Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nature ; 591(7848): 92-98, 2021 03.
Article in English | MEDLINE | ID: mdl-33307546

ABSTRACT

Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.


Subject(s)
COVID-19/genetics , COVID-19/physiopathology , Critical Illness , 2',5'-Oligoadenylate Synthetase/genetics , COVID-19/pathology , Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 21/genetics , Critical Care , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Drug Repositioning , Female , Genome-Wide Association Study , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation/physiopathology , Lung/pathology , Lung/physiopathology , Lung/virology , Male , Multigene Family/genetics , Receptor, Interferon alpha-beta/genetics , Receptors, CCR2/genetics , TYK2 Kinase/genetics , United Kingdom
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38225175

ABSTRACT

Speciation in the face of gene flow is usually associated with a heterogeneous genomic landscape of divergence in nascent species pairs. However, multiple factors, such as divergent selection and local recombination rate variation, can influence the formation of these genomic islands. Examination of the genomic landscapes of species pairs that are still in the early stages of speciation provides an insight into this conundrum. In this study, population genomic analyses were undertaken using a wide range of sampling and whole-genome resequencing data from 96 unrelated individuals of Kentish plover (Charadrius alexandrinus) and white-faced plover (Charadrius dealbatus). We suggest that the two species exhibit varying levels of population admixture along the Chinese coast and on the Taiwan Island. Genome-wide analyses for introgression indicate that ancient introgression had occurred in Taiwan population, and gene flow is still ongoing in mainland coastal populations. Furthermore, we identified a few genomic regions with significant levels of interspecific differentiation and local recombination suppression, which contain several genes potentially associated with disease resistance, coloration, and regulation of plumage molting and thus may be relevant to the phenotypic and ecological divergence of the two nascent species. Overall, our findings suggest that divergent selection in low recombination regions may be a main force in shaping the genomic islands in two incipient shorebird species.


Subject(s)
Genome-Wide Association Study , Genomic Islands , Humans , Genetic Speciation , Genome , Gene Flow , Recombination, Genetic , Selection, Genetic
3.
Circulation ; 145(18): 1398-1411, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35387486

ABSTRACT

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Cross-Sectional Studies , Genome-Wide Association Study , Humans , Receptors, Coronavirus , SARS-CoV-2
4.
Sci Data ; 11(1): 73, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228677

ABSTRACT

The White-eared Night-Heron (Gorsachius magnificus, G. magnificus) is a critically endangered heron that is very poorly known and only found in southern China and northern Vietnam, with an estimated population of 250 to 999 mature individuals. However, the lack of a reference genome has hindered the implementation of conservation management efforts. In this study, we present the first high-quality chromosome-scale reference genome, which was assembled by integrating PacBio long-reads sequencing, Illumina paired-end sequencing, and Hi-C technology. The genome has a total length of 1.176 Gb, with a scaffold N50 of 84.77 Mb and a contig N50 of 18.46 Mb. Utilizing Hi-C data, we anchored 99.89% of the scaffold sequences onto 29 pairs of chromosomes. Additionally, we identified 18,062 protein-coding genes in the genome, with 95.00% of which were functionally annotated. Notably, BUSCO assessment confirmed the presence of 97.2% of highly conserved Aves genes within the genome. This chromosome-level genome assembly and annotation will be valuable for future investigating the G. magnificus's evolutionary adaptation and conservation.


Subject(s)
Birds , Chromosomes , Genome , Animals , Birds/genetics , Chromosomes/genetics , Molecular Sequence Annotation , Phylogeny
5.
Phenomics ; 3(3): 217-227, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37325708

ABSTRACT

Alternative splicing exists in most multi-exonic genes, and exploring these complex alternative splicing events and their resultant isoform expressions is essential. However, it has become conventional that RNA sequencing results have often been summarized into gene-level expression counts mainly due to the multiple ambiguous mapping of reads at highly similar regions. Transcript-level quantification and interpretation are often overlooked, and biological interpretations are often deduced based on combined transcript information at the gene level. Here, for the most variable tissue of alternative splicing, the brain, we estimate isoform expressions in 1,191 samples collected by the Genotype-Tissue Expression (GTEx) Consortium using a powerful method that we previously developed. We perform genome-wide association scans on the isoform ratios per gene and identify isoform-ratio quantitative trait loci (irQTL), which could not be detected by studying gene-level expressions alone. By analyzing the genetic architecture of the irQTL, we show that isoform ratios regulate educational attainment via multiple tissues including the frontal cortex (BA9), cortex, cervical spinal cord, and hippocampus. These tissues are also associated with different neuro-related traits, including Alzheimer's or dementia, mood swings, sleep duration, alcohol intake, intelligence, anxiety or depression, etc. Mendelian randomization (MR) analysis revealed 1,139 pairs of isoforms and neuro-related traits with plausible causal relationships, showing much stronger causal effects than on general diseases measured in the UK Biobank (UKB). Our results highlight essential transcript-level biomarkers in the human brain for neuro-related complex traits and diseases, which could be missed by merely investigating overall gene expressions. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00100-6.

6.
Commun Biol ; 5(1): 1111, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266475

ABSTRACT

CRISPR-Cas is a powerful genome editing tool for various species and human cell lines, widely used in many research areas including studying the mechanisms, targets, and gene therapies of human diseases. Recent developments have even allowed high-throughput genetic screening using the CRISPR system. However, due to the practical and ethical limitations in human gene editing research, little is known about whether CRISPR-editable DNA segments could influence human complex traits or diseases. Here, we investigated the human genomic regions condensed with different CRISPR Cas enzymes' protospacer-adjacent motifs (PAMs). We found that Cas enzymes with GC-rich PAMs could interfere more with the genomic regions that harbor enriched heritability for human complex traits and diseases. The results linked GC content across the genome to the functional genomic elements in the heritability enrichment of human complex traits. We provide a genetic overview of the effects of high-throughput genome editing on human complex traits.


Subject(s)
CRISPR-Cas Systems , Multifactorial Inheritance , Humans , DNA/genetics , Gene Editing/methods , Genomics
7.
Front Cardiovasc Med ; 9: 910826, 2022.
Article in English | MEDLINE | ID: mdl-35924220

ABSTRACT

Background: Atrioventricular nodal reentrant tachycardia (AVNRT) is a common arrhythmia. Growing evidence suggests that family aggregation and genetic factors are involved in AVNRT. However, in families with a history of AVNRT, disease-causing genes have not been reported. Objective: To investigate the genetic contribution of familial AVNRT using a whole-exome sequencing (WES) approach. Methods: Blood samples were collected from 20 patients from nine families with a history of AVNRT and 100 control participants, and we systematically analyzed mutation profiles using WES. Gene-based burden analysis, integration of previous sporadic AVNRT data, pedigree-based co-segregation, protein-protein interaction network analysis, single-cell RNA sequencing, and confirmation of animal phenotype were performed. Results: Among 95 related reference genes, seven candidate pathogenic genes have been identified both in sporadic and familial AVNRT, including CASQ2, AGXT, ANK2, SYNE2, ZFHX3, GJD3, and SCN4A. Among the 37 reference genes from sporadic AVNRT, five candidate pathogenic genes were identified in patients with both familial and sporadic AVNRT: LAMC1, ryanodine receptor 2 (RYR2), COL4A3, NOS1, and ATP2C2. To identify the common pathogenic mechanisms in all AVNRT cases, five pathogenic genes were identified in patients with both familial and sporadic AVNRT: LAMC1, RYR2, COL4A3, NOS1, and ATP2C2. Considering the unique internal candidate pathogenic gene within pedigrees, three genes, TRDN, CASQ2, and WNK1, were likely to be the pathogenic genes in familial AVNRT. Notably, the core calcium-signaling pathway may be closely associated with the occurrence of AVNRT, including CASQ2, RYR2, TRDN, NOS1, ANK2, and ATP2C2. Conclusion: Our pedigree-based studies demonstrate that RYR2 and related calcium signaling pathway play a critical role in the pathogenesis of familial AVNRT using the WES approach.

8.
BMC Med Genomics ; 15(1): 189, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068540

ABSTRACT

BACKGROUND: Familial dilated cardiomyopathy (DCM) is a genetic cardiomyopathy that is associated with reduced left ventricle function or systolic function. Fifty-one DCM-causative genes have been reported, most of which are inherited in an autosomal dominant manner. However, recessive DCM-causative gene is rarely observed. METHODS: Whole-exome sequencing (WES) was performed in a consanguineous family with DCM to identify candidate variants. Sanger sequencing was utilized to confirm the variant. We then checked the DCM candidate gene in 210 sporadic DCM cases. We next explored BICD2 function in both embryonic and adult bicd2-knockout zebrafish models. In vivo cardiac function of bicd2-knockout fish was detected by echocardiography and RNA-seq. RESULTS: We identified an autosomal recessive and evolutionarily conserved missense variant, NM_001003800.1:c.2429G > A, in BICD2, which segregated with the disease phenotype in a consanguineous family with DCM. Furthermore, we confirmed the presence of BICD2 variants in 3 sporadic cases. Knockout of bicd2 resulted in partial embryonic lethality in homozygotes, suggesting a vital role for bicd2 in embryogenesis. Heart dilation and decreased ejection fraction, cardiac output and stroke volume were observed in bicd2-knockout zebrafish, suggesting a phenotype similar to human DCM. Furthermore, RNA-seq confirmed a larger transcriptome shift in in bicd2 homozygotes than in heterozygotes. Gene set enrichment analysis of bicd2-deficient fish showed the enrichment of altered gene expression in cardiac pathways and mitochondrial energy metabolism. CONCLUSIONS: Our study first shows that BICD2 is a novel candidate gene associated with familial DCM, and our findings will facilitate further insights into the molecular pathological mechanisms of DCM.


Subject(s)
Cardiomyopathy, Dilated , Adult , Animals , Cardiomyopathy, Dilated/pathology , Consanguinity , Exome , Humans , Microtubule-Associated Proteins , Pedigree , Zebrafish/genetics
9.
Free Radic Biol Med ; 193(Pt 2): 702-719, 2022 11 20.
Article in English | MEDLINE | ID: mdl-36395956

ABSTRACT

Keshan disease is an endemic fatal dilated cardiomyopathy that can cause heart enlargement, heart failure, and cardiogenic death. Selenium deficiency is considered to be the main cause of Keshan disease. However, the molecular mechanism underlying Keshan disease remains unclear. Our whole-exome sequencing from 68 patients with Keshan disease and 100 controls found 199 candidate genes by gene-level burden tests. Interestingly, using multiomics data, the selenium-related gene ALAD (δ-aminolevulinic acid dehydratase) was the only candidate causative gene identified by three different analysis approaches. Based on single-cell transcriptome data, ALAD was highly expressed in cardiomyocytes and double mutations of human ALAD dramatically reduced its enzyme activity in vitro compared to negative control. Functional analysis of ALAD inhibition in mice resulted in a Keshan phenotype with left ventricular enlargement and cardiac dysfunction, whereas administration of sodium selenite markedly reversed the changes caused by ALAD inhibition. In addition, sodium selenite reversed Keshan phenotypes by affecting energy metabolism and mitochondrial function in mice as shown by the transcriptomic and proteomic data and the ultrastructure of cardiac myocytes. Our findings are the first to demonstrate that the selenium-related gene ALAD is essential for cardiac function by maintaining normal mitochondrial activity, providing strong molecular evidence supporting the hypothesis of selenium deficiency in Keshan disease. These results identified ALAD as a novel target for therapeutic intervention in Keshan disease and Keshan disease-related dilated cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated , Malnutrition , Selenium , Humans , Mice , Animals , Cardiomyopathy, Dilated/genetics , Sodium Selenite , Proteomics
10.
Nat Commun ; 12(1): 2845, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990588

ABSTRACT

Quantifying the overall magnitude of every single locus' genetic effect on the widely measured human phenome is of great challenge. We introduce a unified modelling technique that can consistently provide a total genetic contribution assessment (TGCA) of a gene or genetic variant without thresholding genetic association signals. Genome-wide TGCA in five UK Biobank phenotype domains highlights loci such as the HLA locus for medical conditions, the bone mineral density locus WNT16 for physical measures, and the skin tanning locus MC1R and smoking behaviour locus CHRNA3 for lifestyle. Tissue-specificity investigation reveals several tissues associated with total genetic contributions, including the brain tissues for mental health. Such associations are driven by tissue-specific gene expressions, which share genetic basis with the total genetic contributions. TGCA can provide a genome-wide atlas for the overall genetic contributions in each particular domain of human complex traits.


Subject(s)
Genome, Human , Models, Genetic , Biological Specimen Banks/statistics & numerical data , Computer Simulation , Genome-Wide Association Study/statistics & numerical data , Humans , Molecular Sequence Annotation/statistics & numerical data , Multifactorial Inheritance/genetics , Organ Specificity/genetics , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
11.
CNS Neurosci Ther ; 27(1): 71-81, 2021 01.
Article in English | MEDLINE | ID: mdl-32991049

ABSTRACT

AIMS: The canonical Wnt signaling pathway plays an essential role in blood-brain barrier integrity and intracerebral hemorrhage in preclinical stroke models. Here, we sought to explore the association between canonical Wnt signaling and hemorrhagic transformation (HT) following intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients as well as to determine the underlying cellular mechanisms. METHODS: 355 consecutive AIS patients receiving IVT were included. Blood samples were collected on admission, and HT was detected at 24 hours after IVT. 117 single-nucleotide polymorphisms (SNPs) of 28 Wnt signaling genes and exon sequences of 4 core cerebrovascular Wnt signaling components (GPR124, RECK, FZD4, and CTNNB1) were determined using a customized sequencing chip. The impact of identified genetic variants was further studied in HEK 293T cells using cellular and biochemical assays. RESULTS: During the study period, 80 patients experienced HT with 27 parenchymal hematoma (PH). Compared to the non-PH patients, WNT7A SNPs (rs2163910, P = .001, OR 2.727; rs1124480, P = .002, OR 2.404) and GPR124 SNPs (rs61738775, P = .012, OR 4.883; rs146016051, P < .001, OR 7.607; rs75336000, P = .044, OR 2.503) were selectively enriched in the PH patients. Interestingly, a missense variant of GPR124 (rs75336000, c.3587G>A) identified in the PH patients resulted in a single amino acid alteration (p.Cys1196Tyr) in the intracellular domain of GPR124. This variant substantially reduced the activity of WNT7B-induced canonical Wnt signaling by decreasing the ability of GPR124 to recruit cytoplasmic DVL1 to the cellular membrane. CONCLUSION: Variants of WNT7A and GPR124 are associated with increased risk of PH in patients with AIS after intravenous thrombolysis, likely through regulating the activity of canonical Wnt signaling.


Subject(s)
Brain Ischemia/genetics , Cerebral Hemorrhage/genetics , Ischemic Stroke/genetics , Receptors, G-Protein-Coupled/genetics , Thrombolytic Therapy/adverse effects , Wnt Proteins/genetics , Administration, Intravenous , Aged , Brain Ischemia/diagnostic imaging , Brain Ischemia/drug therapy , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology , Female , Fibrinolytic Agents/administration & dosage , Genetic Variation/genetics , Humans , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/drug therapy , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Thrombolytic Therapy/methods , Thrombolytic Therapy/trends
12.
Front Pediatr ; 9: 695133, 2021.
Article in English | MEDLINE | ID: mdl-34295862

ABSTRACT

Microcephaly (MCPH) is a genetically heterogeneous disorder characterized by non-progressive intellectual disability, small head circumference, and small brain size compared with the age- and sex-matched population. MCPH manifests as an isolated condition or part of another clinical syndrome; so far, 25 genes have been linked with MCPH. Many of these genes are reported in Pakistani population, but due to a high rate of consanguinity, a significant proportion of MCPH cohort is yet to be explored. MCPH5 is the most frequently reported type, accounting for up to 68.75% alone in a genetically constrained population like Pakistan. In the current study, whole exome sequencing (WES) was performed on probands from 10 families sampled from South Waziristan and two families from rural areas of the Pakistani Punjab. Candidate variants were validated through Sanger sequencing in all available family members. Variant filtering and in silico analysis identified three known mutations in ASPM, a MCPH5-associated gene. The founder mutation p.Trp1326* was segregating in 10 families, which further confirmed the evidence that it is the most prominent mutation in Pashtun ethnicity living in Pakistan and Afghanistan. Furthermore, the previously known mutations p.Arg3244* and p.Arg1019* were inherited in two families with Punjab ethnic profile. Collectively, this study added 12 more families to the mutational paradigm of ASPM and expanded the Pakistani MCPH cohort.

13.
PeerJ ; 8: e8370, 2020.
Article in English | MEDLINE | ID: mdl-31988805

ABSTRACT

Systemic sclerosis is a chronic multisystem autoimmune disease that is associated with polyclonal B cell hyperreactivity. The CDR3 of BCRs is the major site of antigen recognition. Therefore, we analyzed the BCR repertoire of patients with SSc. The BCR repertoires in 12 subjects including eight SSc patients and four healthy controls were characterized by high-throughput sequencing, and bioinformatics analysis were studied. The average CDR3 length in the SSc group was significantly shorter. The SSc patient displayed more diverse BCR. Moreover, SSc patients with mild skin sclerosis, anti-Scl70, interstitial lung disease or female sex were more diversified. B cells from the SSc patients showed a differential V and J gene usage. SSc patients had distinct BCR repertoires.These findings reflected the differences of BCR repertoires between SSc patients and controls. The higher-usage genes for the BCR sequence might be potential biomarkers of B cell-targeted therapies or diagnosis for SSc.

14.
Case Rep Genet ; 2020: 2071738, 2020.
Article in English | MEDLINE | ID: mdl-32908726

ABSTRACT

This case reports a novel hemizygous frameshift EMD mutation (c.487delA, p.Ser163fs) in twins of an Emery-Dreifuss muscular dystrophy family with severe cardiac involvement and mild muscle weakness. Their mother carried the same heterozygous mutation.

15.
Clin Transl Med ; 10(1): 238-257, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32508047

ABSTRACT

BACKGROUND: Atrioventricular nodal reentry tachycardia (AVNRT) is the most common manifestation of paroxysmal supraventricular tachycardia (PSVT). Increasing data have indicated familial clustering and participation of genetic factors in AVNRT, and no pathogenic genes related to AVNRT have been reported. METHODS: Whole-exome sequencing (WES) was performed in 82 patients with AVNRT and 100 controls. Reference genes, genome-wide association analysis, gene-based collapsing, and pathway enrichment analysis were performed. A protein-protein interaction (PPI) network was then established; WES database in the UK Biobank and one only genetic study of AVNRT in Denmark were used for external data validation. RESULTS: Among 95 reference genes, 126 rare variants in 48 genes were identified in the cases (minor allele frequency < 0.001). Gene-based collapsing analysis and pathway enrichment analysis revealed six functional pathways related to AVNRT as with neuronal system/neurotransmitter release cycles and ion channel/cardiac conduction among the top 30 enriched pathways, and then 36 candidate pathogenic genes were selected. By combining with PPI analysis, 10 candidate genes were identified, including RYR2, NOS1, SCN1A, CFTR, EPHB4, ROBO1, PRKAG2, MMP2, ASPH, and ABCC8. From the UK Biobank database, 18 genes from candidate genes including SCN1A, PRKAG2, NOS1, and CFTR had rare variants in arrhythmias, and the rare variants in PIK3CB, GAD2, and HIP1R were in patients with PSVT. Moreover, one rare variant of RYR2 (c.4652A > G, p.Asn1551Ser) in our study was also detected in the Danish study. Considering the gene functional roles and external data validation, the most likely candidate genes were SCN1A, PRKAG2, RYR2, CFTR, NOS1, PIK3CB, GAD2, and HIP1R. CONCLUSION: The preliminary results first revealed potential candidate genes such as SCN1A, PRKAG2, RYR2, CFTR, NOS1, PIK3CB, GAD2, and HIP1R, and the pathways mediated by these genes, including neuronal system/neurotransmitter release cycles or ion channels/cardiac conduction, might be involved in AVNRT.

16.
Front Neurosci ; 13: 633, 2019.
Article in English | MEDLINE | ID: mdl-31333395

ABSTRACT

Alzheimer's disease (AD), also known as senile dementia, is a progressive neurodegenerative disease. The etiology and pathogenesis of AD have not yet been elucidated. We examined common differentially expressed genes (DEGs) from different AD tissue microarray datasets by meta-analysis and screened the AD-associated genes from the common DEGs using GCBI. Then we studied the gene expression network using the STRING database and identified the hub genes using Cytoscape. Furthermore, we analyzed the microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and single nucleotide polymorphisms (SNPs) associated with the AD-associated genes, and then identified feed-forward loops. Finally, we performed SNP analysis of the AD-associated genes. Our results identified 207 common DEGs, of which 57 have previously been reported to be associated with AD. The common DEG expression network identified eight hub genes, all of which were previously known to be associated with AD. Further study of the regulatory miRNAs associated with the AD-associated genes and other genes specific to neurodegenerative diseases revealed 65 AD-associated miRNAs. Analysis of the miRNA associated transcription factor-miRNA-gene-gene associated TF (mTF-miRNA-gene-gTF) network around the AD-associated genes revealed 131 feed-forward loops (FFLs). Among them, one important FFL was found between the gene SERPINA3, hsa-miR-27a, and the transcription factor MYC. Furthermore, SNP analysis of the AD-associated genes identified 173 SNPs, and also found a role in AD for miRNAs specific to other neurodegenerative diseases, including hsa-miR-34c, hsa-miR-212, hsa-miR-34a, and hsa-miR-7. The regulatory network constructed in this study describes the mechanism of cell regulation in AD, in which miRNAs and lncRNAs can be considered AD regulatory factors.

17.
PeerJ ; 7: e6643, 2019.
Article in English | MEDLINE | ID: mdl-30918762

ABSTRACT

BACKGROUND: Captive populations permit research and conservation of endangered species in which these efforts are hardly implemented in wild populations. Thus, analysing genetic diversity and structure of captive populations offers unique opportunities. One example is the critically endangered Blue-crowned Laughingthrush, Garrulax courtoisi, which has only two known wild populations in Wuyuan, Jiangxi and Simao, Yunnan, China. We carried out the first conservation genetic study, in order to provide useful implications that allow for successful ex situ conservation and management of the Blue-crowned Laughingthrush. METHODS: Using the novel microsatellite markers developed by whole-genome sequencing, we genotyped two captive populations, from the Ocean Park Hong Kong, which are of unknown origin, and the Nanchang Zoo, which were introduced from the Wuyuan wild population since the year 2010-2011, respectively. The genetic diversity of captive Blue-crowned Laughingthrush populations was estimated based on genetic polymorphisms revealed by a new microsatellite data set and mitochondrial sequences. Then, we characterised the population structure using STRUCTURE, principal coordinates analysis, population assignment test using the microsatellite data, and haplotype analysis of mitochondrial data. Additionally, we quantified genetic relatedness based on the microsatellite data with ML-Relate. RESULTS: Our results showed equally low levels of genetic diversity of the two captive Blue-crowned Laughingthrush populations. The population structure analysis, population assignment test using the microsatellite data, and haplotype analysis of the mitochondrial data showed weak population structuring between these two populations. The average pairwise relatedness coefficient was not significant, and their genetic relatedness was quantified. DISCUSSION: This study offers a genetic tool and consequently reveals a low level of genetic diversity within populations of a critically endangered bird species. Furthermore, our results indicate that we cannot exclude the probability that the origin of the Hong Kong captive population was the wild population from Wuyuan. These results provide valuable knowledge that can help improve conservation management and planning for both captive and wild Blue-crowned Laughingthrush populations.

18.
Hum Genome Var ; 6: 38, 2019.
Article in English | MEDLINE | ID: mdl-31645976

ABSTRACT

Arrhythmogenic right ventricular cardiomyopathy (ARVC) presents as the progressive fibrofatty replacement of the cardiomyocytes particularly in the right ventricular wall. Here, we report two cases with ARVC. In family A, the proband carries a Desmoglein2 (DSG2) gene complex heterozygous mutation NM_001943.4:c.146G>A/p.(Arg49His)and NM_001943.3:c.1592T>G/p.(Phe531Cys). In family B, the proband carries a homozygous mutation NM_001943.3:c.1592T>G/p.(Phe531Cys).

19.
Hum Genome Var ; 6: 42, 2019.
Article in English | MEDLINE | ID: mdl-31645980

ABSTRACT

Emery-Dreifuss muscular dystrophy (EDMD) is a rare X-linked recessive disease characterized by the clinical triad of early childhood joint contractures, progressive weakness in muscles and cardiac involvement and can result in sudden death. Targeted next-generation sequencing was performed for a Chinese patient with EDMD and the previously reported mutation [NM_000117.2: c.251_255del (p.Leu84Profs*7)] in exon 3 of the emerin gene (EMD) was identified.

20.
Front Genet ; 10: 919, 2019.
Article in English | MEDLINE | ID: mdl-31781152

ABSTRACT

Understanding how incipient species are maintained with gene flow is a fundamental question in evolutionary biology. Whole genome sequencing of multiple individuals holds great potential to illustrate patterns of genomic differentiation as well as the associated evolutionary histories. Kentish (Charadrius alexandrinus) and the white-faced (C. dealbatus) plovers, which differ in their phenotype, ecology and behavior, are two incipient species and parapatrically distributed in East Asia. Previous studies show evidence of genetic diversification with gene flow between the two plovers. Under this scenario, it is of great importance to explore the patterns of divergence at the genomic level and to determine whether specific regions are involved in reproductive isolation and local adaptation. Here we present the first population genomic analysis of the two incipient species based on the de novo Kentish plover reference genome and resequenced populations. We show that the two plover lineages are distinct in both nuclear and mitochondrial genomes. Using model-based coalescence analysis, we found that population sizes of Kentish plover increased whereas white-faced plovers declined during the Last Glaciation Period. Moreover, the two plovers diverged allopatrically, with gene flow occurring after secondary contact. This has resulted in low levels of genome-wide differentiation, although we found evidence of a few highly differentiated genomic regions in both the autosomes and the Z-chromosome. This study illustrates that incipient shorebird species with gene flow after secondary contact can exhibit discrete divergence at specific genomic regions and provides basis to further exploration on the genetic basis of relevant phenotypic traits.

SELECTION OF CITATIONS
SEARCH DETAIL