ; : e202406795, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708785

ABSTRACT

The accumulation of plastic waste poses a pressing environmental challenge. Catalytic conversion stands out as an ideal approach for plastics upcycling, particularly through solar-driven plastics photoreforming. However, due to the common effects of multiple reactive oxygen species (ROS), selectively generating high-value chemicals becomes challenging. In this study, we developed a universal strategy to achieve >85 % selective production of diesel olefins (C15-C28) from polyolefin waste plastics via single ROS. Using tetrakis (4-carboxyphenyl) porphyrin supramolecular (TCPP) with different central metals as an example to regulate single ROS generation, results show Ni-TCPP facilitates triplet exciton production, yielding 1O2, while Zn-TCPP generates ⋅O2 - due to its strong built-in electric field (IEF). 1O2 directly dechlorinates polyvinyl chloride (PVC) due to the electro-negativity of chlorine atoms and the low dissociation energy of C-Cl bonds, while ⋅O2 - promotes direct dehydrogenation of polyethylene (PE) due to the electro-positivity of hydrogen atoms and the high dissociation energy of C-H bonds. This method is universally applicable to various single ROS systems. Installation experiments further affirm the application potential, achieving the highest diesel olefin production of 76.1 µmol h-1. Such a universally adaptive approach holds promise for addressing the global plastic pollution problem.

15.
Neuroimage ; 272: 120071, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37003446

ABSTRACT

The neonatal period is a critical window for the development of the human brain and may hold implications for the long-term development of cognition and disorders. Multi-modal connectome studies have revealed many important findings underlying the adult brain but related studies were rare in the early human brain. One potential challenge is the lack of an appropriate and unbiased parcellation that combines structural and functional information in this population. Using 348 multi-modal MRI datasets from the developing human connectome project, we found that the information fused from the structural, diffusion, and functional MRI was relatively stable across MRI features and showed high reproducibility at the group level. Therefore, we generated automated multi-resolution parcellations (300 - 500 parcels) based on the similarity across multi-modal features using a gradient-based parcellation algorithm. In addition, to acquire a parcellation with high interpretability, we provided a manually delineated parcellation (210 parcels), which was approximately symmetric, and the adjacent areas around each boundary were statistically different in terms of the integrated similarity metric and at least one kind of original features. Overall, the present study provided multi-resolution and neonate-specific parcellations of the cerebral cortex based on multi-modal MRI properties, which may facilitate future studies of the human connectome in the early development period.


Subject(s)
Connectome , Magnetic Resonance Imaging , Adult , Infant, Newborn , Humans , Reproducibility of Results , Brain , Cerebral Cortex/diagnostic imaging
16.
Hum Brain Mapp ; 44(2): 458-471, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36053237

ABSTRACT

High-resolution ex vivo diffusion MRI (dMRI) can provide exquisite mesoscopic details and microstructural information of the human brain. Microstructural pattern of the anterior part of human hippocampus, however, has not been well elucidated with ex vivo dMRI, either in normal or disease conditions. The present study collected high-resolution (0.1 mm isotropic) dMRI of post-mortem anterior hippocampal tissues from four Alzheimer's diseases (AD), three primary age-related tauopathy (PART), and three healthy control (HC) brains on a 14.1 T spectrometer. We evaluated how AD affected dMRI-based microstructural features in different layers and subfields of anterior hippocampus. In the HC samples, we found higher anisotropy, lower diffusivity, and more streamlines in the layers within cornu ammonis (CA) than those within dentate gyrus (DG). Comparisons between disease groups showed that (1) anisotropy measurements in the CA layers of AD, especially stratum lacunosum (SL) and stratum radiatum (SR), had higher regional variability than the other two groups; (2) streamline density in the DG layers showed a gradually increased variance from HC to PART to AD; (3) AD also showed the higher variability in terms of inter-layer connectivity than HC or PART. Moreover, voxelwise correlation analysis between the coregistered dMRI and histopathology images revealed significant correlations between dMRI measurements and the contents of amyloid beta (Aß)/tau protein in specific layers of AD samples. These findings may reflect layer-specific microstructural characteristics in different hippocampal subfields at the mesoscopic resolution, which were associated with protein deposition in the anterior hippocampus of AD patients.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides , Magnetic Resonance Imaging/methods , Hippocampus/diagnostic imaging , Hippocampus/pathology , Diffusion Magnetic Resonance Imaging
17.
Opt Express ; 31(11): 17809-17819, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381505

ABSTRACT

In this paper, a novel distributed twist sensor based on frequency-scanning phase-sensitive optical time-domain reflectometry (φ-OTDR) in a spun fiber is proposed and demonstrated. Owing to the unique helical structure of the stress rods in the spun fiber, fiber twist gives rise to the variation of the effective refractive index of the transmitting light, which can be quantitatively retrieved through frequency shift using frequency-scanning φ-OTDR. The feasibility of distributed twist sensing has been verified by both simulation and experiment. For proof of concept, distributed twist sensing over a 136 m spun fiber with a 1 m spatial resolution is demonstrated, and the measured frequency shift shows a quadratic fitting dependence on the twist angle. In addition, the responses of both clockwise and counterclockwise twist directions have also been explored and the experiment result indicates that the twist direction can be discriminated since the frequency shift directions are opposite in the correlation spectrum. The proposed twist sensor possesses some outstanding advantages, including high sensitivity, distributed twist measurement and twist direction recognition capability, etc., which is very promising for specific applications in industry, e.g., structural health monitoring, bionic robots, etc.

18.
Opt Express ; 31(22): 37019-37029, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017839

ABSTRACT

We have proposed and demonstrated a weak acoustic signal detection technology based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). Non-contact acoustic signals transmitting through air gap between the sound source and the receiver are difficult to detect due to fast attenuation. In order to improve the detection ability of non-contact weak acoustic signals, we demonstrate that multi-mode fiber (MMF) is a better solution than single-mode fiber (SMF) benefiting from its larger core and higher Rayleigh backscattering (RBS) capture coefficient. The frequency signal-to-noise ratio (SNR) has been enhanced by 9.26 dB. Then, with the help of 3D printing technology, elastomers have been designed to further enhance the detection ability due to the high-sensitive response to acoustic signals. Compared with the previous reported "I" type elastomer, the location and frequency SNR enhancement caused by our new proposed "n" type elastomer are 8.39 dB and 11.02 dB in SMF based system. The values are further improved to 10.51 dB and 13.38 dB in MMF and "n" type elastomer integrated system. And a phase-pressure sensitivity of -94.62 dB re rad/µPa has been achieved at 2.5 kHz. This non-contact weak acoustic signal detection technique has great application potential in the quasi-distributed partial discharge (PD) detection of smart grid.

19.
Opt Lett ; 48(23): 6128-6131, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039208

ABSTRACT

We propose and experimentally demonstrate a high-resolution, high-sensitivity liquid level sensor based on a multicore fiber (MCF) Michelson interferometer (MI), where the sensing fiber is securely affixed to a cantilever beam, such that liquid level variations will change the beam's curvature, meanwhile leading to a substantial phase difference between the two interfering arms of the MI, and the sensor is interrogated using a microwave photonics filter (MPF) system, which can provide greatly enhanced measurement resolution compared to the traditional optical wavelength demodulation methods. The angular position of the MCF is precisely calibrated to ensure optimal sensitivity of the MI sensor. As a result, within a measurement range of up to ±14 cm, the proposed liquid level sensor achieves a sensitivity of 10.35 MHz/cm and an impressive resolution of 0.04835 cm. The proposed sensor has unique advantages of high sensitivity, superior resolution, long-term stability, etc.

20.
Opt Lett ; 48(18): 4749-4752, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37707893

ABSTRACT

This Letter demonstrates the high compatibility of the self-homodyne coherent detection (SHCD) transmission system with the Brillouin optical time-domain analyzer (BOTDA). By fully utilizing the remote delivered local oscillator (LO) light of the transmission system, the first, to the best of our knowledge, endogenously integrated BOTDA subsystem is achieved. The remote delivery of the homologous laser source in the SHCD system ensures the frequency match between the probe light and the pump light of the BOTDA. Furthermore, an injection-locked distributed feedback (DFB) laser is employed to amplify the LO and eliminate the impact induced by the Brillouin gain. The experiment demonstrates that a 16-km distributed temperature sensing based on BOTDA can be insensibly emerged into a 50-Gbaud DP-16QAM SHCD transmission system (400 Gbps/λ/core), achieving a spatial resolution of 3 meters and a temperature accuracy of 1°C. Remarkably, the auxiliary sensing module has negligible impact on the transmission.

SELECTION OF CITATIONS
SEARCH DETAIL