Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Pulm Pharmacol Ther ; 83: 102268, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37967761

ABSTRACT

Pulmonary fibrosis (PF) is a lethal disease characterized by a progressive decline in lung function. Currently, lung transplantation remains the only available treatment for PF. However, both artemisinin (ART) and hydroxychloroquine (HCQ) possess potential antifibrotic properties. This study aimed to investigate the effects and mechanisms of a compound known as Artemisinin-Hydroxychloroquine (AH) in treating PF, specifically by targeting the TGF-ß1/Smad2/3 pathway. To do this, we utilized an animal model of PF induced by a single tracheal drip of bleomycin (BLM) in Sprague-Dawley (SD) rats. The PF animal models were administered various doses of AH, and the efficacy and safety of AH were evaluated through pulmonary function testing, blood routine tests, serum biochemistry tests, organ index measurements, and pathological examinations. Additionally, Elisa, western blotting, and qPCR techniques were employed to explore the potential molecular mechanisms of AH in treating PF. Our findings reveal that AH effectively and safely alleviate PF by inhibiting BLM-induced specific inflammation, reducing extracellular matrix (ECM) deposition, and interfering with the TGF-ß1/Smad2/3 signaling pathway. Notably, the windfall for this study is that the inhibition of ECM may initiate self-healing in the BLM-induced PF animal model. In conclusion, AH shows promise as a potential therapeutic drug for PF, as it inhibits disease progression through the TGF-ß1/Smad2/3 signaling pathway.


Subject(s)
Artemisinins , Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Bleomycin/toxicity , Hydroxychloroquine/adverse effects , Rats, Sprague-Dawley , Signal Transduction , Artemisinins/adverse effects , Lung
2.
Mol Cell Biochem ; 477(2): 549-557, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34845571

ABSTRACT

Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) is a collagen-related lysyl hydroxylase and its prognostic value in glioma patients was verified. However, its biological function in glioma has yet to be fully investigated. The PLOD1 mRNA status and clinical significance in gliomas were assessed via the GEPIA database. Overexpression or targeted depletion of PLOD1 was carried out in the human glioma cell line U87 and verified by western blotting. CCK8 and colony formation assays were implemented to examine the impact of PLOD1 on the proliferative and colony-forming phenotypes of U87 cells. Luciferase reporter assays and HSF1-specific pharmacologic inhibitors (KRIBB11) were employed to determine the regulatory relationship between PLOD1 and heat shock factor 1 (HSF1). High expression of PLOD1 was observed in tissue samples of glioblastoma multiforme (GBM) and brain lower-grade glioma (LGG). GEPIA overall survival further demonstrated that both GBM and LGG patients with high PLOD1 displayed worse clinical outcomes compared with those with low PLOD1. Overexpression and targeted depletion of PLOD1 enhanced and suppressed U87 cell proliferation and colony formation, respectively. Luciferase reporter assays showed that PLOD1 significantly enhanced the transcriptional activity of HSF1 in HEK293T cells. PLOD1 deficiency in U87 cells inhibited HSF1-induced survivin accumulation, whereas KRIBB11 also blocked the PLOD1-overexpressing induced survivin expression. An inhibitor of HSF1 signaling events abolished the increased clonogenic potential caused by PLOD1 overexpression in U87 cells. High expression of PLOD1 can increase the proliferation and colony formation of U87 cells by activating the HSF1 signaling pathway. This study suggested PLOD1/HSF1 as an effective therapeutic target for gliomas.


Subject(s)
Glioma/metabolism , Heat Shock Transcription Factors/metabolism , Oncogene Proteins/metabolism , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Signal Transduction , Cell Line, Tumor , Glioma/genetics , HEK293 Cells , Heat Shock Transcription Factors/genetics , Humans , Oncogene Proteins/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics
3.
Clin Infect Dis ; 67(11): 1670-1676, 2018 11 13.
Article in English | MEDLINE | ID: mdl-29846536

ABSTRACT

Background: Mass drug administration (MDA), with or without low-dose primaquine (PMQLD), is being considered for malaria elimination programs. The potential of PMQLD to block malaria transmission by mosquitoes must be balanced against liabilities of its use. Methods: Artemisinin-piperaquine (AP), with or without PMQLD, was administered in 3 monthly rounds across Anjouan Island, Union of Comoros. Plasmodium falciparum malaria rates, mortality, parasitemias, adverse events, and PfK13 Kelch-propeller gene polymorphisms were evaluated. Results: Coverage of 85 to 93% of the Anjouan population was achieved with AP plus PMQLD (AP+PMQLD) in 2 districts (population 97164) and with AP alone in 5 districts (224471). Between the months of April-September in both 2012 and 2013, average monthly malaria hospital rates per 100000 people fell from 310.8 to 2.06 in the AP+PMQLD population (ratio 2.06/310.8 = 0.66%; 95% CI: 0.02%, 3.62%; P = .00007) and from 412.1 to 2.60 in the AP population (ratio 0.63%; 95% CI: 0.11%, 1.93%; P < .00001). Effectiveness of AP+PMQLD was 0.9908 (95% CI: 0.9053, 0.9991), while effectiveness of AP alone was 0.9913 (95% CI: 0.9657, 0.9978). Both regimens were well tolerated, without severe adverse events. Analysis of 52 malaria samples after MDA showed no evidence for selection of PfK13 Kelch-propeller mutations. Conclusions: Steep reductions of malaria cases were achieved by 3 monthly rounds of either AP+PMQLD or AP alone, suggesting potential for highly successful MDA without PMQLD in epidemiological settings such as those on Anjouan. A major challenge is to sustain and expand the public health benefits of malaria reductions by MDA.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/prevention & control , Primaquine/therapeutic use , Quinolines/therapeutic use , Adolescent , Adult , Child , Child, Preschool , Comoros/epidemiology , DNA, Protozoan/genetics , Drug Therapy, Combination , Endemic Diseases/prevention & control , Female , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/mortality , Male , Mass Drug Administration , Parasitemia/drug therapy , Parasitemia/epidemiology , Plasmodium falciparum , Polymorphism, Genetic , Treatment Outcome , Young Adult
4.
Malar J ; 17(1): 83, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29458365

ABSTRACT

BACKGROUND: Malaria is still one of the serious public health problems in Grande Comore Island, although the number of annual cases has been greatly reduced in recent years. A better understanding of malaria parasite population diversity and transmission dynamics is critical for assessing the effectiveness of malaria control measures. The objective of this study is to investigate temporal changes in genetic diversity of Plasmodium falciparum populations and multiplicity of infection (MOI) in Grande Comore 10 years after introduction of ACT. METHODS: A total of 232 P. falciparum clinical isolates were collected from the Grande Comore Island during two sampling periods (118 for 2006‒2007 group, and 114 for 2013‒2016 group). Parasite isolates were characterized for genetic diversity and complexity of infection by genotyping polymorphic regions in merozoite surface protein gene 1 (msp-1), msp-2, and msp-3 using nested PCR and DNA sequencing. RESULTS: Three msp-1 alleles (K1, MAD20, and RO33), two msp-2 alleles (FC27 and 3D7), and two msp-3 alleles (K1 and 3D7) were detected in parasites of both sampling periods. The RO33 allele of msp-1 (84.8%), 3D7 allele of msp-2 (90.8%), and K1 allele of msp-3 (66.7%) were the predominant allelic types in isolates from 2006-2007 group. In contrast, the RO33 allele of msp-1 (63.4%), FC27 allele of msp-2 (91.1%), and 3D7 allele of msp-3 (53.5%) were the most prevalent among isolates from the 2013-2016 group. Compared with the 2006‒2007 group, polyclonal infection rates of msp-1 (from 76.7 to 29.1%, P < 0.01) and msp-2 (from 62.4 to 28.3%, P < 0.01) allelic types were significantly decreased in those from 2013‒2016 group. Similarly, the MOIs for both msp-1 and msp-2 were higher in P. falciparum isolates in the 2006-2007 group than those in 2013-2016 group (MOI = 3.11 vs 1.63 for msp-1; MOI = 2.75 vs 1.35 for msp-2). DNA sequencing analyses also revealed reduced numbers of distinct sequence variants in the three genes from 2006‒2007 to 2013‒2016: msp-1, from 32 to 23 (about 28% decline); msp-2 from 29 to 21 (about 28% decline), and msp-3 from 11 to 3 (about 72% decline). CONCLUSIONS: The present data showed dramatic reduction in genetic diversity and MOI among Grande Comore P. falciparum populations over the course of the study, suggesting a trend of decreasing malaria transmission intensity and genetic diversity in Grande Comore Island. These data provide valuable information for surveillance of P. falciparum infection and for assessing the appropriateness of the current malarial control strategies in the endemic area.


Subject(s)
Antigens, Protozoan/genetics , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Therapy, Combination/statistics & numerical data , Genetic Variation , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Comoros , Humans
5.
Malar J ; 15(1): 414, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27527604

ABSTRACT

BACKGROUND: In Comoros, the widespread of chloroquine (CQ)-resistant Plasmodium falciparum populations was a major obstacle to malaria control, which led to the official withdrawal of CQ in 2004. Continuous monitoring of CQ-resistant markers of the P. falciparum CQ resistant transporter (pfcrt) and the P. falciparum multiple drug resistance 1 (pfmdr-1) is necessary inder to obtain first-hand information on CQ susceptibility of parasite populations in the field. The objective of this study is to assess the prevalence and evolution of CQ-resistance in the P. falciparum populations on the Comoros' Grande Comore island after withdrawal of CQ. METHODS: A total of 207 P. falciparum clinical isolates were collected from the island, including 118 samples from 2006 to 2007 and 89 samples from 2013 to 2014. Nucleotide substitutions in the pfcrt and pfmdr-1 genes linked to CQ response in parasite isolates were assessed using nested PCR and DNA sequencing. RESULTS: From the pfcrt gene segment sequenced, we detected C72S, M74I, N75E, and K76T substitutions in the parasite isolates collected from both 2006-2007 to 2013-2014 periods. Significant decline of pfcrt resistant alleles at C72S (42.6 to 6.9 %), M74I (39.1 to 14.9 %), N75E (63.5 to 18.3 %), and K76T (72.2 to 19.5 %) from 2006-2007 to 2013-2014 were observed, and the frequency of pfcrt wild type allele was significantly increased from 19.1 % in 2006-2007 to 75.8 % in 2013-2014. Sequence analysis of pfmdr-1 also detected point mutations at codons N86Y, Y184F, and D1246Y, but not S1034C and N1042D, in the isolates collected from both examined periods. An increasing trend in the prevalence of the pfmdr-1 wild type allele (NYD, 4.3 % in 2006-2007; and 28.7 % in 2013-2014), and a decreasing trend for pfmdr-1 N86Y mutation (87.0 % in 2006-2007; and 40.2 % in 2013-2014) were observed in our samples. CONCLUSIONS: The present data indicate that the prevalence and patterns of mutant pfcrt and pfmdr-1 dramatically decreased in the Grande Comore isolates from 2006 to 2014, suggesting that the CQ-sensitive P. falciparum strains have returned after the withdrawal of CQ. The data also suggests that the parasites with wild type pfcrt/pfdmr-1 genes may have growth and/or transmission advantages over the mutant parasites. The information obtained from this study will be useful for developing and updating anti-malarial treatment policy in Grande Comore island.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Utilization , Malaria, Falciparum/epidemiology , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/isolation & purification , Protozoan Proteins/genetics , Adult , Amino Acid Substitution , Child , Child, Preschool , Comoros/epidemiology , Female , Humans , Malaria, Falciparum/parasitology , Male , Mutation, Missense , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Polymerase Chain Reaction , Prevalence , Sequence Analysis, DNA
6.
FEBS Lett ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744670

ABSTRACT

The Wnt signaling pathway is a huge network governing development and homeostasis, dysregulation of which is associated with a myriad of human diseases. The Frizzled receptor (FZD) family comprises receptors for Wnt ligands, which indispensably mediate Wnt signaling jointly with a variety of co-receptors. Studies of FZDs have revealed that 10 FZD subtypes play diverse roles in physiological processes. At the same time, dysregulation of FZDs is also responsible for various diseases, in particular human cancers. Enormous attention has been paid to the molecular understanding and targeted therapy of FZDs in the past decade. In this review, we summarize the latest research on FZD structure, function, regulation and targeted therapy, providing a basis for guiding future research in this field.

7.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38931398

ABSTRACT

BACKGROUND: H1N1 is one of the major subtypes of influenza A virus (IAV) that causes seasonal influenza, posing a serious threat to human health. A traditional Chinese medicine combination called Qingxing granules (QX) is utilized clinically to treat epidemic influenza. However, its chemical components are complex, and the potential pharmacological mechanisms are still unknown. METHODS: QX's effective components were gathered from the TCMSP database based on two criteria: drug-likeness (DL ≥ 0.18) and oral bioavailability (OB ≥ 30%). SwissADME was used to predict potential targets of effective components, and Cytoscape was used to create a "Herb-Component-Target" network for QX. In addition, targets associated with H1N1 were gathered from the databases GeneCards, OMIM, and GEO. Targets associated with autophagy were retrieved from the KEGG, HAMdb, and HADb databases. Intersection targets for QX, H1N1 influenza, and autophagy were identified using Venn diagrams. Afterward, key targets were screened using Cytoscape's protein-protein interaction networks built using the database STRING. Biological functions and signaling pathways of overlapping targets were observed through GO analysis and KEGG enrichment analysis. The main chemical components of QX were determined by high-performance liquid chromatography (HPLC), followed by molecular docking. Finally, the mechanism of QX in treating H1N1 was validated through animal experiments. RESULTS: A total of 786 potential targets and 91 effective components of QX were identified. There were 5420 targets related to H1N1 and 821 autophagy-related targets. The intersection of all targets of QX, H1N1, and autophagy yielded 75 intersecting targets. Ultimately, 10 core targets were selected: BCL2, CASP3, NFKB1, MTOR, JUN, TNF, HSP90AA1, EGFR, HIF1A, and MAPK3. Identification of the main chemical components of QX by HPLC resulted in the separation of seven marker ingredients within 195 min, which are amygdalin, puerarin, baicalin, phillyrin, wogonoside, baicalein, and wogonin. Molecular docking results showed that BCL2, CASP3, NFKB1, and MTOR could bind well with the compounds. In animal studies, QX reduced the degenerative alterations in the lung tissue of H1N1-infected mice by upregulating the expression of p-mTOR/mTOR and p62 and downregulating the expression of LC3, which inhibited autophagy. CONCLUSIONS: According to this study's network pharmacology analysis and experimental confirmation, QX may be able to treat H1N1 infection by regulating autophagy, lowering the expression of LC3, and increasing the expression of p62 and p-mTOR/mTOR.

8.
J Clin Invest ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963708

ABSTRACT

Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essentially meaningful. Here, we identified an under-appreciated Serine/Threonine kinase, CDKL3 (Cyclin-dependent kinase like 3), crucially drives the rapid cell cycle progression and cell growth in cancers. Mechanism-wise, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate Retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of CDK4 by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 (Cyclin-dependent kinase 4/6) inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes the acquired resistance of the latter. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presented an integrated paradigm of cancer cell cycle regulation and suggested CDKL3-targeting as a feasible approach in cancer treatment.

9.
Adv Healthc Mater ; 12(29): e2301441, 2023 11.
Article in English | MEDLINE | ID: mdl-37414582

ABSTRACT

Rspos (R-spondins) belong to a family of secreted proteins that causes various cancers via interacting the corresponding receptors. However, targeted therapeutic approaches against Rspos are largely lacking. In this study, a chimeric protein Rspo-targeting anticancer chimeric protein (RTAC) is originally designed, engineered, and characterized. RTAC shows satisfactory anticancer effects through inhibition of pan-Rspo-mediated Wnt/ß-catenin signaling activation both in vitro and in vivo. Furthermore, a conceptually novel antitumor strategy distinct from traditional drug delivery systems that release drugs inside tumor cells is proposed. A special "firewall" nano-system is designed to enrich on tumor cell surface and cover the plasma membrane, rather than undergoing endocytosis, to block oncogenic Rspos from binding to receptors. Cyclic RGD (Arg-Gly-Asp) peptide-linked globular cluster serum albumin nanoparticles (SANP) are integrated as a vehicle for conjugating RTAC (SANP-RTAC/RGD) for tumor tissue targeting. These nanoparticles can adhere to the tumor cell surface and enable RTAC to locally capture free Rspos with high spatial efficiency and selectivity to antagonize cancer progression. Therefore, this approach offers a new nanomedical anticancer route and obtains the "dual-targeting" capability for effective tumor clearance and low potential toxicity. This study presents a proof-of-concept for anti-pan-Rspo therapy and a nanoparticle-integrated paradigm for targeted cancer treatment.


Subject(s)
Neoplasms , Wnt Signaling Pathway , Humans , Wnt Signaling Pathway/physiology , Neoplasms/drug therapy , Albumins , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use
10.
Talanta ; 253: 123912, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36115102

ABSTRACT

In this work, we successfully constructed a label-free electrochemiluminescence (ECL) immunosensor for the detection of breast cancer marker antigen (CA15-3). In particular, 3,4,9,10-perylenetetracarboxylic acid (PTCA) is cleverly attached to the surface of silica spheres as a luminophore (NH2-SiO2-PTCA), which greatly alleviates the disadvantage of PTCA anti-induced aggregated luminescence and improves the ECL performance. Furthermore, Pt nanoparticles were used to dope CeO2 and introducing reduced graphene oxide (rGO) to prepare CeO2/Pt/rGO composites as a novel co-reaction accelerator. Among them, Pt nanoparticles were used to improve the electrical conductivity of CeO2, and the use of rGO as a substrate allows for a more uniform dispersion of CeO2 to increase the catalytic surface area, which effectively improves the performance of the co-reaction accelerator and thus increasing the ECL intensity of the PTCA/S2O82- system. Under the optimal conditions, the designed ECL immunosensor showed satisfactory results in the determination of CA15-3 with a linear range of 12.00 mU mL-1 - 120.00 U mL-1 and a low detection limit of 1.348 mU mL-1. Importantly, the resulting biosensor has good stability, high sensitivity and reliable reproducibility, suggesting its potential application in clinical research.


Subject(s)
Biosensing Techniques , Silicon Dioxide , Reproducibility of Results , Immunoassay
11.
FEBS Lett ; 597(24): 3061-3071, 2023 12.
Article in English | MEDLINE | ID: mdl-37873736

ABSTRACT

The liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) axis pivotally controls cell metabolism and suppresses abnormal growth in various cancers. Wnt/ß-catenin is a frequently dysregulated signaling pathway that drives oncogenesis. Here, we discovered a crosstalk mechanism between the LKB1/AMPK axis and Wnt/ß-catenin signaling. Activated AMPK phosphorylates the deubiquitinase USP10 to potentiate the deubiquitination and stabilization of the key scaffold protein Axin1. This phosphorylation also strengthens the binding between USP10 and ß-catenin and supports the phase transition of ß-catenin. Both processes suppress Wnt/ß-catenin amplitude in parallel and inhibit colorectal cancer growth in a clinically relevant manner. Collectively, we established a crosstalk route by which LKB1/AMPK regulates Wnt/ß-catenin signaling in cancer. USP10 acts as the hub in this process, thus enabling LKB1/AMPK to suppress tumor growth via regulation of both metabolism and cell proliferation.


Subject(s)
AMP-Activated Protein Kinases , Neoplasms , Humans , AMP-Activated Protein Kinases/metabolism , beta Catenin/metabolism , Deubiquitinating Enzymes/metabolism , Neoplasms/genetics , Protein Serine-Threonine Kinases/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Wnt Signaling Pathway
12.
Prev Med Rep ; 32: 102154, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36852307

ABSTRACT

We conducted a study on the Trobriand Islands of Papua New Guinea (PNG) in 2018 to verify the safety and efficacy of the artemisinin-piperaquine (AP) mass drug administration (MDA) campaign in regions with moderate to high mixed malaria transmission. Based on the natural topography of the Trobriand Islands, 44,855 residents from 92 villages on the islands were enrolled and divided into the main and outer islands. Three rounds of MDA were conducted using grid-based management. The primary endpoint was the coverage rate. Adverse reactions, parasitemia, and malaria morbidity were the secondary endpoints. There were 36,716 people living in 75 villages on the main island, and the MDA coverage rate was 92.58-95.68%. Furthermore, 8,139 people living in 17 villages on the outer islands had a coverage rate of 94.93-96.11%. The adverse reactions were mild in both groups, and parasitemia decreased by 87.2% after one year of surveillance. The average annual malaria morbidity has decreased by 89.3% after the program for four years. High compliance and mild adverse reactions indicated that the MDA campaign with AP was safe. The short-term effect is relatively ideal, but the evidence for long-term effect evaluation is insufficient.

13.
Cell Chem Biol ; 30(11): 1436-1452.e10, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37611590

ABSTRACT

Wnt/ß-catenin signaling is a conserved pathway crucially governing development, homeostasis, and oncogenesis. Discoveries of its regulators hold great values in both basic and translational research. Through screening, we identified a deubiquitinase, USP10, as a critical modulator of ß-catenin. Mechanistically, USP10 binds to key scaffold Axin1 via conserved motifs and stabilizes Axin1 through K48-linked deubiquitination. Surprisingly, USP10 physically tethers Axin1 and ß-catenin and promotes the phase separation for ß-catenin suppression regardless of the enzymatic activity. Function-wise, USP10 enzymatic activity preferably regulates embryonic development and both the enzymatic activity and physical function jointly control intestinal homeostasis by antagonizing ß-catenin. In colorectal cancer, USP10 substantially represses cancer growth mainly through physical promotion of phase separation and correlates with Wnt/ß-catenin magnitude clinically. Collectively, we discovered USP10 functioning in multiple biological processes against ß-catenin and unearthed the enzyme-dependent and -independent "dual-regulating" mechanism. These two functions of USP10 work in parallel and are context dependent.


Subject(s)
Wnt Signaling Pathway , beta Catenin , beta Catenin/metabolism , Deubiquitinating Enzymes/metabolism
14.
Open Forum Infect Dis ; 10(3): ofad076, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36910690

ABSTRACT

Background: Mass drug administration (MDA) is a powerful tool for malaria control, but the medicines to use, dosing, number of rounds, and potential selection of drug resistance remain open questions. Methods: Two monthly rounds of artemisinin-piperaquine (AP), each comprising 2 daily doses, were administered across the 7 districts of Grande Comore Island. In 3 districts, low-dose primaquine (PMQLD) was also given on the first day of each monthly round. Plasmodium falciparum malaria rates, mortality, parasitemias, adverse events, and genetic markers of potential drug resistance were evaluated. Results: Average population coverages of 80%-82% were achieved with AP in 4 districts (registered population 258 986) and AP + PMQLD in 3 districts (83 696). The effectiveness of MDA was 96.27% (95% confidence interval [CI], 95.27%-97.06%; P < .00001) in the 4 AP districts and 97.46% (95% CI, 94.54%-98.82%; P < .00001) in the 3 AP + PMQLD districts. In comparative statistical modeling, the effectiveness of the 2 monthly rounds on Grande Comore Island was nearly as high as that of 3 monthly rounds of AP or AP + PMQLD in our earlier study on Anjouan Island. Surveys of pre-MDA and post-MDA samples showed no significant changes in PfK13 polymorphism rates, and no PfCRT mutations previously linked to piperaquine resistance in Southeast Asia were identified. Conclusions: MDA with 2 monthly rounds of 2 daily doses of AP was highly effective on Grande Comore Island. The feasibility and lower expense of this 2-month versus 3-month regimen of AP may offer advantages for MDA programs in appropriate settings.

15.
Adv Sci (Weinh) ; 9(28): e2200750, 2022 10.
Article in English | MEDLINE | ID: mdl-35975457

ABSTRACT

Frizzled (Fzd) proteins are Wnt receptors and play essential roles in development, homeostasis, and oncogenesis. How Wnt/Fzd signaling is coupled to physiological regulation remains unknown. Cholesterol is reported as a signaling molecule regulating morphogen such as Hedgehog signaling. Despite the elusiveness of the in-depth mechanism, it is well-established that pancreatic cancer specially requires abnormal cholesterol metabolism levels for growth. In this study, it is unexpectedly found that among ten Fzds, Fzd5 has a unique capacity to bind cholesterol specifically through its conserved extracellular linker region. Cholesterol-binding enables Fzd5 palmitoylation, which is indispensable for receptor maturation and trafficking to the plasma membrane. In Wnt-addicted pancreatic ductal adenocarcinoma (PDAC), cholesterol stimulates tumor growth via Fzd5-mediated Wnt/ß-catenin signaling. A natural oxysterol, 25-hydroxylsterol competes with cholesterol and inhibits Fzd5 maturation and Wnt signaling, thereby alleviating PDAC growth. This cholesterol-receptor interaction and ensuing receptor lipidation uncover a novel mechanism by which Fzd5 acts as a cholesterol sensor and pivotal connection coupling lipid metabolism to morphogen signaling. These findings further suggest that cholesterol-targeting may provide new therapeutic opportunities for treating Wnt-dependent cancers.


Subject(s)
Carcinoma, Pancreatic Ductal , Frizzled Receptors , Oxysterols , Pancreatic Neoplasms , Frizzled Receptors/metabolism , Hedgehog Proteins/metabolism , Humans , Lipid Metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Pancreatic Neoplasms
16.
Int J Antimicrob Agents ; 60(4): 106658, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35988664

ABSTRACT

BACKGROUND: Malaria significantly rebounded in 2018 in the Comoros; this created an urgent need to conduct clinical trials to investigate the effectiveness of artemisinin and its derivatives. METHODS: An open-label, non-randomised controlled trial of artemisinin-piperaquine (AP) and artemether-lumefantrine (AL) was conducted in Grande Comore island from June 2019 to January 2020. A total of 238 uncomplicated falciparum malaria cases were enrolled and divided 1:1 into two treatments. The primary endpoint was the 42-day adequate clinical and parasitological responses (ACPR). Secondary endpoints were parasitaemia and fever clearance at day 3, gametocytes and tolerability. RESULTS: The 42-day ACPR before and after PCR correction were 91.43% (95% CI 83.93-95.76%) and 98.06% (95% CI 92.48-99.66%) for AP treatment, respectively, and 96.00% (95% CI 88.17-98.14%) and 98.97% (95% CI 93.58-99.95%) for AL treatment, respectively. Complete clearance of the parasitaemia and fever for both groups was detected on day 3. Gametocytes disappeared on day 21 in the AP group and on day 2 in AL group. Specifically, the adverse reactions were mild in both groups. CONCLUSIONS: It was found that AP and AL maintained their high efficacy and tolerance in the Comoros. Nonetheless, asymptomatic malaria infections bring new challenges to malaria control.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Quinolines , Antimalarials/adverse effects , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/adverse effects , Drug Combinations , Ethanolamines/adverse effects , Fluorenes/adverse effects , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Piperazines , Plasmodium falciparum , Quinolines/adverse effects
17.
Infect Drug Resist ; 15: 6533-6544, 2022.
Article in English | MEDLINE | ID: mdl-36386414

ABSTRACT

Introduction: Artemisinin-based combination therapies (ACTs) act as first-line antimalarial drugs and play a crucial role in the successful control of falciparum malaria. However, the recent emergence of resistance of Plasmodium falciparum to ACTs in South East Asia is of particular concern. Hence, there is an urgent need to identify the genetic determinants of and understand the molecular mechanisms underpinning such resistance. Artemisinin resistance (AR) is primarily driven by the mutations in the P. falciparum K13 protein, which is widely recognized as the major molecular marker of AR. However, association of K13 mutations with in vivo AR has been ambiguous due to the absence of a tractable model. Methods: In this study, we have successfully produced artemisinin- and piperaquine-resistant P. berghei K173 following drug administrations. Prolonged parasite clearance and early recrudescence were found following daily exposure to high doses of artemisinin and piperaquine. We have also sequenced the DNA of artemisinin-resistant strains and piperaquine-resistant strains of P. berghei K173 to explore the relationship between PfK13 and AR. Results: The resistance index of P. berghei K173 reached 12.4 after 30 artemisinin-resistant generations, but AR declined gradually after 30 generations. On the 50th generation, the resistance index of artemisinin-resistant strains was only 5.0 compared with the severe drug resistance of piperaquine-resistant strains (I90=148.8). DNA sequencing of artemisinin-resistant strains showed that there were 9 meaningful mutations at P. berghei K13-propeller domain, but the above mutations did not include common clinical point mutations. Conclusion: Our data show that artemisinin is less susceptible to severe resistance compared with other antimalarial drugs. In addition, mutation on P. berghei K13 has a multi-drug-resistant phenotype and may be used as a biomarker to monitor its resistance. More studies need to be conducted on the new mutations detected so as to understand their association, if any, with ACT resistance.

18.
Front Med (Lausanne) ; 8: 617195, 2021.
Article in English | MEDLINE | ID: mdl-34322498

ABSTRACT

Background: Mass drug administration with artemisinin-piperaquine (AP-MDA) is being considered for elimination of residual foci of malaria in Democratic Republic of São Tomé and Principe. Methods: Three monthly rounds of AP-MDA were implemented from July to October 2019. Four zones were selected. A and B were selected as a study site and a control site, respectively. C and D were located within 1.5 and 1.5 km away from the study site, respectively. Parasite prevalence, malaria incidence, and the proportion of the Plasmodium falciparum malaria cases were evaluated. Results: After 3 monthly rounds of AP-MDA, the parasite prevalence and the gametocyte carriage rate of P. falciparum in zone A decreased from 28.29(‰) to 0 and 4.99(‰) to 0, respectively. Compared to zone B, the relative risk for the population with Plasmodium falciparum malaria in zone A was lower (RR = 0.458, 95% CI: 0.146-1.437). Malaria incidence fell from 290.49(‰) (the same period of the previous year) to 15.27(‰) (from the 29th week in 2019 to the 14th week in 2020), a decrease of 94.74% in zone A, and from 31.74 to 5.46(‰), a decline of 82.80% in zone B. Compared to the data of the same period the previous year, the cumulative number of P. falciparum malaria cases were lower, decreasing from 165 to 10 in zone A and from 17 to 4 in zone B. The proportion of the P. falciparum malaria cases on the total malaria cases of the country decreased of 90.16% in zone A and 71.34% in zone C. Conclusion: AP-MDA greatly curbed malaria transmission by reducing malaria incidence in the study site and simultaneously creating a knock-on effect of malaria control within 1.5 km of the study site and within the limited time interval of 38 weeks.

19.
Oncotarget ; 8(61): 102801-102819, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29262525

ABSTRACT

Cyclooxygenase-2 (COX-2) has been found to be induced during the early stage of Alzheimer's disease (AD). Using mouse-derived astrocyte and APP/PS1 transgenic (Tg) mice as model systems, we firstly elucidated the mechanisms underlying COX-2 metabolic production including prostaglandin (PG)E2- and PGI2-mediated tumor necrosis factor α (TNF-α) regulation. Specifically, PGE2 accumulation in astrocyte activated the p38 and JNK/c-Jun signaling pathways via phosphorylation, resulting in TNF-α expression. In contrast, the administration of PGI2 attenuated the effects of PGE2 in stimulating the production of TNF-α by inhibiting the activity of TNF-α promoter and the binding activity of AP1 on the promoter of TNF-α. Moreover, our data also showed that not only Aß1-42 oligomers but also Aß1-42 fibrils have the ability to involve in mediating the antagonistic effects of PGE2 and PGI2 on regulating the expression of TNF-α via a p38- and JNK/c-Jun-dependent, AP1-transactivating mechanism. Reciprocally, the production of TNF-α finally accelerated the deposition of ß-amyloid protein (Aß)1-42 in ß-amyloid plaques (APs), which contribute to the cognitive decline of AD.

20.
J Neurosurg ; 123(5): 1194-201, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26024007

ABSTRACT

OBJECT: Nutritional support is highly recommended for reducing the risk of nosocomial infections, such as pneumonitis, in patients with severe traumatic brain injury (TBI). Currently, there is no consensus for the preferred route of feeding. The authors compared the risks of pneumonitis and other important outcomes associated with small intestinal and gastric feeding in patients with severe TBI. METHODS: This systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relevant randomized controlled trials (up to December 16, 2013) that compared small bowel to gastric feeding in patients with severe TBI were identified from searches in the PubMed and Embase databases. The primary outcome was risk of pneumonia. Secondary outcomes included ventilator-associated pneumonia, mortality, length of intensive care unit stay, length of hospital stay, duration of mechanical ventilation, total number of complications, aspiration, diarrhea, distention, Glasgow Coma Scale score, Injury Severity Score, and Acute Physiology and Chronic Health Evaluation II score. RESULTS: Five randomized controlled trials with 325 participants in total were included in the meta-analysis. Compared with gastric feeding, small bowel feeding was associated with a significant reduction in the incidence of pneumonitis (risk ratio [RR] 0.67; 95% CI 0.52-0.87; p=0.002; I2=0.0%) and ventilator-associated pneumonia (RR 0.52; 95% CI 0.34-0.81; p=0.003; I2=0.0%). Small intestinal feeding was also associated with a decrease in the total number of complications (RR 0.43; 95% CI 0.20-0.93; p=0.03; I2=68%). However, small intestinal feeding did not seem to significantly convert any of the other end points in the meta-analysis. CONCLUSIONS: The limited evidence suggests that small bowel feeding in patients with severe TBI is associated with a risk of pneumonia that is lower than that with gastric feeding. From this result, the authors recommend the use of small intestinal feeding to reduce the incidence of pneumonitis in patients with severe TBI.


Subject(s)
Brain Injuries/therapy , Enteral Nutrition/methods , Intestine, Small , Intubation, Intratracheal/methods , Stomach , Humans , Randomized Controlled Trials as Topic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL